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Background

In Nature In Database System

Issues:

- Unknown Workloads / User Needs
- Large Amount of Raw Data

- Short Query Response Time

- efc.




How should we design a system to handle these issues?

- Manually Design? (painful)

- Any other solution that make the system do it for us? - Yes! Adaptive
Indexing Algorithm.

Instead of making decision in the first place,

how about organizing the system when we see the workload?

Background




Example - Standard Cracking
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By Using Adaptive Indexing, Our System Is Allowed To:

- Shift the cost of index maintenance from Update to Query process
- Reorganize data based on workloads
- Gradually construct index

- Continuously improve its performance during queries

Background



Performance
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(a) Standard Cracking (DC) (d) Sort + Binary Search. (e) Scan.

(b) Reproducing Cracking Behaviour

Performance Comparison




However, it's NOT perfect..

- Slow convergence speed
- “Sensitive” to workloads and data distributions

- Existing methods are specialized for different needs

Drawbacks of Existing Algorithms
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(a) Standard Cracking (DC) (b) Stochastic Cracking (DDIR) (c¢) Hybrid Cracking (HCS). For
HSS, the inputs are sorted.

Drawbacks of Existing Algorithms



Well. How about being more “adaptive”?

Just a little bit
of Adaptivity Oops

p / Adaptive
» Adaptive Indexing
| (meta-adaptivity)

Adaptive Adaptive Indexing



Adaptive Adaptive Indexing

- A generalized adaptive algorithm
- Consider the second higher level of adaptivity

- Adaptive itself to the characteristics of existing methods



1. Generalize Reorganization Method - Data Partitioning
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two times partition-in-k (fan-out k = 2)

Three Key Concepts




1. Generalize Reorganization Method - Data Partitioning

So, what if we are able to manage “k"?

-k =2 with two times partition-in-k Standard Cracking

-k =2"n for n bits keys Sorted Data

Change the system behavior to emulate
any other existing algorithms.

Three Key Concepts



2. Adapt Reorganization Effort (dynamic fan-out k)

- Radix-based partitioning algorithm

- Put data into k “basket”
-k =amount of radix bit
- Process the first query and subsequent queries separately
- Out-of-place partitioning
- In-place partitioning

- Sort the data

Three Key Concepts



2. Adapt Reorganization Effort (fan-out k)
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Three Key Concepts



2. Adapt Reorganization Effort (fan-out k)
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Three Key Concepts




2. Adapt Reorganization Effort (fan-out k)
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Parameter Meaning
bfirst Number of fan-out bits in the very first query.
tadapt Threshold below which fan-out adaption starts.
bonin Minimal number of fan-out bits during adaption.
i Maximal number of fan-out bits during adaption.
Laising Threshold below which sorting is triggered.
Oisvid Number of fan-out bits required for sorting.
skewtol Threshold for tolerance of skew.

Three Key Concepts



2. Adapt Reorganization Effort (fan-out k)
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Three Key Concepts



3. Identify & Defuse Skewed Key Distributions

Not uniformly
distributed

X

performance

Three Key Concepts



Experimental Evaluation
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Fig. 8: Different key distributions used in the experiments.
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Fig. 9: Ditferent query workloads. Blue dots represent the
high keys whereas red dots represent the low keys.

Experimental Evaluation
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Fig. 10: Emulation of adaptive indexes and traditional methods. The top row shows the signatures of the baselines from [1] in
red. The bottom row shows the signatures of the corresponding emulations of our meta-adaptive index in blue, alongside with the

parameter configurations that were used.

Experimental Evaluation
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Fig. 11: Individual query response times of the meta-adaptive
index (configured according to Section VIII-C1) in comparison
to baselines for a uniform (11(a)), normal (11(b)), and Zipf-
based (11(c)) key distribution. The used query workload is
RANDOM with 1% selectivity on the key range.
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Fig. 12: Accumulated query response times of the meta-
adaptive index both manually configured (Section VIII-C1)
as well automatically configured using simulated annealing
(Section VIII-D1) under uniform (12(a)), normal (12(b)),
and Zipf-based (12(c)) key distributions and different query
workloads (see Section VIII-A).
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Review

Innovative idea

Perfect substitute

Details in manual configuration

Other automatic configuration method



