
Build a learned index

Reed Callahan, Guanting Chen, Yuan Zhang,
4/30/2019

BACKGROUND

● Best choice for range requests

● Self-balanced binary search tree

● Lookup in O(log n)

B-Tree Index

● Cumulative distribution function

● Range index model are CDF models

● Use ML models to learn CDF of data

CDF

THE PROBLEM

Traditional B-Tree Index

● Remain general purpose data structures

● Assume nothing about data distribution

The Problem

● If Knowing exact data distribution Instance-based optimization
e.g, lookups: O(log n) O(1)

● Not for traditional B-Tree

How?

 SOLUTION

Learned Index

● The most powerful ML models
● However, require large amounts of

data for their training due to vast
amount of nodes

● Have parameters such as learning
rates, activation functions, amounts
of layers and # of neurons per layer
that all increase complexity

Neural Network

Learned Index

● Built using neural network (feedforward, 2 layers, fully connected, ReLU
activation function neurons)

● Trained using cross entropy (loss between probabilities of what it predicted vs
actual)

● AdamOptimizer to update weights and minimize entropy
○ Based on stochastic gradient descent
○ Maintains a per-parameter learning rate that improves performance on

problems with sparse gradients
○ Uses Root Mean Square Propagation for spikes in gradient descent,

allowing it to work better in noisy problems

EVALUATION

Datasets

● Generate synthesized dataset of 6 different distributions
● Distributiosn is based on unique integer keys.
● Receive the size dataset and block, and distribution of the data set
● Automatically output sample to a csv format file

Data generator

Dataset Example

Problem

● Index should be based on unique interger keys
● Sampled distribution should be integral

Uniqueness and Integrality

● Scaler for float type result

● Filter and pad algorithm
based on re-sampled
result of same distribution

Evaluation

● Used two datasets of 1 million records each as main testing

○ Randomly and Exponentially distributed

● Saw impressive decrease in build time for random distribution,

with less than 50% build time

● Exponential only had a 5% decrease in build time

● Look up times were still much higher with neural network

● In 3 million record dataset, maintained same time to construct

CONCLUSION

Conlcusion

● Our model was able to was able to construct indexes far faster in
large datasets (upwards of 1 million records)

● However, search times were still lacking due to the unoptimized
parameters, thresholds and variety of different models to utilize
○ Need more datasets and engineers to make this very

optimized
● Neural network approach should be primarily used only with

large datasets, as the base invocation cost and amount of data
required for accuracy is high (2M+ records)

● As mentioned in the supporting paper, use of multiple models is
important in building a flexible and reliable learned index
application

Future Work

Future Work

● Dealing with error
○ Bound the error probability
○ Quickly recover strategy

■ Multiple models for different size/distributions
● Refining dataset synthesizing and distributions plotting

○ Scaling factor, large keys
● Tuning for updatable data distribution

○ Sampling dataset with less precision or integrality
○ Insert and append

THANK YOU

