
Spanner: Google’s
Globally-Distributed
Database
Google, Inc.

Nikhilesh Murugavel
04/09/2019

What is a Distributed Database?
Two or more files located in different sites either on the same network or on entirely different

networks.

Problem?

Consistency..

Why consistency matters?

● Generate a page of friends’ recent posts

○ Consistent view of friend list and their posts

 User posts
Friend lists

 User posts
Friend lists

Single Machine

Friend2 post

Generate my page

Friend1 post

Friend1000 post
Friend999 post

Block writes

…

User posts
Friend lists

User posts
Friend lists

Multiple Machines

User posts
Friend lists

Generate my page

Friend2 post
Friend1 post

Friend1000 post
Friend999 post

User posts
Friend lists

Block writes

…

Example

User posts
Friend lists
User posts
Friend lists
User posts
Friend lists
User posts
Friend lists

US

Brazil

Russia
Spain

San Francisco
Seattle
Arizona

Sao Paulo
Santiago
Buenos Aires

Moscow
Berlin
Krakow

London
Paris
Berlin
Madrid
Lisbon

User posts
Friend lists

x1000

x1000

x1000

x1000

● Distributed
● Sharded
● Replicated

User posts
Friend lists

User posts
Friend lists

User posts
Friend lists

Multiple Datacenters

User posts
Friend lists

Generate my page

Friend2 post

Friend1 post

Friend1000 post

Friend999 post

…

US

Spain

Russia

Brazil

x1000

x1000

x1000

x1000

What is Spanner?
● Schematized tables

● Semi-relational data model

● General purpose transactions - ACID

● SQL based

Running in Production

● Storage for Google’s ad data

● Replaced a sharded MySQL database

More on Spanner

● Automatic load balancing

● Client application configurable

○ How far the data is from users

○ How far replicas are from each other

○ How many replicas to be maintained

● Consistent backups and atomic schema updates

● Globally meaningful commit timestamps to reflect serialization order

What makes Spanner a good Distributed
Database
Scalable: Horizontally scalable across rows, regions, and continents, from 1 to hundreds or thousands of nodes

Multi-version: Data is versioned with timestamps

Globally distributed: Across continents, across hundreds of data centers, across thousands of machines

Synchronously-replicated: Copying data so there are multiple, up-to-data replicas of the data

Externally-consistent distributed transactions: The system behaves as if all transactions were executed
sequentially

Implementation - Server Organization

Implementation
● A spanner deployment is called a universe

○ Auto shards and auto rebalances data across many sets of Paxos machines

● Consists of a set of zones

○ Locations across which data can be replicated

○ Physical isolation

● A zone has one zonemaster and possibly 1000s of spanservers

○ The former assigns data to spanservers; the latter serve data to clients

○ Location proxies are used by client apps to locate spanservers holding their data

● Universe master

○ Contains status information about all the zones

● Placement driver

○ Handles data movement across zones

Spanserver

(key:string, timestamp:int64) → string

Directories

● Unit of data movement across Paxos groups

● Bucket that stores a set of contiguous keys with common prefix

● Move a directory

○ Load balancing

○ Frequently accessed directories

○ Closer to accessors

● Done in the background

The research
Feature: Lock-free distributed read transactions

Property: External consistency of distributed transactions

- First system at global scale

Implementation: Integration of concurrency control, replication, and 2PC

- Correctness and performance

Enabling technology: TrueTime

- Interval-based global time

TrueTime

● Global wall clock time that reflects uncertainty

● Returns a time interval bounded with uncertainty

● Clocks - GPS clocks and atomic clocks

● Daemon polls a number of masters and uses Marzullo’s alg

tt = TT.now(), tt.earliest <= t
abs

(e
now

) <= tt.latest

TrueTime Architecture

Datacenter 1 Datacenter n…Datacenter 2

GPS
timemaster

GPS
timemaster

GPS
timemaster

Atomic-clock
timemaster

GPS
timemaster

Client

GPS
timemaster

Compute reference [earliest, latest] = now ± ε

TrueTime Implementation

time

ε

0sec 30sec 60sec 90sec

+7ms

● ε is a sawtooth function of time, varying from 1 to 7 ms

● Average of 4 ms

re
fe

re
n

ce
u

n
ce

rt
ai

n
ty 200 μs/sec

+1ms

Concurrency Control - Read-Only Transactions

● Read operations execute at a system-chosen timestamp without locking

● Single paxos: Client issues the transaction to the group leader

○ S
read

 = LastTS()

● Multiple paxos: Client may wait for safe time to advance

○ S
read

 = TT.now().latest

● Reads can proceed on any replicas that is up-to-date

Concurrency Control- Read-Write Transactions

● Writes are buffered at the client until commit

○ Reads do not see the effects of the transaction’s writes

● Reads are issued to the leader replicas

○ Acquires read locks and reads the most recent data

● Two-phase commit at the end of the transaction

○ Client chooses a coordinator group and sends commit message

● Non-coordinator participant leaders

○ Write locks, prepare timestamps

● Coordinator leaders

○ Write locks,commit timestamp >= all prepare timestamps

Scalability

Availability

Network Induced Uncertainty

To Summarize

● Ensure consistency

● TrueTime API

● Strong distributed design with high synchronization

● Integrates database features with systems features

What Could Have Been Better

● Write API is not strictly SQL, read is SQL however

● Write latency is high

○ How it competes with less consistent data stores that provide less write latency

● Heavily based on Google systems

● Strongly based on the 200 microseconds/sec drift

