
CS 591: Data Systems 
Architectures

Prof. Manos Athanassoulis 
mathan@bu.edu

http://manos.athanassoulis.net/classes/CS591

mailto:mathan@bu.edu
http://manos.athanassoulis.net/classes/CS591


CS591 progress bar

Storage Layouts
Rows vs Cols vs Hybrid

A B C D
A B C D
A B C D

A B C D
A B C D
A B C D

A B C D

A B C D

A B C D
A B C D
A B C D



CS591 progress bar

Storage Layouts
Rows vs Cols vs Hybrid

New Hardware
Flash Storage

Multi-core



CS591 progress bar

Storage Layouts
Rows vs Cols vs Hybrid

New Hardware
Flash Storage

Multi-core
Indexing

When to use?
UpBit

index scanor



CS591 progress bar

Storage Layouts
Rows vs Cols vs Hybrid

New Hardware
Flash Storage

Multi-core
Indexing

When to use?
UpBit

0
0
0
1
0
1
0
0

0
1
0
0
1
0
0
1

1
0
1
0
0
0
1
0

A=10 A=20 A=30
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

UB UB UB



CS591 progress bar

Storage Layouts
Rows vs Cols vs Hybrid

New Hardware
Flash Storage

Multi-core
Indexing

When to use?
UpBit

NoSQL Engines
LSM-Trees

Hash-based

memory storage

fence
pointers

X

Bloom
filters

buffer



CS591 progress bar

Storage Layouts
Rows vs Cols vs Hybrid

New Hardware
Flash Storage

Multi-core
Indexing

When to use?
UpBit

NoSQL Engines
LSM-Trees

Hash-based

Stable

LA
 =

 0

Read-Only

LA
 =

 ∞

Mutable

In-MemoryDisk

Increasing Logical Address Read-Copy-Update In-Place-Update

Figure 5: Logical Address Space in HybridLog

in order to allow unbu�ered reads and writes without additional
memory copies. A logical address L greater than the head address
resides in main memory at o�set equal to the last F bits of L, in the
page frame with position equal to L � F in the circular array.

New record allocation always happens at the tail. We maintain
the tail o�set as two values in one word – a page number and an
o�set. For e�ciency, a thread allocates memory using a fetch-and-
add on the o�set; if the o�set corresponds to an allocation that
would not �t on the current page, it increments the page number
and resets the o�set. Other threads that see a new o�set greater
than page size wait for the o�set to become valid, and retry.

5.2 Circular Bu�er Maintenance
We need to manage the o�-loading of log records to secondary
storage in a latch-free manner, as threads perform unrestricted
memory accesses between epoch boundaries. To achieve this, we
maintain two status arrays: a �ush-status array tracks if the current
page has been �ushed to secondary storage, and a closed-status
array determines if a page frame can be evicted for reuse. Since
we always append to the log, a record is immutable once created.
When the tail enters a new page p + 1, we bump the epoch with
a �ush trigger action that issues an asynchronous I/O request to
�ush page p to secondary storage. This action is invoked only
when the epoch becomes safe – because threads refresh epochs at
operation boundaries, we are guaranteed that all threads would
have completed writing to addresses in page p, and the �ush is safe.
When the asynchronous �ush operation completes, the �ush-status
of the page is set to �ushed.

As the tail grows, an existing page frame may need to be evicted
frommemory, but we �rst need to ensure that no thread is accessing
the page. Traditional databases use a latch to pin pages in the bu�er
pool before every access so that it is not evicted when in use. For
high performance, however, we leverage epochs to manage eviction.
Recall that the head o�set determines if a record is available in
memory. To evict pages from memory, we increment the head
o�set and bump the current epoch with a trigger action to set the
closed-status array entry for the older page frame. When this epoch
is safe, we know that all threads would have seen the updated
head o�set value and hence would not be accessing those memory
addresses. Note that we must ensure that the to-be-evicted page is
completely �ushed before updating the head o�set, so that threads
that need those records can retrieve it from storage.

5.3 Operations with Append-Only Allocator
Blind updates simply append a new record to the tail of the log
and update the hash index using a compare-and-swap as before. If
the operation fails, we simply mark the log record as invalid (using
a header bit) and retry the operation. Deletes insert a tombstone
record (again, using a header bit), and require log garbage collection

Logical Address Action
Invalid Make a new record at tail-end
< HeadOffset Issue Async IO Request
< ReadOnlyOffset Make a mutable copy at tail-end
<1 Update in-place

Table 1: Update scheme with Read-Only Marker

(cf. Appendix C). Read and RMW operations are similar to their
in-memory counterparts described in Sec. 4. However, updates are
always appended to the tail of the log, and linked to the previous
record. Further, logical addresses are handled di�erently. For a
retrieved logical address, we �rst check if the address is more than
the current head o�set. If yes, the record is in memory and we can
proceed as before. If not, we issue an asynchronous read request
for the record to storage. Being a record log, we retrieve only the
record and not the entire logical page. In our count store example,
every counter increment results in appending the new counter to
the tail of the log (reading the older value from storage if necessary),
followed by a compare-and-swap to update the index entry.

Every user operation is associated with a context that is used
to continue the operation when the I/O completes. Each F�����
thread has a thread-local pending queue of contexts of all com-
pleted asynchronous requests issued by that thread. Periodically,
the thread invokes a CompletePending function to dequeue these
contexts and process the continuations. Note that the continuation
may need to issue further I/O operations, e.g., for a previous logical
address in the linked-list of records.

6 ENABLING IN-PLACE UPDATES IN FASTER
The log allocator design presented in the previous section, in ad-
dition to handling data larger than memory, enables a latch-free
access path for updates due to its append-only nature. But this
comes at a cost: every update involves atomic increment of the tail
o�set to create a new record, copying data from previous location
and atomic replace of the logical address in the hash index. Further,
an append-only log grows fast, particularly with update-intensive
workloads, quickly making disk I/O a bottleneck.

On the other hand, in-place updates have several advantages
in such workloads: (1) frequently accessed records are likely to
be available in higher levels of cache; (2) access paths for keys
of di�erent hash buckets do not collide; (3) updating parts of a
larger value is e�cient as it avoids copying the entire record or
maintaining expensive delta chains that require compaction; and
(4) most updates do not need to modify the F����� hash index.

6.1 Introducing HybridLog

HybridLog is a novel data structure that combines in-place updates
(in memory) and log-structured organization (on disk) while pro-
viding latch-free concurrent access to records. HybridLog spans
memory and secondary storage, where the in-memory portion acts
as a cache for hot records and adapts to a changing hot set.

In HybridLog the logical address space is divided into 3 contigu-
ous regions: (1) stable region (2) read-only region and (3) mutable
region as shown in Fig. 5. The stable region portion is on secondary
storage. The in-memory portion is composed of read-only and

Research 3: Transactions and Indexing SIGMOD’18, June 10-15, 2018, Houston, TX, USA

280



CS591 progress bar

Storage Layouts
Rows vs Cols vs Hybrid

New Hardware
Flash Storage

Multi-core
Indexing

When to use?
UpBit

NoSQL Engines
LSM-Trees

Hash-based

Indexing
Data Skipping

Adaptive Indexing

Skipping-oriented Partitioning for Columnar Layouts

Liwen Sun, Michael J. Franklin, Jiannan Wang† and Eugene Wu‡

University of California Berkeley, Simon Fraser University
†
, Columbia University

‡

{liwen, franklin}@berkeley.edu, jnwang@sfu.ca, ewu@cs.columbia.edu

ABSTRACT
As data volumes continue to grow, modern database systems in-
creasingly rely on data skipping mechanisms to improve perfor-
mance by avoiding access to irrelevant data. Recent work [39]
proposed a fine-grained partitioning scheme that was shown to im-
prove the opportunities for data skipping in row-oriented systems.
Modern analytics and big data systems increasingly adopt colum-
nar storage schemes, and in such systems, a row-based approach
misses important opportunities for further improving data skipping.
The flexibility of column-oriented organizations, however, comes
with the additional cost of tuple reconstruction. In this paper, we
develop Generalized Skipping-Oriented Partitioning (GSOP), a novel
hybrid data skipping framework that takes into account these row-
based and column-based tradeoffs. In contrast to previous column-
oriented physical design work, GSOP considers the tradeoffs be-
tween horizontal data skipping and vertical partitioning jointly. Our
experiments using two public benchmarks and a real-world work-
load show that GSOP can significantly reduce the amount of data
scanned and improve end-to-end query response times over the
state-of-the- art techniques.

1. INTRODUCTION
Data skipping has become an essential mechanism for improv-

ing query performance in modern analytics databases (e.g., [1,8,16,
26,40]) and the Hadoop ecosystem (e.g., [2,43]). In these systems,
data are organized into blocks, each of which typically contains
tens of thousands of tuples. At data loading time, these systems
compute statistics for each block (e.g., such as min and max val-
ues of each column) and store the statistics as metadata. Incoming
queries can evaluate their filter predicates against such metadata
and decide which blocks can be safely skipped (i.e., do not need
to be read or accessed). For example, suppose a query contains a
predicate age=20; if the metadata of a block says its min value on
column age is 25, then this block can be skipped by this query.
Reading less data not only saves I/O, but also reduces CPU work,
such as decompression and deserialization. Therefore, data skip-
ping improves query performance even when data are memory- or
SSD-resident.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 4
Copyright 2016 VLDB Endowment 2150-8097/16/12.

2012 A DB

2011 A AI

2011 B OS

2013 C DB

2011 A AI

2011 B OS

2012 A DB

2013 C DB

grade

A

A

B

C

year

2011

2011

2012

2013

t1
t2

t3
t4

t1
t2
t3
t4

t2
t3

t1
t4

t2
t3

t1
t4

year grade course

(a) original data (b) a SOP scheme (c) a GSOP scheme

course

AI

OS

DB

DB

year grade course

Figure 1: Example of partitioning schemes.
The opportunity for data skipping highly depends on how the

tuples are organized into blocks. While traditional horizontal par-
titioning techniques, such as range partitioning, can be used for
this purpose, in recent work [39], we proposed a skipping-oriented
partitioning (SOP) framework, which can significantly improve the
effectiveness of data skipping over traditional techniques. The SOP
framework first analyzes the workload and extracts representative
filter predicates as features. Based on these features, SOP charac-
terizes each tuple by a feature vector and partitions the data tuples
by clustering the feature vectors.

While SOP has been shown to outperform previous techniques,
its effectiveness depends on workload and data characteristics. Mod-
ern analytics applications can involve wide tables and complex work-
loads with diverse filter predicates and column-access patterns. For
this kind of workloads, SOP suffers from a high degree of fea-
ture conflict. Consider the table in Figure 1(a). Suppose SOP
extracts two features from the workload: F1:grade=‘A’ and
F2:year>2011^course=‘DB’. In this case, the best partition-
ing scheme for feature F1 is t1t2|t3t4, since t1 and t2 satisfy F1

while t3 and t4 do not. For the same reason, the best partitioning
scheme for feature F2 is t1t4|t2t3. Therefore, the conflict between
F1 and F2 lies in that their best partitioning schemes are different.
Since SOP generates a single horizontal partitioning scheme that
incorporates all features (e.g., Figure 1(b)), when there are many
highly conflicting features, it may be rendered ineffective.

The key reason why SOP is sensitive to feature conflict is that it
produces only monolithic horizontal partitioning schemes. That is,
SOP views every tuple as an atomic unit. While this perspective is
natural for row-major data layouts, it becomes an unnecessary con-
straint for columnar layouts. Analytics systems increasingly adopt
columnar layouts [20] where each column can be stored separately.
Inspired by recent work in column-oriented physical design, such
as database cracking [23,38], we propose to remove the “atomic-
tuple” constraint and allow different columns to have different hor-
izontal partitioning schemes. By doing so, we can mitigate feature
conflict and boost the performance of data skipping. Consider the
example in Figure 1(c), where we partition column grade based
on F1 and independently partition the columns year and course
based on F2. This hybrid partitioning scheme successfully resolves
the conflict between F1 and F2, as the relevant columns for each
can be partitioned differently. Unfortunately, this columnar ap-

421



CS591 progress bar

Storage Layouts
Rows vs Cols vs Hybrid

New Hardware
Flash Storage

Multi-core
Indexing

When to use?
UpBit

NoSQL Engines
LSM-Trees

Hash-based

Indexing
Data Skipping

Adaptive Indexing

Adaptive Adaptive Indexing
Felix Martin Schuhknecht1, Jens Dittrich2, Laurent Linden3

Saarland Informatics Campus
Saarland University, Germany

1 felix.schuhknecht@infosys.uni-saarland.de
2 jens.dittrich@infosys.uni-saarland.de

3 laurent.linden@gmx.net

Abstract—In nature, many species became extinct as they

could not adapt quickly enough to their environment. They were

simply not fit enough to adapt to more and more challenging

circumstances. Similar things happen when algorithms are too

static to cope with particular challenges of their “environment”,

be it the workload, the machine, or the user requirements.

In this regard, in this paper we explore the well-researched

and fascinating family of adaptive indexing algorithms. Classical

adaptive indexes solely adapt the indexedness of the data to the

workload. However, we will learn that so far we have overlooked

a second higher level of adaptivity, namely the one of the indexing

algorithm itself. We will coin this second level of adaptivity

meta-adaptivity.

Based on a careful experimental analysis, we will develop an

adaptive index, which realizes meta-adaptivity by (1) generalizing

the way reorganization is performed, (2) reacting to the evolving

indexedness and varying reorganization effort, and (3) defusing

skewed distributions in the input data. As we will demonstrate,

this allows us to emulate the characteristics of a large set

of specialized adaptive indexing algorithms. In an extensive

experimental study we will show that our meta-adaptive index

is extremely fit in a variety of environments and outperforms a

large amount of specialized adaptive indexes under various query

access patterns and key distributions.

I. INTRODUCTION

An overwhelming amount of adaptive indexing algorithms
exists today. In our recent studies [1], [2], we analyzed 8 pa-
pers including 18 different techniques on this type of indexing.
The reason for the necessity of such a large number of
methods is that adaptivity, while offering many nice properties,
introduces a surprising amount of unpleasant problems [1],
[2] as well. For instance, as the investigation of these works
showed, adaptive indexing must deal with high variance, slow
convergence speed, weak robustness against different query
workloads and data distributions, and the trade-off between
individual and accumulated query response time.

In the simplest form of adaptive indexing, called database
cracking or standard cracking [3], the index column is repar-
titioned adaptively with respect to the incoming query pred-
icates. If a range query selecting [low, high) comes in, the
partition into which low falls is split into two partitions
where one partitions contains all keys less than low and the
other partition all keys that are greater than or equal to low.
The same reorganization is repeated for the partition into
which high falls. After these two steps, the range query can
be answered by a simple scan of the qualifying partitions.
The information which key ranges each partition holds is

stored in a separate index structure called cracker index. The
more queries are answered this way, the more fine granular
the partitioning becomes. By this, the query response time
incrementally converges towards the one of a traditional index.
Figure 1 visualizes the concept.

?

Index 
Column

< 13

>= 13

< 42

>= 42

Index 
Column

Q0=[13,42)

Index 
Column

sorted
Q2 Qn...Q1=[6,27)

< 6

>= 6
< 13

>= 13
< 27

>=27
< 42

>= 42

Index 
Column

Fig. 1: Concept of database cracking reorganizing for multiple

queries and converging towards a sorted state.

If we inspect the literature [4], [5], [6], [7], [8], [9], [10]
proposing variations of the described principle, we see that
these algorithms mostly focus on reducing a single issue
at a time. For instance, hybrid cracking [5] tries to im-
prove the convergence speed towards a full index. Stochastic
cracking [4] instead focuses on improving the robustness on
sequential query workloads. Thus, to equip a system with
adaptive indexing, it actually has to be extended with numer-
ous different implementations that must be switched depending
on the needs of the user and the current workload.

This raises the question of how different these algorithms
really are. During the study of the literature we made two
observations: First, at the heart of every cracking algorithm is
simple data partitioning, splitting a given key range into a cer-
tain number of partitions. Second, the main difference between
the algorithms lies in how they distribute their indexing effort
along the query sequence. Some methods tend to reorganize
mostly early on, while others balance the effort as much as
possible across the queries. Based on these observations, we
will present a generalized adaptive indexing algorithm that
adapts itself to the characteristics of specialized methods,
while outperforming them at the same time.
(1) Generalize the way of index refinement. We identify
data partitioning as the common form of reorganization in
adaptive indexing. Various types of database cracking as well
as sorting can be expressed via a function partition-in-k that



CS591 progress bar

Storage Layouts
Rows vs Cols vs Hybrid

New Hardware
Flash Storage

Multi-core
Indexing

When to use?
UpBit

NoSQL Engines
LSM-Trees

Hash-based

Indexing
Data Skipping

Adaptive Indexing

Scientific Data Management
In-situ Query Processing

Raw Data File
Positional Map

BF BF+BTree BF BTree BFBF BTree

Adaptive Partitioning

Cache



CS591 progress bar

Storage Layouts
Rows vs Cols vs Hybrid

New Hardware
Flash Storage

Multi-core
Indexing

When to use?
UpBit

NoSQL Engines
LSM-Trees

Hash-based

Indexing
Data Skipping

Adaptive Indexing

Scientific Data Management
In-situ Query Processing

Today: Array Data



Today: Array Data Storage Manager

Up to now: uni-dimensional data (integers, real, string)

Array Data: multi-dimensional data

No unique order (cannot sort!)

How to store?

Concepts: multi-dimensional arrays, storage manager, tiles, thread-safe, dense vs. 
sparse arrays, global cell order, fragments, dense vs. sparse fragments, consolidation

why is this a challenge?



CS591 progress bar

Storage Layouts
Rows vs Cols vs Hybrid

New Hardware
Flash Storage

Multi-core
Indexing

When to use?
UpBit

NoSQL Engines
LSM-Trees

Hash-based

Indexing
Data Skipping

Adaptive Indexing

Scientific Data Management
In-situ Query Processing

Today: Array Data

New Paradigms



CS591 progress bar

Storage Layouts
Rows vs Cols vs Hybrid

New Hardware
Flash Storage

Multi-core
Indexing

When to use?
UpBit

NoSQL Engines
LSM-Trees

Hash-based

Indexing
Data Skipping

Adaptive Indexing

Scientific Data Management
In-situ Query Processing

Today: Array Data

Distributed DB
Database Systems

at Global Scale
MapReduce

Computing at Scale

Systems for ML
ML building blocks

ML for Systems
Automatic Data 
System Design

Learned Indexes
Learn Data Distributions

for Indexing
Data Calculator

Synthesize Indexes

New Paradigms



Do not forget: reviews

You can skip up to 3 reviews
18 classes: 5 long + 10 short + 3 skipped

new rule: you can do extra long reviews, 1 long counts as 3 short
Normally for full marks: 5 long + 10 short
or 6 long + 7 short 
or 7 long + 4 short
or 8 long + 1 short



Do not forget: project

Do not leave your project work for last minute!

Until Tuesday April 16th every group in OH to discuss progress

April 30 and May 2 project presentations: 
problem + approach + results + open questions

Project presentations will also be peer-evaluated


