
SHEARS: Persisting Deletes
in LSM Trees

Megan Fantes, Ketill Guðmundsson, Nikhilesh Murugavel, Allison Weaver

Introduction &
Background

Introduction
● Unoptimized deletes in LSM trees

● Deleted value is logically hidden

● Problem?
○ Increased tree size

○ Compromise in security

● Goal?

○ Faster persistent deletes

Background
Mem-table: Data structure (skip-list) in memory

SSTs: Sorted Sequence Table in disk

Out-of-place updates: When data is updated, it is added
as a new key-value pair in the mem-table

Tombstones: Used to mark a key as deleted

Persistent Deletes: When a deleted key-value pair is
removed from the tree

Compaction/Partial Merging: Some of level-L SSTs
merged with level-(L+1) SSTs

Our Solution

SHEARS Design

Our additions:
● Sequencer

● Sequence Number

● Tombstone buffer

● Tombstone Group

What it does:
● Three Way merge
● Inserts deletes
● Does not guarantee

persistent deletes
● Better read performance

and increases storage
space

How it works:
In-memory On the tree

L0

L1

L2

LN

...

Tombstone Buffer

Mem-table

Incoming
key-value pair 4

5

5

13

File flushed
to L0

Sequencer gives
number of 5-1 =4

to tombstone

Transition
between L1 and

L2 results in
partial merge

Added to
forming file in

mem-table

Deletes are
copied into

buffer

Sequencer assigns
sequence number

to file

Merge Policy

Merge Policy

K-way Merge
● Merge many tombstone groups in a compaction

● Makes system more fluid

● Downside is higher compaction cost

● Possible with the use of priority cue

● Additional cost is now O(n log k)

K-way Merge

Deleting Tombstone Groups
● Keep track of lowest sequence numbers in LSM tree

○ If any tombstone group has lower number then delete
○ Costly operation
○ Runs in background periodically

● Backup systems in place of overflow
○ Deletions happening too slow
○ Discard oldest tombstone groups

Experiments

Experiments: Storage, Latency, CPU Load

● Hypothesis:
SHEARS uses
more memory,
less disk space

● Hypothesis: SHEARS
increases write
latency, decreases
read latency

● Hypothesis: sorting,
merging increases
CPU load

Experiments: Bloom filters, SeqNum Distribution

● Hypothesis:
SHEARS decreases
false positives by
pruning LSM tree

● Insight: tracking the
min. SeqNum to
define delete policy

Experiments: Force deletes, delete persistence

● Trade-offs:
increased CPU/IO
cost, memory used,
delete persistence

● Hypothesis:
SHEARS persists
deletes faster (that
is the point)

Thank You
Questions?

