
class 3

Column-Stores Basics

Prof. Manos Athanassoulis

http://manos.athanassoulis.net/classes/CS591

CS 591: Data Systems Architectures

http://manos.athanassoulis.net/classes/CS591

Project details are now on-line (more to come)

detailed discussion on Thursday 1/31

Readings for the project

The Log-Structured Merge-Tree (LSM-Tree) by Patrick E. O'Neil, Edward Cheng, Dieter Gawlick, Elizabeth J.
O'Neil. Acta Inf. 33(4): 351-385, 1996

Monkey: Optimal Navigable Key-Value Store by Niv Dayan, Manos Athanassoulis, Stratos Idreos. SIGMOD
Conference 2017

More readings (for some research projects)

Measures of Presortedness and Optimal Sorting Algorithms by Heikki Mannila. IEEE Trans. Computers 34(4):
318-325 (1985)

Small Materialized Aggregates: A Light Weight Index Structure for Data Warehousing by Guido Moerkotte.
VLDB 1998

The adaptive radix tree: ARTful indexing for main-memory databases by Viktor Leis, Alfons Kemper, Thomas
Neumann. ICDE 2013: 38-49

programming language: C/C++

it gives you control over exactly what is happening
it helps you learn the impact of design decisions

avoid using libraries unless asked to do,
so you can control storage and access patterns

Reviews

short review (up to half page)
Par. 1: what is the problem & why it is important

Par. 2: what is the main idea of the solution

long review (up to one page)
what is the problem & why it is important?

why is it hard & why older approaches are not enough?
what is key idea and why it works?

what is missing and how can we improve this idea?
does the paper supports its claims?

possible next steps of the work presented in the paper?

Presentations

for every class, one or two students will be responsible for
presenting the paper (discussing all main points of a long review –
see next slide)

during the presentation anyone can ask questions (including me!)
and each question is addressed to all (including me!)

the presenting student(s) will prepare slides and questions

A) read the syllabus and the website

B) register to piazza

C) register to gradescope/blackboard

D) register for the presentation (week 2)

E) start submitting paper reviews (week 3)

F) go over the project (more details on the way)

G) start working on the mid-semester report (week 3)

what to do now?

class website: http://manos.athanassoulis.net/classes/CS591/

piazza website: http://piazza.com/bu/spring2019/cs591a1/

presentation registration: https://tinyurl.com/CASCS591A1-presentations

Blackboard website: https://tinyurl.com/CS591A1-blackboard

office hours: Manos (Tu/Th, 2-3pm), Subhadeep (M/W 2-3pm)

material: papers available from BU network

survival guide

http://manos.athanassoulis.net/classes/CS591/
http://piazza.com/bu/spring2019/cs591a1/
https://tinyurl.com/CASCS591A1-presentations
https://tinyurl.com/CS591A1-blackboard

how can I prepare?

1) Read background research material
• Architecture of a Database System. By J. Hellerstein, M. Stonebraker and J. Hamilton.

Foundations and Trends in Databases, 2007

• The Design and Implementation of Modern Column-store Database Systems. By D. Abadi, P.
Boncz, S. Harizopoulos, S. Idreos, S. Madden. Foundations and Trends in Databases, 2013

• Massively Parallel Databases and MapReduce Systems. By Shivnath Babu and Herodotos
Herodotou. Foundations and Trends in Databases, 2013

2) Start going over the papers

Database Design Abstraction Levels

Logical Design

Physical Design

System Design

Data can be messy!

clean schema …

Data can be messy!

clean schema load …

Data can be messy!

clean schema load tune

Data can be messy!

clean schema load tune

query

experts and DBAs

any user!

Database Design Abstraction Levels

Logical Design

Physical Design

System Design

Logical design

What is our data? How to model them?

Hierarchical? Network? Object-oriented? Flat? Key-Value?

Relational!

A collection of tables, each being a collection of rows and columns

[schema: describes the columns of each table]

Logical design

What is our data? How to model them?

Hierarchical? Network? Object-oriented? Flat?

Relational!

A collection of tables, each being a collection of rows and columns

[schema: describes the columns of each table]

graph data
time-series data

Logical Schema of “University” Database

Students
sid: string, name: string, login: string, year_birth: integer, gpa: real

Courses
cid: string, cname: string, credits: integer

Enrolled
sid: string, cid: string, grade: string

17

Relational Model and SQL

Students
sid: string, name: string, login: string, year_birth: integer, gpa: real

Courses
cid: string, cname: string, credits: integer

Enrolled
sid: string, cid: string, grade: string

relations keys

Relational Model and SQL

Students
sid: string, name: string, login: string, year_birth: integer, gpa: real

Courses
cid: string, cname: string, credits: integer

Enrolled
sid: string, cid: string, grade: string

how to create the table students?

create table students (sid:char(10), name:char(40), login:char(8), age:integer, …)

how to add a new student?

insert into students (U1398217312, John Doe, john19, 19, …)

bring me the names of all students

select name from students where GPA > 3.5

Relational Model and SQL

student
(sid1, name1, login1, year1, gpa1)
(sid2, name2, login2, year2, gpa2)
(sid3, name3, login3, year3, gpa3)
(sid4, name4, login4, year4, gpa4)
(sid5, name5, login5, year5, gpa5)
(sid6, name6, login6, year6, gpa6)
(sid7, name7, login7, year7, gpa7)
(sid8, name8, login8, year8, gpa8)
(sid9, name9, login9, year9, gpa9)

insert into student (sid1, name1, login1, year1, gpa1)

cardinality: 9

Relational Model and SQL

student
(sid1, name1, login1, year1, gpa1)
(sid2, name2, login2, year2, gpa2)
(sid3, name3, login3, year3, gpa3)
(sid4, name4, login4, year4, gpa4)
(sid5, name5, login5, year5, gpa5)
(sid6, name6, login6, year6, gpa6)
(sid7, name7, login7, year7, gpa7)
(sid8, name8, login8, year8, gpa8)
(sid9, name9, login9, year9, gpa9)

insert into student (sid1, name1, login1, year1, gpa1)

cardinality: 9

what if a student does not have their login yet?

Relational Model and SQL

student
(sid1, name1, login1, year1, gpa1)
(sid2, name2, login2, year2, gpa2)
(sid3, name3, login3, year3, gpa3)
(sid4, name4, login4, year4, gpa4)
(sid5, name5, login5, year5, gpa5)
(sid6, name6, login6, year6, gpa6)
(sid7, name7, login7, year7, gpa7)
(sid8, name8, login8, year8, gpa8)
(sid9, name9, NULL, year9, gpa9)

insert into student (sid1, name1, login1, year1, gpa1)

cardinality: 9

what if a student does not have their login yet? NULL values do not exist

Relational Model and SQL

Students
sid: string, name: string, login: string, year_birth: integer, gpa: real

Courses
cid: string, cname: string, credits: integer

Enrolled
sid: string, cid: string, grade: string

how to show all enrollments in CS591A1?

keys

Relational Model and SQL

Students
sid: string, name: string, login: string, year_birth: integer, gpa: real

Courses
cid: string, cname: string, credits: integer

Enrolled
sid: string, cid: string, grade: string

how to show all enrollments in CS591A1?

foreign keys

using foreign keys we can join
information of all three tables

select student.name
from students, courses, enrolled
where course.cname=“CS591A1”
and course.cid=enrolled.cid
and student.sid=enrolled.sid

Database Design Abstraction Levels

Logical Design

Physical Design

System Design

Physical Design
File Organization Indexes

heap files

sorted files

clustered files

should I build?

on which attributes/tables?

what index structure?

B-Tree

Hash Bitmap

Tries

Zonemaps
more …

Data systems are declarative!

data system

ask what you want

system decides how
to store & access

design decisions, physical design
indexing, tuning knobs

DBA

research to automate!

adaptivity

autotuning

Database Design Abstraction Levels

Logical Design

Physical Design

System Design

select max(B) from R where A>5 and C<10

Indexing Data

op

op
op

op

op
algorithms

and
operators

Parsermodules

select max(B) from R where A>5 and C<10

Optimizer

Evaluation

Storage

memory wall

CPU

on-chip cache

on-board cache

main memory

flash storage

disks flash

fa
st

er
ch

ea
p

e
r/

la
rg

er

cache miss: looking
for something that
is not in the cache

memory miss: looking
for something that

is not in memory

memory hierarchy (by Jim Gray)

Jim Gray, IBM, Tandem, Microsoft, DEC
“The Fourth Paradigm” is based on his vision
ACM Turing Award 1998
ACM SIGMOD Edgar F. Codd Innovations award 1993

registers/CPU

on chip cache

on board cache

memory

disk

tape

2x

10x

100x

106x

109x

my head
~0

this room
1min

this building
10min

Washington, DC
5 hours

Pluto
2 years

Andromeda
2000 years

data movement & page-based access

CPU

on-chip cache

on-board cache

main memory

flash storage

disks flash

data go through
all necessary levels

also read
unnecessary data pageX

need to read only X
read the whole page

access granularity

DBMS block size

OS block size

memory/storage
device block size

file system and DBMS “pages”

data storage

student
(sid1, name1, login1, year1, gpa1)
(sid2, name2, login2, year2, gpa2)
(sid3, name3, login3, year3, gpa3)
(sid4, name4, login4, year4, gpa4)
(sid5, name5, login5, year5, gpa5)
(sid6, name6, login6, year6, gpa6)
(sid7, name7, login7, year7, gpa7)
(sid8, name8, login8, year8, gpa8)
(sid9, name9, login9, year9, gpa9)

Student (sid: string, name: string, login:
string, year_birth: integer, gpa: real)

how to physically place data?

slotted page

header

row1 row2

row3

free space

slotted page

#rows, row offsets, free space offsets,
#fixed length attributes, #var length attributes

row1 row2

row3

free space

querying over slotted pages

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

select A,B,C,D from Rschema: R (A,B,C,D)

select A from R

each page contains entire rows (all their columns)

rows are contiguous
(with possible free space at the end)

file

pages

querying over slotted pages

A B C D

select A,B,C,D from Rschema: R (A,B,C,D)

select A from R

each page contains columns!

select (A+B) from Rrow1

row2

querying over slotted pages

B C D

select A,B,C,D from Rschema: R (A,B,C,D)

select A from R

each page contains columns or groups of columns!

select (A+B) from R

A, B what if I had both queries?

not clear!

other hybrids?

what if only inserts?

column-stores history line

70s60s 80s 90s 00s 10s 20s

2000: first complete
column-store system

rows rows rows rows rows

1985: first complete
column-store model

rows*

2012+: expanding
on hybrid layouts

2001: first idea for
hybrid layouts

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

B
C DA, Β

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

B
C DA, Β

A B C D

A B C D

A B C D

A B C D

the way we physical store data dictates
what are the possible efficient access methods

query evaluation

select max(B) from R where A>5 and C<10
A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

one row at a time

select max(B) from R where A>5 and C<10
A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

one row at a time
A B C D

tuple reconstruction/early materialization

column at a timeA

late materialization

select max(B) from R where A>5 and C<10
A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A

int* input=A;
int* output; /*needs allocation*/
for (i=0; i<num_tuples; i++,input++)

if (*input>5)
{

*output=i;
outpt++;

}

select max(B) from R where A>5 and C<10
A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

A B C D

IDs

C

min

IDs

BA

what is the benefit?

sequential access patterns

read only useful data

easy to code: working over fixed width and dense columns

for (i=0,j=0; i<size; i++)
if (column[i] qualifies)

res[j++]=i;

for (i=0,j=0; i<fetch_size; i++)
intermediate_result[j++]=column[ids[i]];

scan

fetch

no complex checks
no function calls
no aux metadata
easy to prefetch

as few ifs as possible

select max(B) from R where A>5 and C<10

IDs

C

max

IDs

BA

alternatives query plans

scan A & C in parallel and merge

start from C (why?)

use bit vectors (why?)

select max(B) from R where A>5 and C<10

IDs

C

max

IDs

BA

whole column?

row at a time

column at a time

block/vector at a time

select max(B) from R where A>5 and C<10

IDs

C
max

IDs

B

A

whole column?

row at a time

column at a time

block/vector at a time

A C

B

why column-stores are here now?

late materialization – no need to reconstruct tuples

read only useful data

minimize data movement across the memory hierarchy

but it required a complete re-write

why not before?
legacy technology to catch up

more important: analytical workloads (as opposed to only OLTP)

new hardware: larger memories & memory wall

class 3

Column-Stores Basics

Prof. Manos Athanassoulis

http://manos.athanassoulis.net/classes/CS591

CS 591: Data Systems Architectures

http://manos.athanassoulis.net/classes/CS591

