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What is a Distributed Database?
Two or more files located in different sites either on the same network or on entirely different 

networks.



Problem?

Consistency..

Why consistency matters?

● Generate a page of friends’ recent posts

○ Consistent view of friend list and their posts
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● Distributed
● Sharded
● Replicated
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What is Spanner?
● Schematized tables

● Semi-relational data model

● General purpose transactions  - ACID

● SQL based

Running in Production

● Storage for Google’s ad data

● Replaced a sharded MySQL database



More on Spanner

● Automatic load balancing

● Client application configurable

○ How far the data is from users

○ How far replicas are from each other

○ How many replicas to be maintained

● Consistent backups and atomic schema updates

● Globally meaningful commit timestamps to reflect serialization order



What makes Spanner a good Distributed 
Database
Scalable:  Horizontally scalable  across rows, regions, and continents, from 1 to hundreds or  thousands of nodes

Multi-version:  Data is versioned with timestamps

Globally distributed: Across continents, across hundreds of data centers, across thousands of machines 

Synchronously-replicated: Copying data so there are multiple, up-to-data replicas  of the data

Externally-consistent distributed transactions: The system behaves as if all transactions were executed 
sequentially



Implementation - Server Organization



Implementation
● A spanner deployment is called a universe

○ Auto shards and auto rebalances data across many sets of Paxos machines

● Consists of a set of zones

○ Locations across which data can be replicated

○ Physical isolation

● A zone has one zonemaster and possibly 1000s of spanservers

○ The former assigns data to spanservers; the latter serve data to clients

○ Location proxies are used by client apps to locate spanservers holding their data

● Universe master

○ Contains status information about all the zones

● Placement driver

○ Handles data movement across zones



Spanserver

(key:string, timestamp:int64) → string



Directories

● Unit of data movement across Paxos groups

● Bucket that stores a set of contiguous keys with common prefix

● Move a directory

○ Load balancing

○ Frequently accessed directories

○ Closer to accessors

● Done in the background 



The research
Feature: Lock-free distributed read transactions

Property: External consistency of distributed transactions

- First system at global scale

Implementation: Integration of concurrency control, replication, and 2PC

- Correctness and performance

Enabling technology: TrueTime

- Interval-based global time



TrueTime

● Global wall clock time that reflects uncertainty

● Returns a time interval bounded with uncertainty

● Clocks - GPS clocks and atomic clocks

● Daemon polls a number of masters and uses Marzullo’s alg

tt = TT.now(), tt.earliest <= t
abs

(e
now

) <= tt.latest



TrueTime Architecture
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Compute reference [earliest, latest] = now ± ε



TrueTime Implementation

time

ε
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● ε is a sawtooth function of time, varying from 1 to 7 ms

● Average of 4 ms 
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Concurrency Control - Read-Only Transactions

● Read operations execute at a system-chosen timestamp without locking

● Single paxos: Client issues the transaction to the group leader

○ S
read 

 =  LastTS()

● Multiple paxos: Client may wait for safe time to advance

○ S
read 

 =  TT.now().latest

● Reads can proceed on any replicas that is up-to-date



Concurrency Control- Read-Write Transactions

● Writes are buffered at the client until commit

○ Reads do not see the effects of the transaction’s writes

● Reads are issued to the leader replicas

○ Acquires read locks and reads the most recent data

● Two-phase commit at the end of the transaction

○ Client chooses a coordinator group and sends commit message

● Non-coordinator participant leaders

○ Write locks, prepare timestamps

● Coordinator leaders

○ Write locks,commit timestamp >= all prepare timestamps



Scalability



Availability



Network Induced Uncertainty



To Summarize 

● Ensure consistency

● TrueTime API

● Strong distributed design with high synchronization

● Integrates database features with systems features



What Could Have Been Better

● Write API is not strictly SQL, read is SQL however

● Write latency is high

○ How it competes with less consistent data stores that provide less write latency

● Heavily based on Google systems

●  Strongly based on the 200 microseconds/sec drift


