The TileDB Array Data
Storage Manager

Ziyang Chen, Yuansheng Dong

Introduction

Basic Concepts

Existing Array Managment system
Introduction of TileDB

Physical Organization

Core Functions of TileDB

Paralell Programming

Evaluation

Conclusion

Basic Concepts

e Dense array: every array element has a value
o i.e.an astronomical image

e Sparse array: the majority of the array elements are empty
o i.e.geo-locations: pointsin a 2D coordinate space

Existing Array Management Systems

e HDF5
e SciDB

e Relational Databases

Existing Array Management Systems

e HDF5
o groups array elements into regular hyperrectangles (chunks)
which are stored on the disk

o Shortcomings

Existing Array Management Systems

e Shortcomings
o Can not efficiently capture sparse arrays
m represent denser regions of a sparse array as separate dense array
m large cost to track their changes

o HDF5 is optimized for in-place writes of large blocks
m resultin poor performance of writing small blocks of elements

Existing Array Management Systems

e PHDF5 limitation:
x concurrent writes to compressed data
x variable length element values

operation atomicity requires some coding format from user

Existing Array Management Systems

e SciDB
o array orientation database
o implement own storage managers
o canserve as the storage layer for other scientific applications built
on top

Existing Array Management Systems

e Shortcomings
o notdesignfor sparse arrary

o requires reading and updating an entire chunk (even a small portion)

Existing Array Management Systems

e Relational databases (MonetDB or Vertica)
o used as the storage backend for array management
o storing non-empty elements as records
o encoding the element indices as extra table columns
o poor performance for dense array

Introduction of TileDB

Whatis TileDB?

e efficient writes and reads to arrays
e for both dense and sparse array
e supporting compression, parallelism and more

KEY IDEA:

It organizes array elements into ordered collections called fragments.

Introduction of TileDB

e DataModel

e Global cell order
e Datatiles

e Compression

e Fragments

e Array metadata

e System architecture

Introduction of TileDB

e Data Model

o dimensions

o attributes

o dense:only int dimensions
m i.e.image modeled by 2D dense array

o sparse:int or float dimensions
m as TileDB materilizes the coordiniates of the non-empty cells
m i.e. geo-locations

Introduction of TileDB

Dense array Sparse array
. . ____——» columns columns
dimensions
1 2 3 4 1 2 3 4
1 1
rows rows
3 empty 3
cell
domain [1,4] 4 \4~
tuple of cell (4,4)
<al (int32), a2 (var char)> = <15, pppp>

AN el
attributes

Introduction of TileDB

Global cell order

Mapping from multiple dimensions to a linear order

space tile extents: 4x2 space tile extents: 2x2 space tile extents: 2x2
tile order: row-ma_]or tile order: row-ma_]or mg_qn!gl;; column-ma]or
cell order: row-major cell order: row-major cell order: row-major

. Space‘ .

Figure 2: Global cell orders in dense arrays

Introduction of TileDB

3 steps to specified global cell order in dense array:

e Decompose the domain into space tiles

e Determine the cell order within each space tile
o row-major
o column-major

e Determine the tile order

Introduction of TileDB

For sparse array:
creating sparse tile is complex

- many empty tiles
€ tiles of highly varied capacity
€ ineffective compression
€ bookkeeping overheads
€ small tiles wasting seeking time

Introduction of TileDB

Data tile: a group of non-empty cells
For dense array: each data tile has a one-to-one mapping to a space tile

For sparse array

e determine a capacity of each data tile (i.e capacity = c)
e createonedatatile for every c non-empty cells

space tile extents: 4x2 space tile extents: 2x2 space tile extents: 2x2
tile order: row-major tile order: row-major tile order: column-major
cell order: row-major cell order: row-major cell order: row-major

e S

Eg =3
EEa

Figure 3: Data tiles in sparse arrays

Introduction of TileDB

Fragment

a timestamp of snapshot of batch of array update

Fragment #1 Fragment #2 Fragment #3

(dense) (dense) (sparse)
1 2 3 4 1 2 3 4 1 2 3 4

1
2
1;[2 ;13 3
000 PPPP 4

Collective logical array view

2 3 4

- 5 2
14 115
000 PPPP

Figure 4: Fragment examples

Introduction of TileDB

Fragment is a key concept enables TileDB perform rapid writes

> |f numerous fragments produces (bad for read performance)
o Then TileDB consolidates them into a single one
o Happening in parallel in the background
o Reads and writes continue processing

Introduction of TileDB

Array metadata

e array schema and fragment bookkeeping
o definition of array (name, number, name and types of dimensions and
attributes, the dimension domain...)
o the later summarizes information about the physical organization of the
stored array datain a fragment

Introduction of TileDB

System architecture

init

write
read
conslidate
finalize

Physical Organization

space tile extents: 2x2
tile order: row-major
cell order: row-major

. e (binary format)

a |bb | e | ff al.tdb [012345678910 11 12 13 14 15 |
2 2 3 6 | 7

ccc |dddd | 88 |hhhh a2.tdb [0 136 10 11 13 16 20 21 23 26 30 31 33 36 |
s[] o= ~

Llb gmiml 52 var.tdb |[a bb ccc dddd e ff ggg hhhh i jj kkk 1111 m ..|
glrofn]ylis -

kkk | 11 | ooo |pppp

Figure 6: Physical organization of dense fragments

Physical Organization

SN W N =

space tile extents: 2x2

tile order: row-major
cell order: row-major
1 2 3 4
(o] 1 2
a bb cce
3
dddd
4 6 | 7
- 88g | hhhh
5
ff

al.tdb
az2.tdb

a2 var.tdb

__coords.tdb

Files
(binary format)

01234567

01361011 13 16

a bb ccc dddd e ff ggg hhhh

1,171,214 2,3 3,1 4,2 3,3 3,4

Figure 7: Physical organization of sparse fragments

Core Functions of TileDB

e Read
o dense fragment
o sparse fragment
e Write
o dense fragment
o sparse fragment
e Consolidate

Core Functions of TileDB

Read

e read returns the values of any subset of attributes inside a user supplied
subarray
e resultissorted on the global cell order
e user specifies the subarray and attributes in the init call
e TileDB load bookkeeping data of array fragments into main memory
o for dense case: negligible
o for sparse case: depends on the tile capacity

Core Functions of TileDB

Read
issue: for variable length attributes and sparse array, the result size is unpredictable
solution:

> |f exceeding the size of some buffers, TileDB fills in data into buffers and returns
> user can consume the result, and invoking read to resume process

Core Functions of TileDB
Read
Main Challenge:

e the presence of multiple fragments in the array
e read can not search each fragment individually

TileDB read algorithm (dense and sparse):

e efficiently access all fragments
e skipping unqualified data

Core Functions of TileDB

Read algorithm for dense array:

e first stage: computes a sorted list of tuples of the form <[sc, ec], fid>
e second stage: retrieves the actual attribute values from the respective
fragment files

Core Functions of TileDB

<[sc, ec], [10/>:

[sc, ec]: range of cells between start coordinates sc and end
coordinates ec

‘ic-afragment id, based on timestamp

Core Functions of TileDB

for fist stage:

e all ranges must be disjoint

e the ranges must be sorted in the global cell order

e the ranges in the ordered list must contain all and only the actual, up-
to-date result cells

e the cells covered in each range must appear contiguously on the disk

Core Functions of TileDB

creates on tuple <[sc, ec], (i7/>, and insets them into a priority queue /¢
the comparator of 1 gives precedence to the tuple with smallest value
breaking ties: the tuple with largest /i

pops a tuple at a time from ¢(called popped)

compares popped to the new top tuple

emitting new result tuples for second stage to consuming and
reinserting tuples into /]

Yy YV VYVYYVYY

Core Functions of TileDB

insert to result

check against new top

popped —_—

(i) popped : (iii) top —— —
top N discard re-insert to pq
global cell order] global cell order -
insert to result re-insert to pq as dgnse
T re-insert to pg ‘\ re-insert to pq as sparse
(i) poppedt =) (1v) POPPEd-—-rfrrrontoner]
top top
global cell order] global cell order -

Core Functions of TileDB

Read algorithm for sparse fragment

2 differences:

e iteration does not focus on space tile, but focus on ranges
o start before minimum
o end bounding coordinate of a data file
e caseiii never arises, since the sparse array consist only of sparse fragment

Core Functions of TileDB

Write:

e writes session write cells sequentially in batches, createing a
separate fragment

e begins when an array is initialized in write mode(with init)
e terminates when the array is finalized(with finalize)

Core Functions of TileDB

Write algorithm for dense fragment:

e Uponiinitialization, user specifies the subarray region in which the

dense fragment is constrained
e thenuser populates one buffer/array attribute

e storingthe cell value in global cell order

Core Functions of TileDB

write function:

e simply appends the values from buffers into the corresponding
attribute files

e writing them sequentially

e without requiring additional internel buffering

Core Functions of TileDB

Write algorithm for sparse fragment
3 differences with dense case:

e provide value only for non-empty cells
e user includes an extra buffer with the coordinates of the non-empty cells
e TileDB maintains some extra write state info for each created data tile
o counts number of cells
o stores minimum bounding rectangle and bounding coordinate of data tile

Core Functions of TileDB

random updates arrive ar the system:

TileDB enable users to provide unsorted cell buffers to write

> sort the buffer internally
> then proceed for the sorted case

main difference:

Each write call in this mode creates a seperate fragment

Core Functions of TileDB

Consolidate:

takes a set of fragment as input and produces a single new output fragment
simply repeated perform a read on entire domain

providing buffers depends on the avaliable main memory

after every read, write command has been invoked

stop reading when the buffers are full

Core Functions of TileDB

in read fragments:
any of them are dense: the consolidated fragment is dense

all of them are sparse: the consolidated fragment is sparse

Core Functions of TileDB

suggestion:

Consolidation should be applied on fragments of approximately egaul size

Parallel Programming

e Concurrent Reads
e Concurrent Writes
o multiple process
o multiple threads
e Concurrent Read and Write

Parallel Programming

e Concurrent Read and Write
fragments not-visible to reads finalized — visible

e Locks--Consolidation old fragments deleted
new become visible

Reads Shared Lock — Exclusive lock

Experiments

3 Competitors
HDF5 SciDB Vertica
v1.10.0 v15.12 v7.02.0201

RLE

Experiments

Dense--synthetic 2D arrays
int32 i*#col+j

Sparse--AlS database

Experiments

Dense Arrays

HDF5 SciDB

Experiments

4 - , 10°
TileD8 C— TileDB
Load TileDB+2Z TileDB+Z
HDF5 $S HDFs =
HDF5+2 [EEZES SciDE
3 SciDB SciDB+Z m—
a SciDB+Z - 10° } 1
S —_
=1 L)
%2 2
g =
= 8
. N
I b
1)
3
R
3
3
= 8
ooy >
One CPU Core 4GB 8GB 16GB
Dataset size # Instances

(a) vs. dataset size (HDD) (b) vs. # instances (SSD)

Experiments

Update

Time (s)

TieDB
TieDB+Z ESS59

HDFS = 7

SciDB .
SciDB+Z .

10K 100K
Updates

(a) vs. # updates (HDD)

Time (s)

102

Instances

TieDB .3
TieDB+Z GSS53
HDFS5 3
SciDB =
SciDB+Z .

(b) vs. # instances (SSD)

Experiments

10*

10° }

10%

10" }

Time (s)

TieDB C—
TileDB+2Z
HDF5 =3 "
HDF5+Z (EEEED
,,,,,,, SciDE EEm
SciDB+Z .

Par Col
Subarray type

Time (s)

108
10
10*
10°
10
10’
10°
10

102

TieD8 C—3
TieDB+Z]

HDFs 3
HDF5+Z E=228

SciDE .
SciDB+Z EEm

1K 10
Tiles

subarrays

Experiments

107 - 107 -
TileDB C— TieDB C——
TileDB+Z TileDB+Z
10° HDF5 == 10° HDF5 = subarrays
HDF5+Z EEEER HDF5+Z EEEER
105 | SciDE mEm 105 | SciDE Em)
SciDB+Z mmm SciDB+Z W
@10* } @10t
@ 4}
= s $$ $$ $% $% $%
=10° } =103 1
2
10
10’
10°

Elements # Instances

(c) vs. # elements (HDD) (d) vs. # instances (SSD)

Figure 11: Subarray performance for dense arrays

Experiments

Time (x100 ms)

TileDB)) TieDB
TileDB+2 TileDB+2
#fragments
3t
2t @ P
8 consolidation
x2}
£
1} : -
|—§ @ |_§ |
N N
1 1+10 14100 141K 1C 1+10 14100 1+1000
Fragments # Fragments

(a) Subarray time (HDD) (b) Consolidation time (HDD)
Figure 12: Effect of # fragments in dense arrays

Experiments

Scalability
two large arrays with sizes 128 GB and 256 GB
1,815.78 s and 3,630.89 s
Subarray queries 80 ms and 84 ms, 75 ms
unaffected by the array size

the memory consumption upon loading negligible.

Experiments

Vertica

GZIP and RLE

TileDB 2x-40x better in all settings

Experiments

Sparse Arrays

Vertica+Z SciDB

Experiments

107 10°
TieDB —— TieDB
s TileDB+Z TileDB+2Z
107 | Vertica+Z === 1 Vertica+Z ==
08 SciDE 10‘ I SciDE -)
S —_ $ $ $ $
2107 ¢ 1 C) s
10
éma E
2| y
10 1 102 § :
10 §
10° 10’ \ i
6GB 12GB 24GB 1 2 4 8 16
Dataset size # Instances

(a) vs. dataset size (HDD) (b) vs. # instances (SSD)

Figure 13: Load performance of sparse arrays

Load

Experiments

10° — 10* -
TieDB TieDB
4 TileDB+2 TileDB+Z
100 f V;mca'l — | 10° } V:amca*z [SUbarray
9 SciDE mm SciDE
2 -
E 10] 1 E 10]
g 10 ¢ g
o0l <l O 2 array regions
\ p
10" L § %] 10 F \
| B . \
“1 N 107 | N
\ \
Lo [e D
10K 100K 1™ 10M 10K 100K 1M
Result size Result size

(a) DQ vs. result size (HDD) (b) SQ vs # result size (HDD)

Experiments

10° -
TileDB
TileDB+Z
4 Vertica+Z =0
10 | SciDB m—]
EI()3 i
102
N
8 X
10" =N \ N -
N A ¥ 8
N N N N ‘
\ N \ N s N
10° N (SN Ns N s X
1 2 4 8 16
Instances

(¢) DQ vs. # instances (SSD) (d) SQ vs. # instances (SSD)

Instances

TieDB C—
TieDB+Z 9
Vertica+Z =1

SciDE .

$ 'é-’s ‘_§L m
2 4 8 16

Subarray

Experiments

Consolidation random new cells
deteriorates 18% after inserting 100 fragments,
2x after 1000 fragments,
normal after consolidation

#Same as original Load

Conclusion

HDF5-- Better performance
SciDB-- Better in all settings
Vertica-- Equivalent performance on sparse arrays

More friendly API

Key Factors

Arrays — dense and sparse
Space tiles — shape and size
Tile capacity— number of cells
Dimensions — no subselection

Filtering (Compression)

MBR

Thanks for watching

