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Here’s what we’ll talk about

e Motivating example
e Design goals

e Implementation details (at least, the interesting
bits)

e EXxperimental results



Imagine a DBMS maintaining a transaction log
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What constraints apply to our log?
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What constraints apply to our log?

e Must ultimately reside on disk
e Must support efficient lookups

e Should not interfere with transaction performance



We can’t perfect all three constraints at once

Memory-resident log

Fast, volatile

Design
space
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We can integrate the benefits of all three designs

e Hold data in memory for as long as possible
e Use some hierarchy and some sorting on disk data

e Keep some lightweight metadata in memory



We can integrate the benefits of all three designs

e Hold data in memory for as long as possible
e Use some hierarchy and some sorting on disk data

e Keep some lightweight metadata in memory

e “How much is some?”



We implemented a log-structured merge tree

e Hold updates in memory
e Merge them to a disk index in batches

e Retain metadata to assist lookups



The LSM tree fulfills our design goals

Memory-
resident structures

Efficient reads Real time writes



OUR IMPLEMENTATION



We built a key-value store for integers




We built a key-value store for integers
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VALUE

We call this an “Entry”

For our purposes,
the key and the
value were always
the same number



We built a key-value store for integers

KEY

VALUE

Some entries have a flag
Indicating they are a delete



In memory, we hold an array of entries

We call this a “Run”



In memory, we hold an array of entries




In memory, we hold an array of entries
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When memory fills, we create some metadata




When memory fills, we create some metadata
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When memory fills, we create some metadata

Insert everything
into a bloom filter



When memory fills, we create some metadata
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When memory fills, we create some metadata
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We write our run to a file and keep the metadata
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At its simplest, this is our system!
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How does this fulfill our design goals?

e Inserts, updates, deletes just append to a memory array
(Real time writes!)
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How does this fulfill our design goals?

e Inserts, updates, deletes just append to a memory array
(Real time writes!)

e Sorted runs on disk prevent full scans
(Reasonable reads!)

e Metadata allow for data-skipping during queries
(Memory-resident structures!)



Don’t worry, it’s still a tree

e Hold the metadata in a 2D array

e \When a row of the array fills:
o Load its runs into memory and sort-merge them

o Consolidate the metadata and write to new file

o Push the metadata down a level in the array



Queries operate about how you’d expect
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Queries operate about how you’d expect
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Queries operate about how you’d expect

Qi ag
“Nope, not in range” @ 2

L 2 2 2 2 2 2 & 3
E ] el

MEMORY DISK




Queries operate about how you’d expect
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Queries operate about how you’d expect
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Queries operate about how you’d expect
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Queries operate about how you’d expect
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Range queries check every run whose fence
pointer overlaps with the query range

L 2 2 2 2 2 2 & 3
EEEEEEER
MEMORY DISK




EXPERIMENTAL
EVALUATION

(Or, what happened once we got it to compile)



Larger memory runs improve write performance

Runs per level
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The relationship with read performance is less clear

Runs per level
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We have theories about the poor read
performance

e Pages sizes might not perfectly align with the sizes of our
Memory Runs

e Set of Fence Pointers per run vs Set of Fence Pointers
per Page in a Run

e Sequential scan of Disk Run vs Binary Search



In conclusion, recall our design goals

Memory-
resident structures

Efficient reads Real time writes



In conclusion, recall our design goals

e Bloom filters

e Fence pointers
Memory-

resident structures

e [ree-based index
e Semi-sorted runs

e Memory run

Efficient reads Real time writes



There are some obvious next steps for us

e Implement leveled tree
e Fix read performance issues

e Refine experiments to identify bottlenecks



Here’s who did what, in very broad terms

STATHIS; JOHN C:

e Reading and writing to e Tree API, navigating the
files, backends for tree during queries,, and
metadata and tree operations on runs

restructuring

e Experimental setup e Code for benchmarking
and execution and visualization



