
The TileDB Array Data
Storage Manager

Ziyang Chen, Yuansheng Dong

Introduction

● Basic Concepts
● Existing Array Managment system

● Introduction of TileDB

● Physical Organization

● Core Functions of TileDB

● Paralell Programming

● Evaluation

● Conclusion

Basic Concepts

● Dense array: every array element has a value
○ i.e. an astronomical image

● Sparse array: the majority of the array elements are empty
○ i.e. geo-locations: points in a 2D coordinate space

Existing Array Management Systems

● HDF5

● SciDB

● Relational Databases

Existing Array Management Systems

● HDF5
○ groups array elements into regular hyperrectangles (chunks)

which are stored on the disk

○ Shortcomings

Existing Array Management Systems

● Shortcomings
○ Can not efficiently capture sparse arrays

■ represent denser regions of a sparse array as separate dense array

■ large cost to track their changes

○ HDF5 is optimized for in-place writes of large blocks

■ result in poor performance of writing small blocks of elements

Existing Array Management Systems

● PHDF5 limitation:

× concurrent writes to compressed data

× variable length element values

operation atomicity requires some coding format from user

Existing Array Management Systems

● SciDB
○ array orientation database

○ implement own storage managers

○ can serve as the storage layer for other scientific applications built

on top

Existing Array Management Systems

● Shortcomings
○ not design for sparse arrary

○ requires reading and updating an entire chunk (even a small portion)

Existing Array Management Systems

● Relational databases (MonetDB or Vertica)
○ used as the storage backend for array management

○ storing non-empty elements as records

○ encoding the element indices as extra table columns

○ poor performance for dense array

Introduction of TileDB

What is TileDB?

● efficient writes and reads to arrays

● for both dense and sparse array

● supporting compression, parallelism and more

KEY IDEA:

It organizes array elements into ordered collections called fragments.

Introduction of TileDB

● Data Model

● Global cell order

● Data tiles

● Compression

● Fragments

● Array metadata

● System architecture

Introduction of TileDB

● Data Model
○ dimensions

○ attributes

○ dense: only int dimensions

■ i.e. image modeled by 2D dense array

○ sparse: int or float dimensions

■ as TileDB materilizes the coordiniates of the non-empty cells

■ i.e. geo-locations

Introduction of TileDB

Introduction of TileDB

Global cell order

Mapping from multiple dimensions to a linear order

Introduction of TileDB

Introduction of TileDB

3 steps to specified global cell order in dense array:

● Decompose the domain into space tiles

● Determine the cell order within each space tile

○ row-major

○ column-major

● Determine the tile order

Introduction of TileDB

For sparse array:

creating sparse tile is complex

➔ many empty tiles

◆ tiles of highly varied capacity

◆ ineffective compression

◆ bookkeeping overheads

◆ small tiles wasting seeking time

Introduction of TileDB

Data tile: a group of non-empty cells

For dense array: each data tile has a one-to-one mapping to a space tile

For sparse array

● determine a capacity of each data tile (i.e capacity = c)

● create one data tile for every c non-empty cells

Introduction of TileDB

Fragment

a timestamp of snapshot of batch of array update

Introduction of TileDB

Fragment is a key concept enables TileDB perform rapid writes

➢ If numerous fragments produces (bad for read performance)

○ Then TileDB consolidates them into a single one

○ Happening in parallel in the background

○ Reads and writes continue processing

Introduction of TileDB

Array metadata

● array schema and fragment bookkeeping

○ definition of array (name, number, name and types of dimensions and

attributes, the dimension domain...)

○ the later summarizes information about the physical organization of the

stored array data in a fragment

Introduction of TileDB

System architecture

● init

● write

● read

● conslidate

● finalize

Physical Organization

Physical Organization

Core Functions of TileDB

● Read
○ dense fragment

○ sparse fragment

● Write

○ dense fragment

○ sparse fragment

● Consolidate

Core Functions of TileDB

Read

● read returns the values of any subset of attributes inside a user supplied

subarray

● result is sorted on the global cell order

● user specifies the subarray and attributes in the init call

● TileDB load bookkeeping data of array fragments into main memory

○ for dense case: negligible

○ for sparse case: depends on the tile capacity

Core Functions of TileDB

Read

issue: for variable length attributes and sparse array, the result size is unpredictable

solution:

➢ If exceeding the size of some buffers, TileDB fills in data into buffers and returns

➢ user can consume the result, and invoking read to resume process

Core Functions of TileDB

Read

Main Challenge:

● the presence of multiple fragments in the array

● read can not search each fragment individually

TileDB read algorithm (dense and sparse):

● efficiently access all fragments

● skipping unqualified data

Core Functions of TileDB

Read algorithm for dense array:

● first stage: computes a sorted list of tuples of the form <[sc, ec], fid>

● second stage: retrieves the actual attribute values from the respective

fragment files

Core Functions of TileDB

<[sc, ec], fid>:

[sc, ec]: range of cells between start coordinates sc and end

coordinates ec

fid: a fragment id, based on timestamp

Core Functions of TileDB

for fist stage:

● all ranges must be disjoint

● the ranges must be sorted in the global cell order
● the ranges in the ordered list must contain all and only the actual, up-

to-date result cells
● the cells covered in each range must appear contiguously on the disk

Core Functions of TileDB

➢ creates on tuple <[sc, ec], fid> , and insets them into a priority queue pq
➢ the comparator of pq gives precedence to the tuple with smallest value

➢ breaking ties: the tuple with largest fid
➢ pops a tuple at a time from pq(called popped)

➢ compares popped to the new top tuple

➢ emitting new result tuples for second stage to consuming and

reinserting tuples into pq

Core Functions of TileDB

Core Functions of TileDB

Read algorithm for sparse fragment

2 differences:

● iteration does not focus on space tile, but focus on ranges

○ start before minimum

○ end bounding coordinate of a data file

● case iii never arises, since the sparse array consist only of sparse fragment

Core Functions of TileDB

Write:

● writes session write cells sequentially in batches, createing a

separate fragment

● begins when an array is initialized in write mode(with init)

● terminates when the array is finalized(with finalize)

Core Functions of TileDB

Write algorithm for dense fragment:

● Upon initialization, user specifies the subarray region in which the

dense fragment is constrained

● then user populates one buffer/array attribute

● storing the cell value in global cell order

Core Functions of TileDB

write function:

● simply appends the values from buffers into the corresponding

attribute files

● writing them sequentially

● without requiring additional internel buffering

Core Functions of TileDB

Write algorithm for sparse fragment

3 differences with dense case:

● provide value only for non-empty cells

● user includes an extra buffer with the coordinates of the non-empty cells

● TileDB maintains some extra write state info for each created data tile

○ counts number of cells

○ stores minimum bounding rectangle and bounding coordinate of data tile

Core Functions of TileDB

random updates arrive ar the system:

TileDB enable users to provide unsorted cell buffers to write

➢ sort the buffer internally

➢ then proceed for the sorted case

main difference:

Each write call in this mode creates a seperate fragment

Core Functions of TileDB

Consolidate:

● takes a set of fragment as input and produces a single new output fragment

● simply repeated perform a read on entire domain

● providing buffers depends on the avaliable main memory

● after every read, write command has been invoked

● stop reading when the buffers are full

Core Functions of TileDB

in read fragments:

any of them are dense: the consolidated fragment is dense

all of them are sparse: the consolidated fragment is sparse

Core Functions of TileDB

suggestion:

Consolidation should be applied on fragments of approximately eqaul size

Parallel Programming

● Concurrent Reads
● Concurrent Writes

○ multiple process

○ multiple threads

● Concurrent Read and Write

Parallel Programming

● Concurrent Read and Write

fragments not-visible to reads finalized → visible

● Locks --Consolidation old fragments deleted

new become visible

Reads Shared Lock → Exclusive lock

Experiments

3 Competitors

HDF5 SciDB Vertica

v1.10.0 v15.12 v7.02.0201

RLE

Experiments

Dense--synthetic 2D arrays

int32 i*#col+j

Sparse--AIS database

Experiments

Dense Arrays

HDF5 SciDB

Experiments

Load

One CPU Core

Experiments

Update

Experiments

subarrays

Experiments

subarrays

Experiments

#fragments

consolidation

Experiments

Scalability

two large arrays with sizes 128 GB and 256 GB

1,815.78 s and 3,630.89 s

Subarray queries 80 ms and 84 ms, 75 ms

unaffected by the array size

the memory consumption upon loading negligible.

Experiments

Vertica

GZIP and RLE

TileDB 2x-40x better in all settings

Experiments

Sparse Arrays

Vertica+Z SciDB

Experiments

Load

Experiments

Subarray

2 array regions

Experiments

Subarray

Experiments

Consolidation random new cells

deteriorates 18% after inserting 100 fragments,

2x after 1000 fragments,

normal after consolidation

#Same as original Load

Conclusion

HDF5-- Better performance

SciDB-- Better in all settings

Vertica-- Equivalent performance on sparse arrays

More friendly API

Key Factors

Arrays → dense and sparse

Space tiles → shape and size MBR

Tile capacity→ number of cells

Dimensions → no subselection

Filtering (Compression)

Thanks for watching

