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Pseudorandomness

Central notion in (classical) TCS:

• Expander graphs, list-decodable ECCs, randomness extractors…

• Derandomization

• Cryptography

Small 
“description”

Huge 
“description”

≈
against 

bounded 
algorithms



Haar random states

The uniform distribution Haar that satisfies unitary invariance
∀𝑈 ∶ 𝑈 ⋅ Haar ≡ Haar

even if the entire (classical) description is given.

Ubiquitous in quantum information/computing!
(random quantum circuits, benchmarking, etc)

Issue: continuous distribution, infinite length description
(every fresh copy yields more information)



Finitely producing Haar

• State 𝑡-designs: close to Haar up to 𝑡 copies

• Prepare a maximally mixed state over the symmetric subspace
Sym 𝑑, 𝑡 = span 𝜓 ⊗𝑡 𝜓 ∈ ℂ𝑑

Drawbacks:

• State 𝑡-designs require 𝑑Ω 𝑡 states! (for moderately large 𝑑)

• No guarantees once 𝑡 + 1 copies are given!



Cryptographic 
pseudorandomness

Instead of restricting the 
number of copies given,

Let’s restrict the 
computational power of 
the algorithm instead



Pseudorandom States (PRS) [Ji, Liu, Song’18]

A quantum algorithm 𝐺 is an 𝑛-qubit PRS generator if:

• Efficient generation
• Takes as input 𝑘 ∈ 0, 1 𝜆

• Runs in poly 𝜆 time

• Outputs a pure state 𝜓𝑘 𝜓𝑘 of 𝑛 𝜆 qubits

• Pseudorandomness:
• 𝜓𝑘 “looks” Haar random even with many copies, i.e.

• ∀poly 𝑡 ⋅ ∀QPT𝜆 𝐴,
Pr

𝑘← 0, 1 𝜆
𝐴 𝜓𝑘

⊗𝑡 𝜆 = 1 − Pr
𝜙 ←Haar𝑛 𝜆

𝐴 𝜙 ⊗𝑡 𝜆 = 1 ≤ negl 𝜆

Similar to 𝑡-designs 
but does not fix 𝑡



PRS and quantum computing

• State 𝑡-designs for efficient observers but much easier to construct!

• Important conceptual notion to understand black hole interior
[Bouland, Fefferman, Vazirani’20, …]

• Useful techniques for separating complexity of quantum & classical 
operations [Kretschmer’22; Irani, Natarajan, Nirkhe, Rao, Yuen’22; Kretschmer, Q, Sinha, Tal’23]

• Quantum cryptography (original motivation!)



Roadmap

• Construct PRS from (pseudo)random functions

• Quantum cryptographic applications of PRS
• Quantum money (from unclonability of Haar random states) [JLS18]

• EFI, commitments, secure computation, zero knowledge

• One-time encryptions

• Quantum cryptography with classical communication using verifiable 
tomography

• A different flavor of quantum pseudorandomness: PRFS
• Applications to encryption, authentication, garbling



Binary phase PRS

• Phase oracle for a Boolean function 𝑓: 0, 1 𝑛 → 0, 1
𝑃𝑓 𝑥 = −1 𝑓 𝑥 𝑥

• Binary phase PRS: 𝐺 𝑓 = 𝑃𝑓𝐻
⊗𝑛 0𝑛 for a random function 𝑓

• Proposed in [JLS18]

Theorem: [Brakerski, Shmueli’19; AGQY23]

Statistical distance between 𝐺 𝑓 and Haar given 𝑡 copies is 𝑂
𝑡2

2𝑛

Corollary: If 𝑓𝑘 is PRF, then 𝐺 𝑓𝑘 is secure PRS for 𝑛 = 𝜔 log 𝜆



Theorem proof sketch

Theorem: [BS19; AGQY23]

Statistical distance between 𝐺 𝑓 and Haar given 𝑡 copies is 𝑂
𝑡2

2𝑛

• BS19: Compute trace distance between binary phase PRS and Haar
• Brute-force calculation of spectral L1-norm, very technical, unintuitive

• AGQY23: A simpler proof, less technical, more intuitive



Theorem proof sketch: hybrid argument

1. Haar random distribution 𝜗 ⊗𝑡

2. Random basis vector of Sym 2𝑛, 𝑡
• Given a histogram of 𝑡 balls into 2𝑛 bins, a basis vector of Sym 2𝑛, 𝑡 is a 

uniform superposition over all configurations with that histogram
e.g., 0,0,1 + 0,1,0 + 1,0,0 is the basis vector for histogram 2, 1, 0, …

• Identically distributed as 1



Theorem proof sketch: hybrid argument

1. Haar random distribution 𝜗 ⊗𝑡

2. Random basis vector of Sym 2𝑛, 𝑡

3. Random basis vector with a collision-less histogram
(every element appears exactly either 0 or 1 time)
• If 𝑡 ≪ 2𝑛, collisions are rare

• We remove very small fraction of histograms from the possible choices

• Statistical distance to 2 is 𝑂
𝑡2

2𝑛
≈ collision probability



Theorem proof sketch: hybrid argument

1. Haar random distribution 𝜗 ⊗𝑡

2. Random basis vector of Sym 2𝑛, 𝑡

3. Random basis vector with a collision-less histogram

4. Random “binary histogram” vector
• 𝑡 balls into 2𝑛 bins, but we treat the histograms as identical if their each 

respective entries mod 2 are identical
e.g. (1, 4, 3, 0, 0, 1) is identical to (3, 0, 5, 0, 0, 1) after pointwise mod 2

• If there is no collision, the vector is identical to collision-less basis vector

• Statistical distance to 3 is again 𝑂
𝑡2

2𝑛



Theorem proof sketch: hybrid argument

1. Haar random distribution 𝜗 ⊗𝑡

2. Random basis vector of Sym 2𝑛, 𝑡

3. Random basis vector with a collision-less histogram

4. Random “binary histogram” vector

5. Binary phase PRS −1 𝑓 𝑥 𝑥
⊗𝑡

• Identically distributed as 4 via a direct expansion of density matrices



Comments on binary phase states

• Beyond PRS, binary phase states also appeared in quantum 
information theory, quantum algorithm, quantum advantage, 
quantum complexity…

• K22: if P = NP, binary phase PRS can be distinguished

• 𝑡-Forrelation state: 𝐺 𝑓1, … , 𝑓𝑡 = 𝑃𝑓𝑡𝐻
⊗𝑛⋯𝑃𝑓2𝐻

⊗𝑛𝑃𝑓1𝐻
⊗𝑛 0𝑛

• KQST23: 2-Forrelation states are single-copy secure PRS against BQPPH

adversaries if 𝑓𝑘,𝑏 is instantiated by a random oracle

• Even if P = PH, this construction is still plausibly secure when instantiated by 
some efficient 𝑓𝑘,𝑏 (like SHA-3)



Interlude: consequence to quantum cryptography

• K22+KQST23: Quantum pseudorandomness could exist
even if P = NP

• All classical (computational) cryptography relies on P ≠ NP

• Formal evidence that quantum cryptography could potentially be 
constructed from weaker computational assumptions!
(Indeed, not even P ≠ NP is required)
• Later we construct these quantum cryptographic object from quantum 

pseudorandomness in a “black-box” way, which would extend separations

• Open question: barrier to proving security of quantum cryptography?



Statistical PRS

• A statistical attack using von Neumann entropy: [AGQY23]

• Entropy of 𝑡 copies of a Haar random state goes to infinity as 𝑡 → ∞

• Entropy of 𝑡 copies of a PRS is at most 𝜆 bits (entropy of seed)

• Take 𝑡 large enough so that entropy of Haar is ≥ 𝜆 + 1 bits

• 𝑂 𝜆 copies suffice if 𝑛 ≥ log 𝜆,
but 𝜆𝜔 1 copies required if 𝑛 = 1 − 𝑜 1 log 𝜆

• Thus, computational constraints are required for security of long PRS

• BS20: construct statistical PRS for 𝑛 ≤ .01 log 𝜆
• Idea: (simplified) sample a discretized Haar random state/𝜖-net

• Open: what is the sharp threshold for statistical PRS?



Construct cryptography from PRS

• Focus on computational cryptography
(the task is impossible without computational constraints)
Examples:
• Commitments (Mayer–Lo–Chau)

• Securely encrypting 𝑛 + 1 bits of message with 𝑛 bits of key

• …

• Statistical PRS cannot be used; we must consider computational ones



Bit commitment

𝑏

𝑏

Hiding:
Hides 𝑏 against 

malicious receiver

Binding: Opens to 
the same 𝑏 against 

malicious committer

Commit phase

Reveal phase



Commitments from computational PRS

• AQY: (also concurrently by Morimae, Yamakawa’22)
quantum analogue of Naor commitment from classical PRG
• Conceptually simple assuming you know Naor commitment

• Analysis is messy

• The “EFI” approach: [Brakerski, Canetti, Q’23]

construct commitment from statistical-computational gap

• Once we have commitments, we can do OT MPC ZK…



EFI pairs (of quantum states)

• Efficient generation: 𝐺 1𝜆, 𝑏 is an efficient 
quantum algorithm outputting an arbitrary 
mixed state (distribution over pure states)

• Statistical Farness:
𝐺 1𝜆, 0 vs 𝐺 1𝜆, 1 are statistically far
(in trace distance)

• Computational Indistinguishability: 
𝐺 1𝜆, 0 ≈𝑐 𝐺 1𝜆, 1

𝐺 1𝜆, 0

𝐺 1𝜆, 1

Example: PRS vs Haar random distribution with sufficiently many copies



Commitment from EFI via purification

“Canonical form” commitment [Chailloux, Kerenidis, Rosgen’11; Yan, Weng, Lin, Quan’15; Yan’22]

• Run purified generation 𝐺′ 𝑏 000⋯0 → 𝜓𝑏 𝐶𝑅
(𝐶 is output register, 𝑅 is its purification)

𝐺′ 𝑏 0⋯0 𝜓𝑏 𝐶

𝜓𝑏 𝑅 𝐺′−1

Check if get back 
𝑏 0⋯0

• Computational hiding ⇐
computational 
indistinguishability

• Statistical binding ⇐
statistical farness + 
Uhlmann’s theorem



Difficulties of using PRS for encryption

Naïve idea: replace PRG-based encryptions with PRS

• Haar random states are highly entangled [JLS19]

• PRG-based encryptions crucially uses the fact that the output of PRG is 
classical/a product state

• We do not know: [BS20]

𝑛-qubit PRS → 𝑛′-qubit PRS for any nontrivial 𝑛 ≠ 𝑛′

• Even shrinking naïvely causes the state to be mixed

• Non-trivial PRS need not be expanding 𝑛 ≤ 𝜆

Solution: chop a Haar random state into a longer product state



Pseudorandom Function-like States (PRFS)

A quantum algorithm 𝐺 is a PRFS generator if:

• Efficient generation
• Takes as input 𝑘 ∈ 0, 1 𝜆, 𝑥 ∈ 0, 1 𝑑

• Runs in poly 𝜆 time

• Outputs a state 𝜓𝑘,𝑥 of 𝑛 qubits

• Pseudorandomness
• ∀poly 𝑡, ∀poly # of (distinct) indices 𝑥1…𝑠 (known to distinguisher),

𝜓𝑘,𝑥1 ⋯ 𝜓𝑘,𝑥𝑠

⊗𝑡
for random 𝑘 is computationally indistinguishable from 

𝜙1 ⋯ 𝜙𝑠
⊗𝑡 for 𝑛-qubit Haar random states |𝜙𝑖⟩



One-time encryption of a single bit w/ PRS

Bit 𝑚 𝑐 𝑚

𝜓𝑘 or 𝜙 ← 𝜇
Project onto 
𝜓𝑘 𝜓𝑘

Either way,
𝑐 looks Haar random

Correct with probability 1 −
1

2𝑛

(needs 𝑛 = 𝜔 log 𝜆 )

How to encrypt many bits?



One-time encryption of many bits w/ PRFS

𝑐 𝑚

𝑚1: 𝜓𝑘,1 or 𝜇

⋮

𝑚ℓ: 𝜓𝑘,ℓ or 𝜇 Project for 
every state 

𝑐 should look like 
Haar random states?

Only need to construct PRFS with input domain 2𝑑 ≥ ℓ

ℓ bits 𝑚



Construct PRFS from PRS?
PRFS: 𝑑 = 𝑂 log 𝜆
PRS: 𝑛 = 𝜔 log 𝜆



• Given 𝜓𝑘 , measure the first 𝑑 qubits and conditioned on getting 𝑥,
output the post-measurement state on the 𝑛 − 𝑑 qubits

• Post-selection success probability for Haar is exponentially 

concentrated around 
1

2𝑑
→ post-selection is efficient if 𝑑 = 𝑂 log 𝜆

PRFS via chopping Haar: post-selection

P
R

S

0

1



Cryptography from PRFS

• PRS with 𝑛 = 𝜔 log 𝜆 -qubit output

→ PRFS with log ℓ = 𝑂 log 𝜆 -bit input domain
and 𝑛 − log ℓ = 𝜔 log 𝜆 -qubit output

→ ℓ-bit encryption

• Ideal PRFS: polynomial input/output length
• Can be constructed from PRF by adapting binary phase PRS [AGQY23]

• Or constructed from pseudorandom unitary (PRU) [AGQY23]
(Also separated from post-quantum OWF [K22])

• Could be immediately used as a PRF replacement in crypto applications
(secret-key encryptions, message authentication, garbling, …)

Generalize Zhandry’s
small range distribution 
technique for unitaries



Crypto with classical communication

• So far, all the protocols we construct use quantum communication

• Need to send pseudorandom states in the communication

• Idea: dequantize the communication using tomography!
• Can only efficiently tomograph if 𝑛 = 𝑂 log 𝜆

• Need a way to verify the correctness of tomography

• AGQY23: Verifiable tomography from PRS & application to 
commitments and encryptions



More open questions

• Construction of PRU using any classical oracle?

• Does single-copy secure PRS imply P ≠ PSPACE or other unproven 
complexity conjecture?

• Can we construct (single-copy/multi-copy) PRS from less structured 
hardness? (EFI/commitments, single-copy PRS, etc)

Thank you! Questions?
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