Build a learned index

Reed Callahan, Guanting Chen, Yuan Zhang,
4/30/2019

BACKGROUND

B-Tree Index

e Best choice for range requests

e Self-balanced binary search tree

| 6I L e LookupinO(logn)

3|5

F—'—*ljrlkL

fal2 3|4 5

e | o o | o o | oo |
Vv

d1 d2 d3 d4 d5 d6 d7

CDF

Pos A - : e Cumulative distribution function

e Rangeindex model are CDF models

e Use ML modelstolearn CDF of data

Key
Figure 2: Indexes as CDFs

THE PROBLEM

Traditional B-Tree Index

e Remain general purpose data structures

e Assume nothing about data distribution

The Problem

e |f Knowing exact data distribution ——) Instance-based optimization
e.g, lookups: O(log n)— O(1)

e Not for traditional B-Tree

How?

SOLUTION

Learned Index

input layer

Neural Network

neuron

hidden layer 1 hidden layer 2

The most powerful ML models
However, require large amounts of
data for their training due to vast
amount of nodes

Have parameters such as learning
rates, activation functions, amounts
of layers and # of neurons per layer
that all increase complexity

Learned Index

Built using neural network (feedforward, 2 layers, fully connected, ReLU
activation function neurons)
Trained using cross entropy (loss between probabilities of what it predicted vs
actual)
AdamOptimizer to update weights and minimize entropy
o Based on stochastic gradient descent
o Maintains a per-parameter learning rate that improves performance on
problems with sparse gradients
o Uses Root Mean Square Propagation for spikes in gradient descent,
allowing it to work better in noisy problems

EVALUATION

Datasets

Data generator

e Generate synthesized dataset of 6 different distributions

e Distributiosn is based on unique integer keys.

e Receive the size dataset and block, and distribution of the data set
e Automatically output sample to a csv format file

Random Binomial Poisson Exponential Lognormal Normal

range N, P lambda scale mean, sigma mean, sigma

Index Random ID

RANDOM

Dataset Example

Gender Age Zip Code Partition

0
1
20
26
44

& &

51

6021
8843
5340
3415
3072
8651
9734
5821
8865

Male
Female
Male
Female
Male
Female
Female
Female

Female

37
57
44
47
53
48
58
43
28

2638
9199
4145
3770
4107
8029
6932
6391
2682

o O O o o o o o o

LOGNORMAL
Index Random ID Gender Age Zip Code Partition
33166 1120 | Male 34 6722 0
41872 1438 Male 77 9587 0
43736 8808 | Male 25 6395 0
50313 2094 | Female 20 1454 0
51895 1007 Female 44 7447 0
58418 6424 | Female 26 6701 0
62191 8071 Male 78 6086 0
65504 7976 | Male 45 2345 0
67367 1056 Female 52 3805 0

Problem

NORMAL Raw dataset: 1000000

NORMAL Unigque dataset: 372875

e Index should be based on unique interger keys
e Sampled distribution should be integral

Uniqueness and Integrality

Scaler for float type result

Filter and pad algorithm
based on re-sampled
result of same distribution

Scaler\ Random Binomial Poisson Exponential
Distribution
Multiplier 1x 1x 1x 1000000 x

Distribution \ Size 1000 10000 100000
Random(range = size*10) = 95% = 95% = 95%
Binomial(N = size*2, P = 0.5) = 80% =77% =77%
Poisson(lambda = size*2) =87% =87% =87%
Exponential(scale = 10) =100% = 100% = 100%
Lognormal(mean = 5, sigma = 1) = 100% = 100% = 99%
Normal(mean = 5, sigma = 1) = 100% = 100% = 87%

Lognormal

10000 x

1000000

= 95%

=77%

=87%

= 98%

= 89%

= 37%

Normal

100000 x

10000000

=95%

=77%

=87%

= 80%

=45%

= 58%

Evaluation

e Used two datasets of 1 million records each as main testing
o Randomly and Exponentially distributed
e Saw impressive decrease in build time for random distribution,
with less than 50% build time
e Exponential only had a 5% decrease in build time
e Look up times were still much higher with neural network

e In 3 million record dataset, maintained same time to construct

CONCLUSION

Conlcusion

Our model was able to was able to construct indexes far faster in

large datasets (upwards of 1 million records)

However, search times were still lacking due to the unoptimized

parameters, thresholds and variety of different models to utilize
o Need more datasets and engineers to make this very

optimized

Neural network approach should be primarily used only with

large datasets, as the base invocation cost and amount of data

required for accuracy is high (2M+ records)

As mentioned in the supporting paper, use of multiple models is

important in building a flexible and reliable learned index

application

Future Work

Future Work

e Dealing with error
o Bound the error probability
o Quickly recover strategy
m Multiple models for different size/distributions
e Refining dataset synthesizing and distributions plotting
o Scaling factor, large keys
e Tuning for updatable data distribution
o Sampling dataset with less precision or integrality

o Insert and append

THANKYOU

