Adajptive Adaptive Indexing

’ { Team: Jiangshan Luo, Ruidong Duan

Background

In Nature In Database System

Issues:

- Unknown Workloads / User Needs
- Large Amount of Raw Data

- Short Query Response Time

- efc.

How should we design a system to handle these issues?

- Manually Design? (painful)

- Any other solution that make the system do it for us? - Yes! Adaptive
Indexing Algorithm.

Instead of making decision in the first place,

how about organizing the system when we see the workload?

Background

Example - Standard Cracking

Index
Column

;| W

Qo=[13,42)

By Using Adaptive Indexing, Our System Is Allowed To:

- Shift the cost of index maintenance from Update to Query process
- Reorganize data based on workloads
- Gradually construct index

- Continuously improve its performance during queries

Background

Performance

Index Column (A) A Index Column (A) A 100000 ey

Ml — —_— Standard Cracking ——
13 ::i:ct : 4 13 1. sort 1 13 :zl;ct : F " ISgan s
where A >= 10 ull Inaex ----=---
16 wh:;: : >: ;2 9 16 26 :le’:;ct : 2 16 b a miTh - 10000 '_]
4 > 2 4 where A >= 10 3 4 ,§, ‘
d A <14 ¥
9 7 9| 2P |4 9 o ;
" . 5 £ 1000} :
2 1 E
12 3 12 7 12 o
ey
7 8 7 8 7 s 100
1 I 1 binary search | 9 | ! 3
19 10 <=a| 13 19 11 19 o 10
3|/ Bx 12 3 12 3 g
o
W\ GE | acuft 12 binary searcn | 13 | 2 G 1
11 14<=2a]|16 11 14 1
8 19 8 16 8
0.1 T e rT
6 14 6 19 |8 | 1 10 100 1000
Query Sequence
(a) Standard Cracking (DC) (d) Sort + Binary Search. (e) Scan.

(b) Reproducing Cracking Behaviour

Performance Comparison

However, it's NOT perfect..

- Slow convergence speed
- “Sensitive” to workloads and data distributions

- Existing methods are specialized for different needs

Drawbacks of Existing Algorithms

A Index Column (A) A Index Column (A) A Input Column (A)

13 select A 4 13 1. random crack at 8 6 13 4
from R > select A
16 | where A >= 10 9 16 | 2. select a 3 16 from R 9
and A < 14 from R where A >= 10
> 2 where A >= 10 4 g A:.<18 . =
7 and A <14 1 9 = | & Final
= 0 0 Tl s Resstevese ES S
2 1 2 2 2 gy 13 Colimin
12 23 12 [\ (A)
12 3 12 A8 | B 1 D] OONE T ke spoeoany &
| o Fags [. 7 16 e 13
s8<=a| g | e
7 8 8 i 12
Biiain | 10 . A 3 W o 1 o/ L1
19 10 <= a| 13 19 % 2] 10 <= A | 13 3 where A >= 10 3 &
v «1'8 and A < 14 g
3 %g 12 3 SE 12 14 > | 6
141\ 5= | acm] 1L . it | 11 8
.......... ket
11 14 <=2 | 16 11 14 <=2 | 14 %_g 11
.......... S S
8 19 16 i 19
6 14 19 14

(a) Standard Cracking (DC) (b) Stochastic Cracking (DDIR) (c¢) Hybrid Cracking (HCS). For
HSS, the inputs are sorted.

Drawbacks of Existing Algorithms

Well. How about being more “adaptive”?

Just a little bit
of Adaptivity Oops

p / Adaptive
» Adaptive Indexing
| (meta-adaptivity)

Adaptive Adaptive Indexing

Adaptive Adaptive Indexing

- A generalized adaptive algorithm
- Consider the second higher level of adaptivity

- Adaptive itself to the characteristics of existing methods

1. Generalize Reorganization Method - Data Partitioning

Index Index
Column Column

? — [=a — — | sO1tEed
Qo=[13,42) Qi=[6,27)
< 42

two times partition-in-k (fan-out k = 2)

Three Key Concepts

1. Generalize Reorganization Method - Data Partitioning

So, what if we are able to manage “k"?

-k =2 with two times partition-in-k Standard Cracking

-k =2"n for n bits keys Sorted Data

Change the system behavior to emulate
any other existing algorithms.

Three Key Concepts

2. Adapt Reorganization Effort (dynamic fan-out k)

- Radix-based partitioning algorithm

- Put data into k “basket”
-k =amount of radix bit
- Process the first query and subsequent queries separately
- Out-of-place partitioning
- In-place partitioning

- Sort the data

Three Key Concepts

2. Adapt Reorganization Effort (fan-out k)

optimizations \

Output
--------------------- S\(I;va;hfef Bypass caches
- = LTer when writing output
e 36 . 42 e T .
H : _mm256_stream_si256 42
_mm256_stream si256 —]
: 5 : : s >
k=4 partition. buffer _____________ ——mae 1 | é | —
oo SO i k={ partition buffer = 2V |
G e ’ b=2 entries : Hardware
aerres /| | 0000 write-combine buffer
trips to main E——T
memory k partitions k partitions
Fig. 3: Out-of-place partitioning using software managed Fig. 4: Enhancing software mamaged buffers using non-
buffers [12]. temporal streaming stores @]

Out-of-place partitioning

Three Key Concepts

2. Adapt Reorganization Effort (fan-out k)

Input data size

45 32KB (L1) 256KB (L2) 2MB (Page) 10MB (L3)
’ ' ' Out-of-place crack-in-two + In-place crack-in-two ssssssss - 35 T T T T —— T T T T T T
S Out-of-placg radix partitioning m— 2 x In-place crack-in-two m——
4 2 x In-place radix partitioning m—
30
25
z)
k= £
QE, 'QE) 20
s E
o £ 15
=3
o
10 |
5 -
oo 2 8 3 &8 8 & 3§ 2 8 8 & 8 0_;___3-_41_‘_1
™ o [fe} o o o 0 ot o« ~
- & ¥ ® © 9 4 32 512 4 32 512 4 32 512 4 32 512
Partitioning Fanout Partitioning Fanout

Three Key Concepts

2. Adapt Reorganization Effort (fan-out k)

(bfirst if g =0
biisn else if 8 > tadapt
f(S, q) o < bmin -+ [(bmax - bm’in) : (1 — 2)-I else it 8 > Toorid
adapt

! (5 - else.
Parameter Meaning
bfirst Number of fan-out bits in the very first query.
tadapt Threshold below which fan-out adaption starts.
bonin Minimal number of fan-out bits during adaption.
i Maximal number of fan-out bits during adaption.
Laising Threshold below which sorting is triggered.
Oisvid Number of fan-out bits required for sorting.
skewtol Threshold for tolerance of skew.

Three Key Concepts

2. Adapt Reorganization Effort (fan-out k)

—

100 el T T T T T T P T -
B) s (s.q) e
2 F | 7, = 2MB Ladapt = 54MB Bl cueaiiis :
o Bmax >
E 10 E--" ______ u::.:u.:v--u_-_n-:-u-.:.:-:o:a:n:-:-:-:a; --- .-?
§ R e | :
(= S e e e e e L
(\ | | | | | |
L 1

0 10 20 30 40 50 60 70 80

Partition Size (MB): s
Fig. 5: The partitioning fan-out bits returned by f(s,q) for
partition sizes s from OMB to 8O0MB and q > 0 with t,4qp: =
64MB. b...:.. — 2, b = 10,8 500—=2MB, aiid b, ;. =64

Three Key Concepts

3. Identify & Defuse Skewed Key Distributions

Not uniformly
distributed

X

performance

Three Key Concepts

Experimental Evaluation

UNIFORM [0,25% NORMAL (u=2%3,6=2°") ZIPF [0,2%%), 0=0.6

Frequency

Key range
Fig. 8: Different key distributions used in the experiments.
RANDOM SKEW PERIODIC SEQUENTIAL ZOOMOUTALT ZOOMINALT

8 Query Sequence

Fig. 9: Ditferent query workloads. Blue dots represent the
high keys whereas red dots represent the low keys.

Experimental Evaluation

Quick Sort Coarse-granular . .
Standard Cracking Scan + Binary Search Index 1K Hybrid Crack Sort ~ Hybrid Sort Sort

L e

0 p
bfirst=1 bmin=1 bfirst=0 bmin=0 bfirst=0 bmin=0 Dbfirst=10 bmin=1 bfirst=1 bmin=1 bfirst=8 bmin=1
tadapt=0bmax=1 tadapt=0Obmax=0 tadapt=Obmax=0 tadapt=Obmax=1 tadapt=Obmax=1 tadapt=0bmax=1
tsort=0 tsort=0 tsot=datasize tsort=0 tsot=1M tsort=datasize

o
o —

9 99
[N NIYC Y

Indexing Progress —>

0.8

0

1 11 1 L i - L 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1
CNNDAO-~ONYQD~O0NY®D NTOR3rONT DX rrONY © X~
© oo o © oo o © oo © oo o © oo o ©ooo
Querying Progress —>»
Fig. 10: Emulation of adaptive indexes and traditional methods. The top row shows the signatures of the baselines from [1] in
red. The bottom row shows the signatures of the corresponding emulations of our meta-adaptive index in blue, alongside with the

parameter configurations that were used.

Experimental Evaluation

DC e DD1R® HCS e Sort+ Binary Search ®
Meta-adaptive Index (Manually configured)

10000

1000

100 |

single Query Response Time [ms]

Query Sequence

(a) U(min = 0, max = 264 _ 1)

10000

1000 ¢ E

100 |

Single Query Response Time [ms]

Query Sequence

(b) N(u = 263, 0 = 261)

Experimental Evaluation

10000

Single Query Response Time [ms]

Query Sequence

(©) Z(min = 0,maz = 2% — 1,a = 0.6)

Fig. 11: Individual query response times of the meta-adaptive
index (configured according to Section VIII-C1) in comparison
to baselines for a uniform (11(a)), normal (11(b)), and Zipf-
based (11(c)) key distribution. The used query workload is
RANDOM with 1% selectivity on the key range.

DC mmm DD1R mmm HCS mm
Meta-adaptive Index (Manually configured) L
Meta-adaptive Index (Simulated annealing configured)

Accum. Query Response Time [s]

Query Workloads

(@) U(min = 0, mazx = 264 — 1)

Accum. Query Response Time [s]

Query Workloads

(b) N(p = 263, 0 = 261)

Experimental Evaluation

Accum. Query Response Time [s]

RANDOM
SKEWED
PERIODIC
EQUENTIAL
ZOOMOUTALT
ZOOMINALT

2]
Query Workloads

(c) Z(min = 0,mazx = 2% — 1, = 0.6)

Fig. 12: Accumulated query response times of the meta-
adaptive index both manually configured (Section VIII-C1)
as well automatically configured using simulated annealing
(Section VIII-D1) under uniform (12(a)), normal (12(b)),
and Zipf-based (12(c)) key distributions and different query
workloads (see Section VIII-A).

Appendix

sells

use first character to
partition into
'less", "equal’, and "greater" by
subarrays
.4 the

sea

seashells

recursively sort subarrays,
excluding first character

shore for middle subarray

the
shells
she
sells
are

surely

seashells

Appendix

Review

Innovative idea

Perfect substitute

Details in manual configuration

Other automatic configuration method

