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Here’s what we’ll talk about

● Motivating example

● Design goals

● Implementation details (at least, the interesting 
bits)

● Experimental results



Imagine a DBMS maintaining a transaction log



What constraints apply to our log?
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What constraints apply to our log?

● Must ultimately reside on disk

● Must support efficient lookups

● Should not interfere with transaction performance



We can’t perfect all three constraints at once

Design 
space

Memory-resident log

Fast, volatile

B-Tree on disk

Slow, read-
optimized Log on disk

Easy to write, can’t be 
searched



We can integrate the benefits of all three designs

● Hold data in memory for as long as possible

● Use some hierarchy and some sorting on disk data

● Keep some lightweight metadata in memory



We can integrate the benefits of all three designs

● Hold data in memory for as long as possible

● Use some hierarchy and some sorting on disk data

● Keep some lightweight metadata in memory

● “How much is some?”



We implemented a log-structured merge tree

● Hold updates in memory

● Merge them to a disk index in batches

● Retain metadata to assist lookups



The LSM tree fulfills our design goals

Memory-
resident structures

Efficient reads Real time writes

LSM tree



OUR IMPLEMENTATION



We built a key-value store for integers

KEY

VALUE



We built a key-value store for integers

KEY

VALUE

For our purposes, 
the key and the 
value were always 
the same number

We call this an “Entry”



We built a key-value store for integers

KEY

VALUE

Some entries have a flag 
indicating they are a delete



In memory, we hold an array of entries

We call this a “Run”



In memory, we hold an array of entries

● insert()



In memory, we hold an array of entries

● insert()



When memory fills, we create some metadata



When memory fills, we create some metadata

Sort, remove 
duplicates



When memory fills, we create some metadata

Insert everything 
into a bloom filter

BF



When memory fills, we create some metadata

Put highest and 
lowest values in a 
fence pointer

BF FP



When memory fills, we create some metadata

Generate a 
filename and get a 
pointer to a disk 
file

BF FP



We write our run to a file and keep the metadata

MEMORY DISK



At its simplest, this is our system!

MEMORY DISK



How does this fulfill our design goals?

● Inserts, updates, deletes just append to a memory array
(Real time writes!)
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How does this fulfill our design goals?

● Inserts, updates, deletes just append to a memory array
(Real time writes!)

● Sorted runs on disk prevent full scans
(Reasonable reads!)

● Metadata allow for data-skipping during queries
(Memory-resident structures!)



Don’t worry, it’s still a tree

● Hold the metadata in a 2D array

● When a row of the array fills:
○ Load its runs into memory and sort-merge them

○ Consolidate the metadata and write to new file

○ Push the metadata down a level in the array



Queries operate about how you’d expect

MEMORY DISK

First ask memory, 
then examine disk 
runs as needed



Queries operate about how you’d expect

MEMORY DISK

“Not in here”



Queries operate about how you’d expect

MEMORY DISK

“Not in here”



Queries operate about how you’d expect

MEMORY DISK

“Might be in here”



Queries operate about how you’d expect

MEMORY DISK

“Nope, not in range”



Queries operate about how you’d expect

MEMORY DISK

“Might be in here”



Queries operate about how you’d expect

MEMORY DISK

“In my range”



Queries operate about how you’d expect

MEMORY DISK



Queries operate about how you’d expect

MEMORY DISK

“Hey guys I found it”



Range queries check every run whose fence 
pointer overlaps with the query range

MEMORY DISK



EXPERIMENTAL 
EVALUATION

(Or, what happened once we got it to compile)







We have theories about the poor read 
performance
● Pages sizes might not perfectly align with the sizes of our 

Memory Runs

● Set of  Fence Pointers per run vs Set of Fence Pointers 
per Page in a Run

● Sequential scan of Disk Run vs Binary Search



In conclusion, recall our design goals

Memory-
resident structures

Efficient reads Real time writes

LSM tree



In conclusion, recall our design goals

Memory-
resident structures

Efficient reads Real time writes

LSM tree

● Bloom filters
● Fence pointers

● Memory run

● Tree-based index
● Semi-sorted runs



There are some obvious next steps for us

● Implement leveled tree

● Fix read performance issues

● Refine experiments to identify bottlenecks



Here’s who did what, in very broad terms

STATHIS:
● Reading and writing to 

files, backends for 
metadata and tree 
restructuring 

● Experimental setup 
and execution

JOHN C:
● Tree API, navigating the 

tree during queries,, and 
operations on runs

● Code for benchmarking 
and visualization


