
VectorH: Taking SQL-on-
Hadoop to the Next Level

Weixi Li, Yang Yang
4.11.2019

Before we start……
• HDFS: Hadoop Distributed File System

(handle large data sets running on commodity
hardware)

• YARN: Yet Another Resource Negotiator
(resource management and job scheduling)

• SQL-on-Hadoop: analytical application tools
combine established SQL-style querying with
Hadoop

VectorH

• a new SQL-on-Hadoop system with advanced
query execution, updatability, YARN, HDFS and
Spark integration.

The Problem
• Keep the vectorized processing while

converting Vectorwise system (single-server) to
VectorH (shared-nothing).

• Divide the hardware resources between
concurrent parallel queries.

• Not viable to send a query to YARN (because
the query should run on a thread that is part of
the active server process).

From Vectorwise to
VectorH

From Vectorwise to
VectorH

• Why choose Vectorwise system (Vectorized
processing)?

From Vectorwise to
VectorH

• Reducing query interpretation overhead.

• Increasing data and code CPU cache locality
and allowing to use SIMD instructions.

Vectorwise Features

• Compression schemes PFOR, PFOR-DELTA and
PDICT.

• Keep so-called MinMax statistics on all columns.

• SELECT max(l_linenumber) FROM
lineitem WHERE l_shipdate<X

• the PFOR schemes used in VectorH
compress better than both the ORC and
Parquet formats do

Vectorwise Physical Design Options

• Co-ordered layout is like nested Hadoop data
formats which is difficult to insert/delete in.

• Using a differential update mechanism based on
Positional Delta Trees (PDT)

Positional Delta Trees

• Merging in differences from a PDT is fast
because it identifies tuples by position, rather
than by primary key

From Vectorwise to
VectorH

• VectorH is a YARN-based cluster version of
Vectorwise relying on HDFS for storage and
fault-tolerance.

• VectorH integrates with HDFS and YARN

Storage Affinity With HDFS

Storage Affinity With HDFS

• Original Layout

• File-per-partition Layout

• Instrumenting HDFS Replication

Original Layout

• Writing is done in groups of consecutive
blocks(4MB).

• Workloads consisting of consecutive updates
can lead to significant wasted disk space.

• Appending to a table requires opening many
files.

File-per-partition Layout

• All columns of a table partition are stored in the
same file.

• Partially filled blocks would use as much space
as full blocks.

• Partial blocks are written to a partial chunk file. A
subsequent append merges these blocks with
new data into new blocks and then frees the
previous partial chunk file.

Instrumenting HDFS Replication

• Partition Affinity Mapping for the 12 partitions of table R,S
before (top) & after (bottom) node4 failure. Responsible
partitions in bold; a/b are the second/third copy (R=3).

Elasticity With YARN

Elasticity With YARN

• Workers and Master

• Out-of-band YARN

• Min-cost Flow Network Algorithms

• Dynamic Resource Management

Workers and Master

• Workers: A subset of the whole Hadoop clusters
to run Vectorwise processes.

• Master: One of the workers becomes master.

Out-of-band YARN
• Why? Long running processes,

latency, not allow to modify the
resources of a container.

• out-of-band: Separate from its
containers.

• How? VectorH runs a dbAgent
process that acts as its YARN
client.

• VectorH runs multiple AMs with
corresponding containers on
the worker set, each allocating
a slice of its resources.

Min-cost Flow Network Algorithms

• When? VectorH initially starts, or when it recovers from node
failures.

• Why? dbAgent must select N machines with most data locality.

• How? Min-cost Flow Network Algorithms.

Dynamic Resource Management

• VectorH will negotiate with YARN to get to its
configured target of resources.

• VectorH will start as long as it gets above a
configured minimum.

• VectorH will periodically negotiate with YARN to
go back to its target resource footprint after its
resources been occupied by higher-priority jobs.

Parallelism With MPI

Parallelism With MPI

• Exchange operators are the base of parallelism in
VectorH.

• An Xchg operator only redistributes data streams.

• an Xchg operator acts as a synchronization point
among a number of producer and consumer
threads.

Distributed Exchange

• Using MPI for network communication and intel MPI
library.

• For better parallelism, implementing a thread-to-node
approach.

Query Optimization

• Most query optimization changes were made in
the Parallel Rewriter.

• Cost-based optimization using a dynamic
programming algorithm.

• Cost model based on the cardinality estimates
taken from the serial plan.

Detecting locality

TRANSACTION IN
HADOOP

Vectorwise transaction management

• Updates are stored in a Positional Delta Tree
(PDT)

• PDT can be stacked.

• while a transaction runs, it gathers changes

Distributed Transaction in VectorH

• Use table partition-specific WALs(Write-Ahead
Log) instead of one single WAL.

• 2PC(2-Phase Commit)

VectorH - Log Shipping

VectorH-Update Propagation

VectorH - Referential Integrity

CONNECTIVITY WITH
SPARK

Evaluation

Does the paper prove its claims?

1. More like a design summary than an
application of the scientific method

2. Design decisions are justified by comparison

