Real-time writes and
reasonable reads: The LSM

tree in C++
Stathis Karatsiolis & John C. Merfeld



Here’s what we’ll talk about

e Motivating example
e Design goals

e Implementation details (at least, the interesting
bits)

e EXxperimental results



Imagine a DBMS maintaining a transaction log

—>




What constraints apply to our log?



What constraints apply to our log?

e Must ultimately reside on disk



What constraints apply to our log?

e Must ultimately reside on disk (why?)



What constraints apply to our log?

e Must ultimately reside on disk

e Must support efficient lookups



What constraints apply to our log?

e Must ultimately reside on disk
e Must support efficient lookups

e Should not interfere with transaction performance



We can’t perfect all three constraints at once

Memory-resident log

Fast, volatile

Design
space

Slow, read- Easy to write, can’t be

optlrnlz§(3|Tree on disk Log on disk Searched



We can integrate the benefits of all three designs

e Hold data in memory for as long as possible
e Use some hierarchy and some sorting on disk data

e Keep some lightweight metadata in memory



We can integrate the benefits of all three designs

e Hold data in memory for as long as possible
e Use some hierarchy and some sorting on disk data

e Keep some lightweight metadata in memory

e “How much is some?”



We implemented a log-structured merge tree

e Hold updates in memory
e Merge them to a disk index in batches

e Retain metadata to assist lookups



The LSM tree fulfills our design goals

Memory-
resident structures

Efficient reads Real time writes



OUR IMPLEMENTATION



We built a key-value store for integers




We built a key-value store for integers

KEY

VALUE

We call this an “Entry”

For our purposes,
the key and the
value were always
the same number



We built a key-value store for integers

KEY

VALUE

Some entries have a flag
Indicating they are a delete



In memory, we hold an array of entries

We call this a “Run”



In memory, we hold an array of entries




In memory, we hold an array of entries

L I B B
aEEaEe
e insert() /



When memory fills, we create some metadata




When memory fills, we create some metadata

--bﬂ-----

Sort, remove
duplicates




When memory fills, we create some metadata

Insert everything
into a bloom filter



When memory fills, we create some metadata

BN o ighest and

BN ovcst values ina

fence pointer




When memory fills, we create some metadata

Generate a

i 2 % & = % & » 3

AR AR oo and geta
pointer to a disk
file

9 L




We write our run to a file and keep the metadata

g -

MEMORY DISK



At its simplest, this is our system!
i 2 & ® ® & & &
HEEEEEEEN

EEEEEEES
MEMORY DISK




How does this fulfill our design goals?

e Inserts, updates, deletes just append to a memory array
(Real time writes!)



How does this fulfill our design goals?

e Inserts, updates, deletes just append to a memory array
(Real time writes!)

e Sorted runs on disk prevent full scans
(Reasonable reads!)



How does this fulfill our design goals?

e Inserts, updates, deletes just append to a memory array
(Real time writes!)

e Sorted runs on disk prevent full scans
(Reasonable reads!)

e Metadata allow for data-skipping during queries
(Memory-resident structures!)



Don’t worry, it’s still a tree

e Hold the metadata in a 2D array

e \When a row of the array fills:
o Load its runs into memory and sort-merge them

o Consolidate the metadata and write to new file

o Push the metadata down a level in the array



Queries operate about how you’d expect

First ask memory, ---iii--

then examine disk
runs as needed ’ ‘ o
og —
AN N N A
e | HHEERERN

MEMORY DISK




Queries operate about how you’d expect

L 2 2 2 2 2 2 & 3
EEEEEEER
MEMORY DISK




Queries operate about how you’d expect

“Not in here” @‘ B

oy -
L 2 2 2 2 2 2 & 3
E ] el

MEMORY DISK




Queries operate about how you’d expect

’i e
“Might be in here” @‘ —

L 2 2 2 2 2 2 & 3
E ] el

MEMORY DISK




Queries operate about how you’d expect

Qi ag
“Nope, not in range” @ 2

L 2 2 2 2 2 2 & 3
E ] el

MEMORY DISK




Queries operate about how you’d expect

. ‘ ag
g -
I —

e | HEEEEERR

“Might be in here”

MEMORY DISK



Queries operate about how you’d expect

’i'—'

“In my range”

C L Nl

MEMORY DISK




Queries operate about how you’d expect

L 2 2 2 2 2 2 & 3
EEEEEEER
MEMORY DISK




Queries operate about how you’d expect

’i'—'

g
“Hey guys | found it”
sasgeans PP - |SEEEEEES

MEMORY DISK




Range queries check every run whose fence
pointer overlaps with the query range

L 2 2 2 2 2 2 & 3
EEEEEEER
MEMORY DISK




EXPERIMENTAL
EVALUATION

(Or, what happened once we got it to compile)



Larger memory runs improve write performance

Runs per level
4

]

40000
Number of entries in the memory run




The relationship with read performance is less clear

Runs per level
4
8

40000

Number of entries in the memory run




We have theories about the poor read
performance

e Pages sizes might not perfectly align with the sizes of our
Memory Runs

e Set of Fence Pointers per run vs Set of Fence Pointers
per Page in a Run

e Sequential scan of Disk Run vs Binary Search



In conclusion, recall our design goals

Memory-
resident structures

Efficient reads Real time writes



In conclusion, recall our design goals

e Bloom filters

e Fence pointers
Memory-

resident structures

e [ree-based index
e Semi-sorted runs

e Memory run

Efficient reads Real time writes



There are some obvious next steps for us

e Implement leveled tree
e Fix read performance issues

e Refine experiments to identify bottlenecks



Here’s who did what, in very broad terms

STATHIS; JOHN C:

e Reading and writing to e Tree API, navigating the
files, backends for tree during queries,, and
metadata and tree operations on runs

restructuring

e Experimental setup e Code for benchmarking
and execution and visualization



