

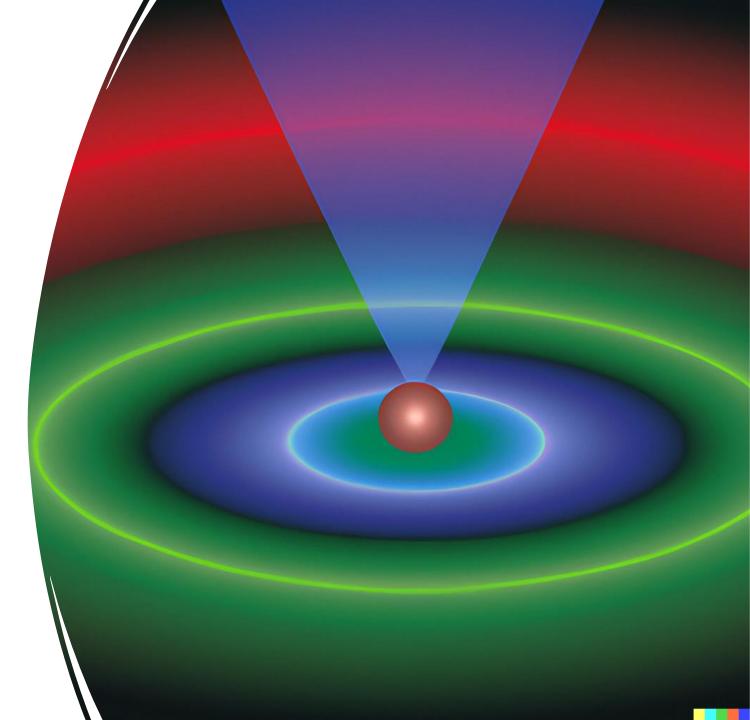
Cryptography from Pseudorandom States

Prabhanjan Ananth UC Santa Barbara **Luowen Qian** *Boston University* Henry Yuen Columbia University

QCRYPT 2022 ia.cr/2021/1663

Is <insert your favorite cryptography> secure?

- AES? SHA-3? RSA? Lattices? TLS?
- Any unconditional "computational" security proof
 ⇒ OWF (one-way functions) [Impagliazzo and Luby'89; Goldreich'90; ...]

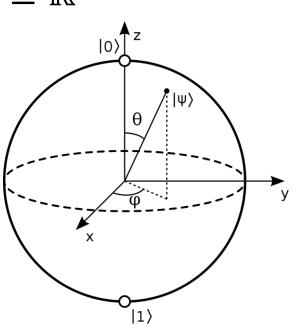

 ⇒ settle the million-dollar P-vs-NP question
- Quantum cryptography: protocols for quantum parties
- Known quantum crypto: information theoretic or assumes \geq OWF
- P vs NP is independent for a broad class of quantum cryptography: no such barriers for security proof! [Kretschmer'21; this work and concurrently Morimae—Yamakawa]

Pseudorandom States (PRS)

[Ji, Liu, Song'19]

Informally,

- Like a PRG: Takes a short seed as input
- Output is quantum state that is pseudo "Haar random"



Quantum states and Haar random states

- Qubit (quantum bit) $|\psi
 angle$: unit vector in \mathbb{C}^2
- n qubits $|\psi\rangle$: unit vector in $(\mathbb{C}^2)^{\otimes n} = \mathbb{C}^{2^n}$
- *n*-qubit Haar random states:

the uniform distribution μ over unit sphere of $\mathbb{C}^{2^n} \cong \mathbb{R}^{2 \cdot 2^n}$ (Requires $\exp(n)$ bits to describe an approximation)

• Unitary invariance: $\forall U: U \cdot \text{Haar} \equiv \text{Haar}$

Pseudorandom States (PRS) [JLS19]

A quantum algorithm G is an n-qubit PRS generator if:

- Efficient generation
 - Takes as input $k \in \{0, 1\}^{\lambda}$
 - Runs in $poly(\lambda)$ time
 - Outputs a pure state $|\psi_k\rangle\langle\psi_k|$ of $n(\lambda)$ qubits
- Pseudorandomness

Like *t*-designs

but does not fix t

No cloning

- $|\psi_k
 angle$ "looks" Haar random even with many copies, i.e.
- $\forall \text{poly } t(\cdot), |\psi_k\rangle^{\otimes t(\lambda)} \approx |\phi\rangle^{\otimes t(\lambda)}$ for *n*-qubit Haar random $|\phi\rangle$

OWF vs PRS

- JLS19: OWF $\rightarrow \omega(\log \lambda)$ -qubit PRS \rightarrow (private-key query-secure) quantum money
- Not clear how P = QMA rules out PRS: statement is quantum
- Kretschmer'21: In a relativized world, P = QMA but PRS exists (PRS does not imply OWF in a black-box way)
- PRS could be a weaker (quantum) hardness assumption!

What classical crypto task can we achieve just with PRS?

Difficulties of using PRS (vs PRG)

- Output is highly entangled and "brittle" [JLS19]
- We do not know: [Brakerski, Shmueli'20] n-qubit PRS $\rightarrow n'$ -qubit PRS for any nontrivial $n \neq n'$ (for example, $n = 4\lambda$ and $n' = 2\lambda$)
 - Even shrinking naïvely causes the state to be mixed (PRG outputs however can always be shrinked)
- Output might not be expanding: $n \leq \lambda$

Our solution: state analogue of **PRF**

Our results PRS PRFS Useful crypto

Using PRFS as an important intermediate step, we show

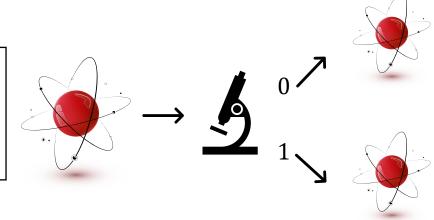
- 1. One-time encryption of messages of any length exists assuming $\omega(\log \lambda)$ -qubit PRS
- 2. Statistically binding commitments exists assuming $2 \log \lambda + \omega (\log \log \lambda)$ -qubit PRS (Corollary: coin flipping, OT and MPC via [BCKM21])

[Morimae, Yamakawa'22]: commitments and one-time signatures assuming $\Omega(\lambda)$ -qubit (single-copy-secure length-increasing) PRS

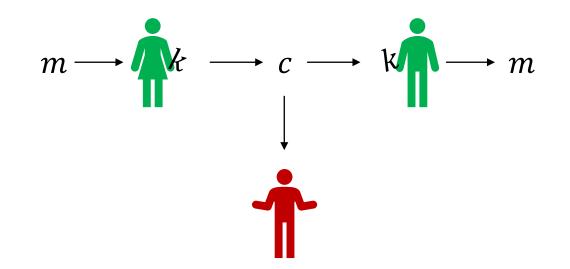
statistical PRS

[Brakerski, Shmueli'20]

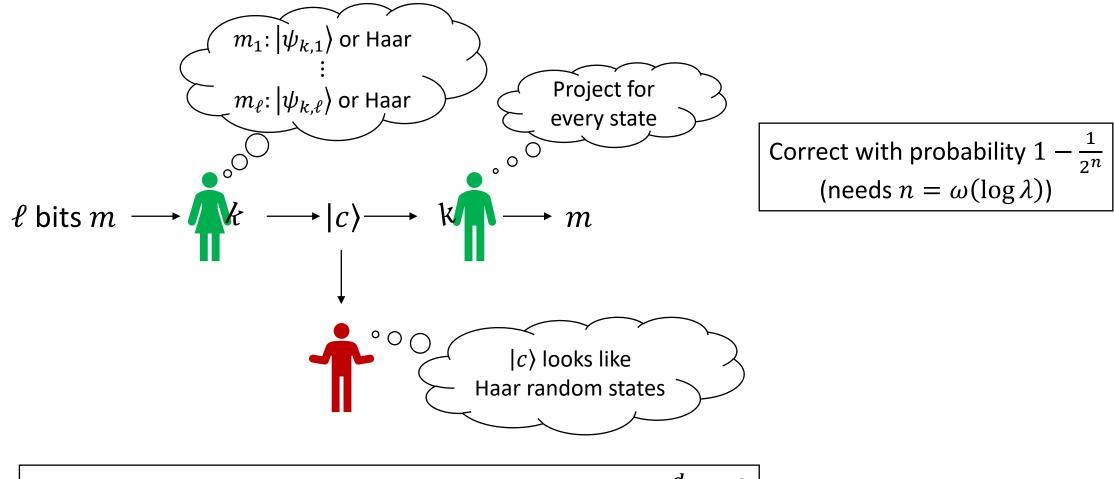
Pseudorandom Function-like States (PRFS)


A quantum algorithm *G* is a PRFS generator if:

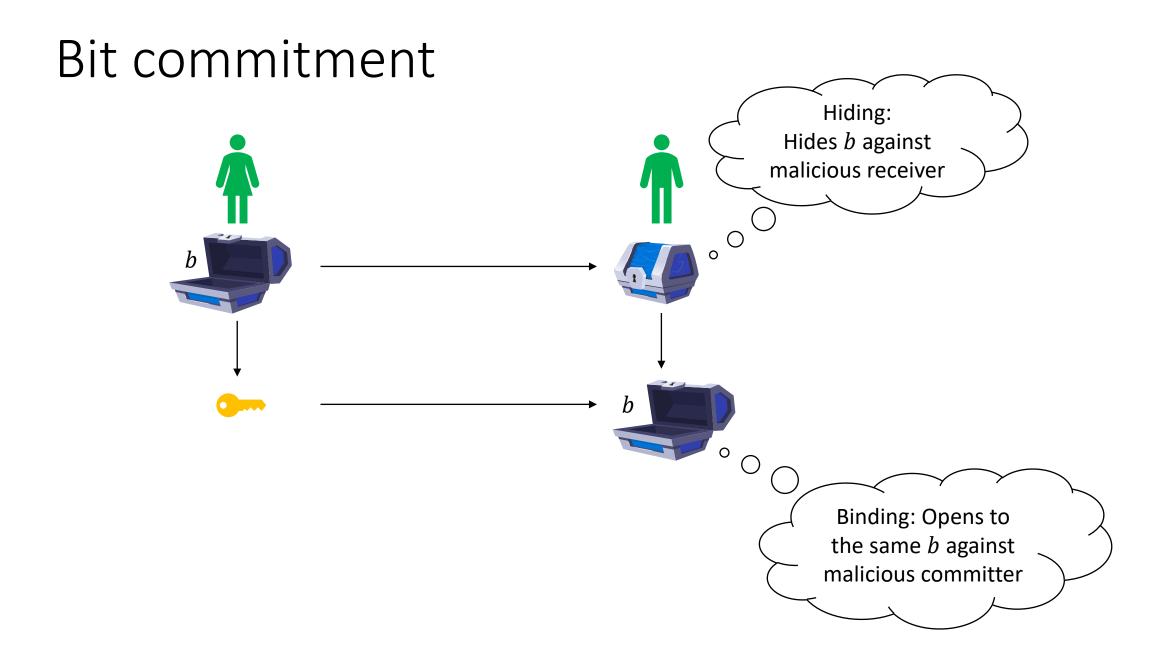
- Efficient generation
 - Takes as input $k \in \{0, 1\}^{\lambda}, x \in \{0, 1\}^d$
 - Runs in $poly(\lambda)$ time
 - Outputs a state $|\psi_{k,x}
 angle$ of n qubits
- Pseudorandomness
 - $\forall \text{poly } t, \forall \text{poly } \# \text{ of (distinct) indices } x_{1...s}$ (known to distinguisher), $(|\psi_{k,x_1}\rangle \cdots |\psi_{k,x_s}\rangle)^{\otimes t}$ for random k is computationally indistinguishable from $(|\phi_1\rangle \cdots |\phi_s\rangle)^{\otimes t}$ for n-qubit Haar random states $\{|\phi_i\rangle\}$


PRFS via splitting Haar: post-selection

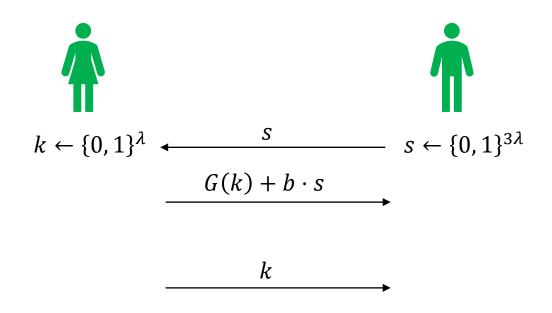
Theorem: (d + n)-qubit PRS \Rightarrow *n*-qubit PRFS with *d*-bit inputs for $d = O(\log \lambda)$



- Given $|\psi_k\rangle$, measure the first d qubits and conditioned on getting x, output the post-measurement state on the remaining n d qubits
- Post-selection success probability for Haar is exponentially concentrated around $\frac{1}{2^d} \rightarrow \text{post-selection}$ is efficient if $d = O(\log \lambda)$


Non-trivial encryption |k| < |m|

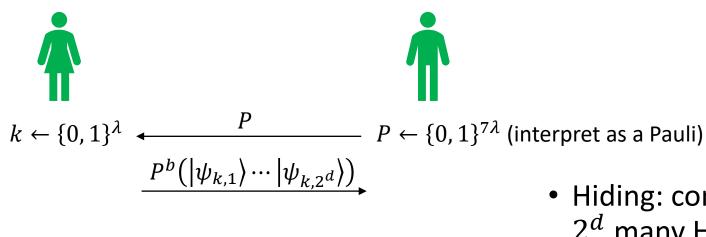
One-time encryption of arbitrarily many bits



Only need to construct PRFS with input domain $2^d \ge \ell$

Naor commitment from PRG [Naor'91]

G is a PRG mapping λ bits to 3λ bits



- Hiding: $G(k) + b \cdot s$ looks random as G(k) looks random
- Binding: *b* is uniquely determined with high probability over *s*

Naor commitment from PRFS

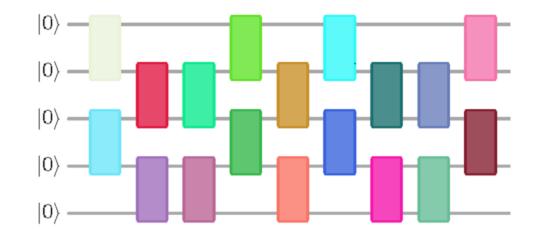
G is a PRFS with $2^d \cdot n \ge 7\lambda$

k

- Hiding: commitment looks like 2^d many Haar random states
- Binding: *b* is "uniquely determined" with high probability over *P*

Subtleties

G is a PRFS with $2^d \cdot n \ge 7\lambda$


 $k \leftarrow \{0, 1\}^{\lambda} \leftarrow P$ $P \leftarrow \{0, 1\}^{7\lambda}$ (interpret as a Pauli) See paper for resolution: $P^{b}(|\psi_{k,1}\rangle\cdots|\psi_{k,2^{d}}\rangle) \qquad \circ \circ \bigcirc$ New statistical binding • Commit to a definition via collapsing the superposition? ideal world k Generic PRS tester that works 0 even for mixed state outputs How to efficiently test whether the state is correct? (also for encryption)

What about candidate constructions?

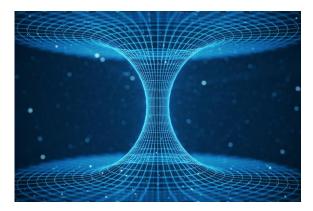
...and why should they be independent of one-way functions, if at all?

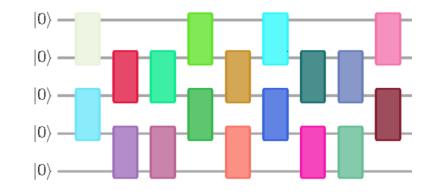
Candidate PRS from random quantum circuits


- Key describes a "sufficiently" large 2-local random unitary U_k
- Output: $U_k |0^n\rangle$
- Already studied in various contexts: quantum supremacy, black holes...
- Realizable on near-term quantum devices?

Candidate PRS from wormholes

Wormhole: 2 black holes connecting 2 distinct regions of space-time


- Initial (Thermofield Double) state $|TFD\rangle$
- Highly "scrambling" evolution of black holes $U = e^{-iH_{CFT}t}$
- "Shock" O_i : (key) random Pauli operator applied on the first qubit Conjecture: $UO_\ell UO_{\ell-1} \cdots O_1 U | TFD \rangle$ is PRS [Bouland, Fefferman, Vazirani 2020] BFV20: conjecture is true if U is a random black-box unitary Evidence from black-hole physics?



Summary of PRS candidates

Wormhole dynamics & random quantum circuits

- More candidates?
- Formal evidence that they are secure/insecure?
- Formal evidence that they are independent of one-way functions?
- Possibility to achieve better performance from such hardness?

Conclusion & open questions

Quantum cryptography from quantum computational hardness!

- Construct crypto from PRS with even smaller output length? (Construct statistical PRS with larger output length?)
- What other interesting quantum hardness lies beyond PRS? (Some progress in upcoming work: a minimal primitive)

Thank you!