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Root of classical crypto: one-way functions

• Functions that are easy to compute but hard to invert

• Sufficient for: a lot of crypto (secret-key encryption, signature, commitment, 
ZK, (weak) coin flipping, pseudorandomness…)

• Necessary for: almost all crypto! (encryption, signature, commitment, key 
exchange, MPC, pseudorandomness…)

• Holy grail for theory of crypto: minimize assumptions



One-way functions in a quantum world

• Functions that are easy to compute but hard to invert

• Sufficient for: a lot of crypto (secret-key encryption, signature, commitment, 
ZK, (weak) coin flipping, pseudorandomness…)

• Necessary for: almost all crypto! (encryption, signature, commitment, key 
exchange, MPC, pseudorandomness…)

• Holy grail for theory of crypto: minimize assumptions

Post-quantum crypto:
Crypto against 

quantum adversaries



Power of quantum for crypto

• Key exchange unconditionally, aka quantum key distribution
[Bennett, Brassard’84]

• MPC from OWF [Bennett, Brassard, Crépeau, Skubiszewska’91; Bartusek, Coladangelo, 
Khurana, Ma’21; Grilo, Lin, Song, Vaikuntanathan’21]

• “Impossible” crypto: unclonable crypto, position verification, 
everlasting security… [Wiesner’83; Kent’02; Unruh’12; …]

• (Crypto of quantum tasks: quantum encryption/authentication/MPC, 
quantum delegation, ZK for QMA…)

OWFs might not 
be minimal



One-way functions in a quantum world

• Functions that are easy to compute but hard to invert

• Sufficient for: a lot of crypto (secret-key encryption, signature, commitment, 
ZK, (weak) coin flipping, pseudorandomness…)

• Necessary for: almost all crypto! (encryption, signature, commitment, key 
exchange, MPC, pseudorandomness…)

• Holy grail for theory of crypto: minimize assumptions

Post-quantum crypto:
Crypto against 

quantum adversaries

Quantum crypto: Crypto with quantum parties

What are the minimal assumptions for quantum crypto?

Still true?



Classical vs Quantum Pseudorandomness

One-Way Function

• Pseudorandom Generator (PRG)
• 𝐺 0, 1 𝜆 ∈ 0, 1 𝑛

• Random 0, 1 𝑛, 𝑛 > 𝜆

• Pseudorandom Functions (PRF)
• 𝑓 0, 1 𝜆: 0, 1 𝑑 → 0, 1 𝑛

• Random 𝐹: 0, 1 𝑑 → 0, 1 𝑛

(query access)

• Pseudorandom Permutations 
(PRP)

[Ji, Liu, Song’19]

• Pseudorandom States (PRS)
• 𝐺 0, 1 𝜆 → 𝑛 qubits

• Haar random pure state

• Pseudorandom Unitaries (PRU)
• 𝑈 0, 1 𝜆: a unitary

• Haar random unitary
(query access)

JLS19

?

Kretschmer’20: 
Might be hard



Quantum states and Haar random states

• Qubit (quantum bit) 𝜓 : unit vector in ℂ2

• 𝑛 qubits 𝜓 : unit vector in ℂ2 ⊗𝑛 = ℂ2
𝑛

• Haar random states:
the uniform distribution 𝜇 over unit sphere of ℂ2

𝑛
≅ ℝ2⋅2𝑛

(Requires exp 𝑛 bits to describe an approximation)

• Unitary invariance: ∀𝑈:𝑈 ⋅ Haar ≡ Haar



Pseudorandom States (PRS) [JLS19]

A quantum algorithm 𝐺 is an 𝑛-qubit PRS generator if:

• Efficient generation
• Takes as input 𝑘 ∈ 0, 1 𝜆

• Runs in poly 𝜆 time

• Outputs a pure state 𝜓𝑘 𝜓𝑘 of 𝑛 𝜆 qubits

• Pseudorandomness:
• 𝜓𝑘 “looks” Haar random even with many copies, i.e.

• ∀poly 𝑡 ⋅ ∀QPT𝜆 𝐴,
Pr

𝑘← 0, 1 𝜆
𝐴 𝜓𝑘

⊗𝑡 𝜆 = 1 − Pr
𝜙 ←Haar𝑛 𝜆

𝐴 𝜙 ⊗𝑡 𝜆 = 1 ≤ negl 𝜆

No cloning

Similar to 𝑡-designs 
but does not fix 𝑡



OWF vs PRS

• JLS19: OWF →𝜔 log 𝜆 -qubit PRS
→ (private-key query-secure) quantum money

• Kretschmer’20: In a relativized world, BQP = QMA but PRS exists
(PRS does not imply OWF in a black-box way)

• PRS could be a weaker (quantum) assumption!

What classical crypto task can we achieve just with PRS?



Difficulties of using PRS

(will expand more later)

• Output is highly entangled [JLS19]

• We do not know: [Brakerski, Shmueli’20]

𝑛-qubit PRS → 𝑛′-qubit PRS for any nontrivial 𝑛 ≠ 𝑛′

• Even shrinking naïvely causes the state to be mixed

• Output might not be expanding 𝑛 ≤ 𝜆

Our solution: state analogue of PRF



Pseudorandom Function-like States (PRFS)

A quantum algorithm 𝐺 is a PRFS generator if:

• Efficient generation
• Takes as input 𝑘 ∈ 0, 1 𝜆, 𝑥 ∈ 0, 1 𝑑

• Runs in poly 𝜆 time

• Outputs a state 𝜓𝑘,𝑥 of 𝑛 qubits

• Pseudorandomness
• ∀poly 𝑡, ∀poly # of (distinct) indices 𝑥1…𝑠 (known to distinguisher),

𝜓𝑘,𝑥1 ⋯ 𝜓𝑘,𝑥𝑠

⊗𝑡
for random 𝑘 is computationally indistinguishable from 

𝜙1 ⋯ 𝜙𝑠
⊗𝑡 for 𝑛-qubit Haar random states |𝜙𝑖⟩

As useful as PRF
(SKE, MAC, …)



Our results

Using PRFS as an intermediate step, we show

1. One-time encryption of messages of any length exists
assuming 𝜔 log 𝜆 -qubit PRS

2. Statistically binding commitments exists
assuming 2 log 𝜆 + 𝜔 log log 𝜆 -qubit PRS
(Corollary: MPC via [BCKM21])

[Morimae, Yamakawa’21]: commitments and one-time signatures
assuming 𝑐𝜆-qubit PRS for 𝑐 > 1

∃𝑂(log 𝜆)-qubit 
statistical PRS [BS20]



Encryption
From 𝜔 log 𝜆 -qubit PRS



One-Time Pad

𝑚 𝑐 𝑚

𝑐 = 𝑚⊕ 𝑘 𝑚 = 𝑐 ⊕ 𝑘

𝑐 is random

𝑘 ≥ 𝑚



Pseudo OTP from PRG

𝑚 𝑐 𝑚

𝑐 = 𝑚⊕𝐺 𝑘 𝑚 = 𝑐 ⊕ 𝐺 𝑘

𝑐 looks 
random

𝐺: 0, 1 𝑘 → 0, 1 𝑚 is a PRG

If PRS is like PRG, can we extend this for PRS?



Naïve Pseudo OTP from PRS

𝑚 𝑐 𝑚

𝑐 = 𝑋𝑚 𝜓𝑘
???

By unitary-invariance, 
𝑐 looks Haar random

Issue: PRS output might 
not be longer than 𝑘



One-time encryption of a single bit

Bit 𝑚 𝑐 𝑚

𝜓𝑘 or 𝜙 ← 𝜇
Project onto 
𝜓𝑘 𝜓𝑘

Either way,
𝑐 looks Haar random

Correct with probability 1 −
1

2𝑛

(needs 𝑛 = 𝜔 log 𝜆 )

How to encrypt many bits?



Encrypting many bits via repetition

ℓ bits 𝑚 𝑐 𝑚

𝑚1: 𝜓𝑘 or 𝜇
⋮

𝑚ℓ: 𝜓𝑘 or 𝜇
Project for 
every state 

Sees the patterns 
using SWAP tests



One-time encryption of many bits

𝑐 𝑚

𝑚1: 𝜓𝑘,1 or 𝜇

⋮

𝑚ℓ: 𝜓𝑘,ℓ or 𝜇 Project for 
every state 

𝑐 should look like 
Haar random states?

Only need to construct PRFS with input domain 2𝑑 ≥ ℓ

ℓ bits 𝑚



Construct PRFS from PRS?
PRFS: 𝑑 = 𝑂 log 𝜆
PRS: 𝑛 = 𝜔 log 𝜆



PRFS via GGM [Goldreich, Goldwasser, Micali’84]

P
R

S

P
R

S
P

R
S

Mixed state
(not deterministic)



PRFS via splitting key

• Split key 𝑘 = 𝑘1||𝑘2||⋯ ||𝑘ℓ and invoke PRS on 𝑘𝑖
⋯

• Only gives encryption of ℓ bits

PRS



• Given 𝜓𝑘 , measure the first 𝑑 qubits and conditioned on getting 𝑥,
output the post-measurement state on the 𝑛 − 𝑑 qubits

• Post-selection success probability for Haar is exponentially 

concentrated around 
1

2𝑑
→ post-selection is efficient if 𝑑 = 𝑂 log 𝜆

PRFS via splitting Haar: post-selection

P
R

S

0

1



Recap: from PRS to one-time encryption

Putting things together: to encrypt message of length ℓ = 𝜆𝑂 1

𝑛-qubit PRS with 𝑛 = 𝜔 log 𝜆 -qubit output

→ PRFS with log ℓ = 𝑂 log 𝜆 -bit input domain
and 𝑛 − log ℓ = 𝜔 log 𝜆 -qubit output

→ ℓ-bit encryption



Commitment
From 𝜔 log 𝜆 -qubit PRS



Bit commitment

𝑏

𝑏

Hiding:
Hides 𝑏 against 

malicious receiver

Binding: Opens to 
the same 𝑏 against 

malicious committer



Naor commitment from PRG [Naor’91]

𝐺 is a PRG mapping 𝜆 bits to 3𝜆 bits

𝑠
𝑠 ← 0, 1 3𝜆𝑘 ← 0, 1 𝜆

𝐺 𝑘 + 𝑏 ⋅ 𝑠

𝑘

• Hiding: 𝐺 𝑘 + 𝑏 ⋅ 𝑠 looks random 
as 𝐺 𝑘 looks random

• Binding: 𝑏 is uniquely determined 
with high probability over 𝑠



Naor commitment from PRS

𝐺 is a PRS mapping 𝜆 bits to 3𝜆 qubits

𝑃
𝑃 ← 0, 1 6𝜆 (interpret as a Pauli)𝑘 ← 0, 1 𝜆

𝑃𝑏 𝜓𝑘

𝑘

• Hiding: 𝑃𝑏 𝜓𝑘 looks Haar random 
as Haar random is unitary invariant

• Binding: 𝑏 is “uniquely determined” 
with high probability over 𝑃

MY21: can be made non-interactive generically

Only need the 
distribution to be 

Pauli invariant

Pauli invariant distributions:

• Haar random states (special case of unitary-invariant)

• A string of Haar random qubits

• A string of Haar random states → PRFS



Naor commitment from PRFS

𝐺 is a PRFS with 2𝑑 ⋅ 𝑛 ≥ 7𝜆

𝑃
𝑃 ← 0, 1 7𝜆 (interpret as a Pauli)𝑘 ← 0, 1 𝜆

𝑃𝑏 𝜓𝑘,1 ⋯ 𝜓𝑘,2𝑑

𝑘

• Hiding: commitment looks like
2𝑑 many Haar random states

• Binding: 𝑏 is “uniquely determined” 
with high probability over 𝑃



Recap: from PRS to MPC

Putting things together:

𝑛-qubit PRS with 𝑛 = 𝜔 log 𝜆 -qubit output

→ PRFS with log 𝜆-bit input domain
and 𝑛 − log 𝜆 = 𝜔 log 𝜆 -qubit output

(2𝑑 𝑛 − log 𝜆 = 𝜔 𝜆 )

→ Quantum analogue of Naor commitment

→ Malicious MPC [BCKM21]



Subtleties

𝐺 is a PRFS with 2𝑑 ⋅ 𝑛 ≥ 7𝜆

𝑃
𝑃 ← 0, 1 7𝜆 (interpret as a Pauli)𝑘 ← 0, 1 𝜆

𝑃𝑏 𝜓𝑘,1 ⋯ 𝜓𝑘,2𝑑

𝑘

Commit to a 
superposition?

How to efficiently 
test whether the 
state is correct?

(also for encryption)



Generalizing statistical binding for
quantum bit commitments

𝑏

𝑏𝑎𝑢𝑥 ,

Formalize 𝑏
having been 
determined?

Prior work on defining statistical binding –
• Sum binding: [Yan, Weng, Lin, Quan’15; Unruh’16; Fang, Unruh, Yan, Zhou’20; MY21]

Pr open 0 + Pr open 1 ≤ 1 + negl
• “Classical” binding: receiver’s measurement outcomes 

statistically determine the bit [Bitansky, Brakerski’21; BCKM21]



Generalizing statistical binding for
quantum bit commitments

𝑏

𝑏𝑎𝑢𝑥 ,

𝑏

𝑏𝑎𝑢𝑥 ,

′ 𝑏′

𝑎𝑢𝑥 , 𝑏 real ≈ 𝑎𝑢𝑥 , 𝑏 ideal ∧ 𝑏 = 𝑏′
Stat. indistinguishable 
from classical binding

Allow committing to 
superposition, otherwise 

classical binding



Testing PRS/PRFS: challenges

• SWAP test only gives inverse polynomial guarantee
(we want negligible security)

• Our PRFS (post-selection) construction does not satisfy
standard state generation guarantee
• runs in expected poly-time

(or strict poly-time with inverse exponential failure probability)

• produces garbage auxiliary (also applies to [BS20])
(auxiliary cannot be generically uncomputed when output is quantum)



Testing PRS/PRFS: solution

We show how to test PRS/PRFS without state generation guarantee
(output can even be a mixed state)

See paper 
for analysis



Open questions

Quantum cryptography from quantum computational assumptions!

• Candidate PRS/PRU without OWF? (Random quantum circuit?)

• Construct crypto from PRS with even smaller output length?
(Construct statistical PRS with larger output length?)

• What other interesting quantum hardness lies beyond PRS?

Thank you!
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