
Systems Project:
Implementation of an
LSM Tree

What if I told you we built…

Read-Optimized
Log(n)!

Write-Optimized
Instant Writes

Small Memory
Footprint!
Only a block in
memory at a time!

But now we have your attention...

We would be Lying!

Presentation Overview

◉ Introduction to LSM trees
◉ Design Goals
◉ System Specifications
◉ Experimentation

Introduction1

What we actually built

LSM - Tree:
Data Structure that

performs well in reads
and vastly outperforms

B-trees in writing.

Why? Because
avoids constant

dispersed update
operations

In-Memory Buffer

Log - Metadata

Level 4

Level 3

Level 2

Level 1

Lv 1 – Min, Max…

Lv 2 – Min, Max…

Lv 3 – Min, Max…

Lv 4 – Min, Max…
Intuition: Multiple levels of sorted runs, with
external log to speed up reads.

Disk - Tree

Design Goals

Full Functionality
Support operations:
◉ Write
◉ Update
◉ Delete
◉ Point Read
◉ Range Read

Merging Policies
◉ Tiering:

○ Flush Now,
Merge
tomorrow

◉ Leveling:
○ Flush now,

Merge now.

Performance
The trinity of Data:
◉ Fast Writes (the whole

reason behind LSM)
◉ Decent Reads (specially

using leveling)
◉ Low Memory Footprint

The System2

The Smallest unit
◉ Unique key: Duplicates are

interpreted as updates
◉ Value: String
◉ Tombstone: Supports deletion

Key

Value

Tombstone

System Description

The Buffer Class
◉ Tunable size by user
◉ Sorted inserts
◉ No duplicates: On time Deletions

and Updates
◉ Merging-policy specific flushing

System Description

0, value, False

11, , True

47, value, False

76, value, False

…

The LSM Class
◉ Policy Specific Drivers
◉ Reads Support – Fence Pointers
◉ Writes – Overview

○ Flushing Buffers
○ Flushing Levels
○ Merging Levels/Tiers

System Description

Metadata,
Fence Pointers

Key, Value pairs

Max,
Min,
Tiers…
Max,
Min,
Tiers…
Max,
Min,
Tiers…
Max,
Min,
Tiers…

Experimentation3

Tuning: Buffer Size and Ratio
◉ What is the impact of changin this

values on our system?
◉ What values are best for read

intensive workloads?
◉ What values are best for write

intensive ones?

What we asked:

Scalability: System performance
◉ How does performance scale with

the number of operations?
◉ How does the workload impact the

scalability?

Results - Scalability

Results - Knobs

Any questions ?

Thanks!

Appendix

