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BACKGROUND



● Best choice for range requests

● Self-balanced binary search tree

● Lookup in O(log n)

B-Tree Index



● Cumulative distribution function

● Range index model are CDF models

● Use ML models to learn CDF of data

CDF



THE PROBLEM



Traditional B-Tree Index

● Remain general purpose data structures 

● Assume nothing about data distribution



The Problem

● If Knowing exact data distribution                Instance-based optimization
e.g,  lookups: O(log n)         O(1)

● Not for traditional B-Tree 

How?



 SOLUTION



Learned Index



● The most powerful ML models
● However, require large amounts of 

data for their training due to vast 
amount of nodes

● Have parameters such as learning 
rates, activation functions, amounts 
of layers and # of neurons per layer 
that all increase complexity

Neural Network



Learned Index

● Built using neural network (feedforward, 2 layers, fully connected, ReLU 
activation function neurons)

● Trained using cross entropy (loss between probabilities of what it predicted vs 
actual) 

● AdamOptimizer to update weights and minimize entropy
○ Based on stochastic gradient descent
○ Maintains a per-parameter learning rate that improves performance on 

problems with sparse gradients 
○ Uses Root Mean Square Propagation for spikes in gradient descent, 

allowing it to work better in noisy problems



EVALUATION



Datasets

● Generate synthesized dataset of 6 different distributions 
● Distributiosn is based on unique integer keys. 
● Receive the size dataset and block, and distribution of the data set
● Automatically output sample to a csv format file

Data generator



Dataset Example



Problem

● Index should be based on unique interger keys
● Sampled distribution should be integral



Uniqueness and Integrality

● Scaler for float type result

● Filter and pad algorithm 
based on re-sampled 
result of same distribution



Evaluation

● Used two datasets of 1 million records each as main testing

○ Randomly and Exponentially distributed

● Saw impressive decrease in build time for random distribution, 

with less than 50% build time

● Exponential only had a 5% decrease in build time

● Look up times were still much higher with neural network

● In 3 million record dataset, maintained same time to construct  



CONCLUSION



Conlcusion

● Our model was able to was able to construct indexes far faster in 
large datasets (upwards of 1 million records)

● However, search times were still lacking due to the unoptimized 
parameters, thresholds and variety of different models to utilize
○ Need more datasets and engineers to make this very 

optimized
● Neural network approach should be primarily used only with 

large datasets, as the base invocation cost and amount of data 
required for accuracy is high (2M+ records)

● As mentioned in the supporting paper, use of multiple models is 
important in building a flexible and reliable learned index 
application



Future Work



Future Work

● Dealing with error 
○ Bound the error probability
○ Quickly recover strategy

■ Multiple models for different size/distributions
● Refining dataset synthesizing and distributions plotting

○ Scaling factor, large keys
● Tuning for updatable data distribution

○ Sampling dataset with less precision or integrality 
○ Insert and append



THANK YOU


