
Real-time writes and
reasonable reads: The LSM

tree in C++
Stathis Karatsiolis & John C. Merfeld

Here’s what we’ll talk about

● Motivating example

● Design goals

● Implementation details (at least, the interesting
bits)

● Experimental results

Imagine a DBMS maintaining a transaction log

What constraints apply to our log?

What constraints apply to our log?

● Must ultimately reside on disk

What constraints apply to our log?

● Must ultimately reside on disk (why?)

What constraints apply to our log?

● Must ultimately reside on disk

● Must support efficient lookups

What constraints apply to our log?

● Must ultimately reside on disk

● Must support efficient lookups

● Should not interfere with transaction performance

We can’t perfect all three constraints at once

Design
space

Memory-resident log

Fast, volatile

B-Tree on disk

Slow, read-
optimized Log on disk

Easy to write, can’t be
searched

We can integrate the benefits of all three designs

● Hold data in memory for as long as possible

● Use some hierarchy and some sorting on disk data

● Keep some lightweight metadata in memory

We can integrate the benefits of all three designs

● Hold data in memory for as long as possible

● Use some hierarchy and some sorting on disk data

● Keep some lightweight metadata in memory

● “How much is some?”

We implemented a log-structured merge tree

● Hold updates in memory

● Merge them to a disk index in batches

● Retain metadata to assist lookups

The LSM tree fulfills our design goals

Memory-
resident structures

Efficient reads Real time writes

LSM tree

OUR IMPLEMENTATION

We built a key-value store for integers

KEY

VALUE

We built a key-value store for integers

KEY

VALUE

For our purposes,
the key and the
value were always
the same number

We call this an “Entry”

We built a key-value store for integers

KEY

VALUE

Some entries have a flag
indicating they are a delete

In memory, we hold an array of entries

We call this a “Run”

In memory, we hold an array of entries

● insert()

In memory, we hold an array of entries

● insert()

When memory fills, we create some metadata

When memory fills, we create some metadata

Sort, remove
duplicates

When memory fills, we create some metadata

Insert everything
into a bloom filter

BF

When memory fills, we create some metadata

Put highest and
lowest values in a
fence pointer

BF FP

When memory fills, we create some metadata

Generate a
filename and get a
pointer to a disk
file

BF FP

We write our run to a file and keep the metadata

MEMORY DISK

At its simplest, this is our system!

MEMORY DISK

How does this fulfill our design goals?

● Inserts, updates, deletes just append to a memory array
(Real time writes!)

How does this fulfill our design goals?

● Inserts, updates, deletes just append to a memory array
(Real time writes!)

● Sorted runs on disk prevent full scans
(Reasonable reads!)

How does this fulfill our design goals?

● Inserts, updates, deletes just append to a memory array
(Real time writes!)

● Sorted runs on disk prevent full scans
(Reasonable reads!)

● Metadata allow for data-skipping during queries
(Memory-resident structures!)

Don’t worry, it’s still a tree

● Hold the metadata in a 2D array

● When a row of the array fills:
○ Load its runs into memory and sort-merge them

○ Consolidate the metadata and write to new file

○ Push the metadata down a level in the array

Queries operate about how you’d expect

MEMORY DISK

First ask memory,
then examine disk
runs as needed

Queries operate about how you’d expect

MEMORY DISK

“Not in here”

Queries operate about how you’d expect

MEMORY DISK

“Not in here”

Queries operate about how you’d expect

MEMORY DISK

“Might be in here”

Queries operate about how you’d expect

MEMORY DISK

“Nope, not in range”

Queries operate about how you’d expect

MEMORY DISK

“Might be in here”

Queries operate about how you’d expect

MEMORY DISK

“In my range”

Queries operate about how you’d expect

MEMORY DISK

Queries operate about how you’d expect

MEMORY DISK

“Hey guys I found it”

Range queries check every run whose fence
pointer overlaps with the query range

MEMORY DISK

EXPERIMENTAL
EVALUATION

(Or, what happened once we got it to compile)

We have theories about the poor read
performance
● Pages sizes might not perfectly align with the sizes of our

Memory Runs

● Set of Fence Pointers per run vs Set of Fence Pointers
per Page in a Run

● Sequential scan of Disk Run vs Binary Search

In conclusion, recall our design goals

Memory-
resident structures

Efficient reads Real time writes

LSM tree

In conclusion, recall our design goals

Memory-
resident structures

Efficient reads Real time writes

LSM tree

● Bloom filters
● Fence pointers

● Memory run

● Tree-based index
● Semi-sorted runs

There are some obvious next steps for us

● Implement leveled tree

● Fix read performance issues

● Refine experiments to identify bottlenecks

Here’s who did what, in very broad terms

STATHIS:
● Reading and writing to

files, backends for
metadata and tree
restructuring

● Experimental setup
and execution

JOHN C:
● Tree API, navigating the

tree during queries,, and
operations on runs

● Code for benchmarking
and visualization

