Cryptography from Pseudorandom States

Prabhanjan Ananth UC Santa Barbara

Luowen Qian *Boston University* Henry Yuen Columbia University

ia.cr/2021/1663

Root of classical crypto: one-way functions

- Functions that are easy to compute but hard to invert
- Sufficient for: a lot of crypto (secret-key encryption, signature, commitment, ZK, (weak) coin flipping, pseudorandomness...)
- Necessary for: almost all crypto! (encryption, signature, commitment, key exchange, MPC, pseudorandomness...)
- Holy grail for theory of crypto: minimize assumptions

One-way functions in a quantum world

• Functions that are easy to compute but hard to invert

Post-quantum crypto: Crypto against quantum adversaries

- Sufficient for: a lot of crypto (secret-key encryption, signature, commitment, ZK, (weak) coin flipping, pseudorandomness...)
- Necessary for: almost all crypto! (encryption, signature, commitment, key exchange, MPC, pseudorandomness...)
- Holy grail for theory of crypto: minimize assumptions

Power of quantum for crypto

- Key exchange unconditionally, aka quantum key distribution [Bennett, Brassard'84]
- MPC from OWF [Bennett, Brassard, Crépeau, Skubiszewska'91; Bartusek, Coladangelo, Khurana, Ma'21; Grilo, Lin, Song, Vaikuntanathan'21]
- "Impossible" crypto: unclonable crypto, position verification, everlasting security... [Wiesner'83; Kent'02; Unruh'12; ...]
- (Crypto of quantum tasks: quantum encryption/authentication/MPC, quantum delegation, ZK for QMA...)

One-way functions in a quantum world

- Functions that are easy to compute but hard to invert
- Su Quantum crypto: Crypto with quantum parties
 ZK, (weak) coin flipping, pseudorandomness...)

Post-quantum crypto: Crypto against quantum adversaries

Still true?

ture, commitment,

- Necessary for: almost all crypto! (encryption, signature, commitment, key exchange, MPC, pseudorandomness...)
- Holy grail for theory of crypto: minimize assumptions

What are the minimal assumptions for quantum crypto?

Classical vs Quantum Pseudorandomness

Quantum states and Haar random states

- Qubit (quantum bit) $|\psi
 angle$: unit vector in \mathbb{C}^2
- n qubits $|\psi\rangle$: unit vector in $(\mathbb{C}^2)^{\otimes n} = \mathbb{C}^{2^n}$
- Haar random states:

the uniform distribution μ over unit sphere of $\mathbb{C}^{2^n} \cong \mathbb{R}^{2 \cdot 2^n}$ (Requires $\exp(n)$ bits to describe an approximation)

• Unitary invariance: $\forall U: U \cdot \text{Haar} \equiv \text{Haar}$

Pseudorandom States (PRS) [JLS19]

A quantum algorithm G is an n-qubit PRS generator if:

- Efficient generation
 - Takes as input $k \in \{0, 1\}^{\lambda}$
 - Runs in $poly(\lambda)$ time
 - Outputs a pure state $|\psi_k\rangle\langle\psi_k|$ of $n(\lambda)$ qubits
- Pseudorandomness:
 - $|\psi_k\rangle$ "looks" Haar random even with many copies, i.e.

•
$$\forall \text{poly } t(\cdot) \forall \text{QPT}_{\lambda} A,$$

$$\left[\Pr_{k \leftarrow \{0, 1\}^{\lambda}} \left[A(|\psi_k\rangle^{\otimes t(\lambda)}) = 1 \right] - \Pr_{|\phi\rangle \leftarrow \text{Haar}_{n(\lambda)}} \left[A(|\phi\rangle^{\otimes t(\lambda)}) = 1 \right] \right] \leq \text{negl}(\lambda)$$

No cloning

Similar to *t*-designs but does not fix *t*

OWF vs PRS

- JLS19: OWF $\rightarrow \omega(\log \lambda)$ -qubit PRS \rightarrow (private-key query-secure) quantum money
- Kretschmer'20: In a relativized world, BQP = QMA but PRS exists (PRS does not imply OWF in a black-box way)
- PRS could be a weaker (quantum) assumption!

What classical crypto task can we achieve just with PRS?

Difficulties of using PRS

(will expand more later)

- Output is highly entangled [JLS19]
- We do not know: [Brakerski, Shmueli'20] n-qubit PRS $\rightarrow n'$ -qubit PRS for any nontrivial $n \neq n'$
 - Even shrinking naïvely causes the state to be mixed
- Output might not be expanding $n \leq \lambda$

Our solution: state analogue of PRF

Pseudorandom Function-like States (PRFS)

A quantum algorithm *G* is a PRFS generator if:

- Efficient generation
 - Takes as input $k \in \{0, 1\}^{\lambda}, x \in \{0, 1\}^d$
 - Runs in $poly(\lambda)$ time
 - Outputs a state $|\psi_{k,x}
 angle$ of n qubits
- Pseudorandomness
 - $\forall \text{poly } t, \forall \text{poly } \# \text{ of (distinct) indices } x_{1...s}$ (known to distinguisher), $(|\psi_{k,x_1}\rangle \cdots |\psi_{k,x_s}\rangle)^{\otimes t}$ for random k is computationally indistinguishable from $(|\phi_1\rangle \cdots |\phi_s\rangle)^{\otimes t}$ for n-qubit Haar random states $\{|\phi_i\rangle\}$

Our results

Using PRFS as an intermediate step, we show

- 1. One-time encryption of messages of any length exists assuming $\omega(\log \lambda)$ -qubit PRS
- 2. Statistically binding commitments exists assuming $2 \log \lambda + \omega (\log \log \lambda)$ -qubit PRS (Corollary: MPC via [BCKM21])

[Morimae, Yamakawa'21]: commitments and one-time signatures assuming $c\lambda$ -qubit PRS for c>1

Encryption

From $\omega(\log \lambda)$ -qubit PRS

One-Time Pad $|k| \ge |m|$

Pseudo OTP from PRG

 $G: \{0, 1\}^{|k|} \to \{0, 1\}^{|m|}$ is a PRG

If PRS is like PRG, can we extend this for PRS?

Naïve Pseudo OTP from PRS

One-time encryption of a single bit

How to encrypt many bits?

Encrypting many bits via repetition

Only need to construct PRFS with input domain $2^d \ge \ell$

Construct PRFS from PRS?

PRFS: $d = O(\log \lambda)$ PRS: $n = \omega(\log \lambda)$

PRFS via GGM [Goldreich, Goldwasser, Micali'84]

PRFS via splitting key

• Split key $k = k_1 ||k_2|| \cdots ||k_\ell$ and invoke PRS on k_i

• Only gives encryption of ℓ bits

PRFS via splitting Haar: post-selection

- Given $|\psi_k\rangle$, measure the first d qubits and conditioned on getting x, output the post-measurement state on the n d qubits
- Post-selection success probability for Haar is exponentially concentrated around $\frac{1}{2^d} \rightarrow \text{post-selection}$ is efficient if $d = O(\log \lambda)$

Recap: from PRS to one-time encryption

Putting things together: to encrypt message of length $\ell = \lambda^{O(1)}$ n-qubit PRS with $n = \omega(\log \lambda)$ -qubit output \rightarrow PRFS with $\log \ell = O(\log \lambda)$ -bit input domain and $n - \log \ell = \omega(\log \lambda)$ -qubit output $\rightarrow \ell$ -bit encryption

Commitment

From $\omega(\log \lambda)$ -qubit PRS

Naor commitment from PRG [Naor'91]

G is a PRG mapping λ bits to 3λ bits

- Hiding: $G(k) + b \cdot s$ looks random as G(k) looks random
- Binding: *b* is uniquely determined with high probability over *s*

Naor commitment from PRS

G is a PRS mapping λ bits to 3λ qubits

Naor commitment from PRFS

G is a PRFS with $2^d \cdot n \ge 7\lambda$

k

- Hiding: commitment looks like 2^d many Haar random states
- Binding: *b* is "uniquely determined" with high probability over *P*

Recap: from PRS to MPC

Putting things together:

n-qubit PRS with $n = \omega(\log \lambda)$ -qubit output

→ PRFS with log λ -bit input domain and $n - \log \lambda = \omega(\log \lambda)$ -qubit output $(2^d(n - \log \lambda) = \omega(\lambda))$

- \rightarrow Quantum analogue of Naor commitment
- → Malicious MPC [ВСКМ21]

Subtleties

Generalizing statistical binding for quantum bit commitments

Generalizing statistical binding for quantum bit commitments

Testing PRS/PRFS: challenges

- SWAP test only gives inverse polynomial guarantee (we want negligible security)
- Our PRFS (post-selection) construction does not satisfy standard state generation guarantee
 - runs in expected poly-time (or strict poly-time with inverse exponential failure probability)
 - produces garbage auxiliary (also applies to [BS20]) (auxiliary cannot be generically uncomputed when output is quantum)

Testing PRS/PRFS: solution

We show how to test PRS/PRFS without state generation guarantee (output can even be a mixed state)

Open questions

Quantum cryptography from quantum computational assumptions!

- Candidate PRS/PRU without OWF? (Random quantum circuit?)
- Construct crypto from PRS with even smaller output length? (Construct statistical PRS with larger output length?)
- What other interesting quantum hardness lies beyond PRS?

Thank you!