VectorH: Taking SQL-on-
Hadoop to the Next Level

Before we start......

« HDFS: Hadoop Distributed File System
handle large data sets running on commodity
hardware

- YARN: Yet Another Resource Negotiator

VectorH

« anew SQL-on-Hadoo

‘system with advanced

The Problem

« Keep the vectorized processing while
converting Vectorwise system (single-server
VectorH (shared-nothing).

e Divide the hardware resources between

From Vectorwise to

From Vectorwise to
VectorH

From Vectorwise to
VectorH

« Reducing query interpretation overhead.

Vectorwise Features

o Compression schemes PFOR, PFOR-DELTA and

[impala(parquet) B presto(orc
B presto(parquet) [vectorh

b) Data read

o« SELECT max(l_linenumber) FROM
lineitem WHERE |_shipdate<X

0.3 0.6
Predicate selectivity

int32 string
N int64 W float32

—_
(&)

o« the PFOR schemes used in VectorH

compress better than both the ORC and
Parquet formats do

o)
S
o
N
0
ks
n 10
0
b
| -
o
£
o
(&)

o

ORC (19 GB) Parquet (18 GB) VectorH (11 GB)

Vectorwise Physical Design Options

« Co-ordered layout is like nested Hadoop data
formats which is difficult to insert/delete in.

Positional Delta Trees

UpdateTable sip VAL RID
StableTable

SID VAL RID _ ts

QD U

)

sb [0]o|2(3] | sD |5/6/6(6] | sp |[7]8|9|-| | sD |[9]9]|9]|-]
TYPE M| 1 |1 |1 || | TYPE [D|D|I|-|| | TYPE |1 |1 |M]|-]
VALUE |c|d|d|e|l |VALUE |-|-|g|-| |[VALUE [h|i [m]|-|

RID [0]1]4]5 6l7]8]e EURUEVES 121314 -

« Merging in differences from a PDT is fast
pecause It identifies tuples by position, rather
than by primary key

From Vectorwise to
VectorH

e \Vector

ISa YA

RN-based cluster version of

yecionyise rehing oLl p for Slotage ang

Storage Affinity With HDFS

Storage Affinity With HDFES

« Original Layout

3 .Jﬁ"?{%k g

¢
&

SO

Original Layout

« Writing is done in groups of consecutive
blocks(4MB).

Flle-per-partition Layout

» All columns of a table partition are stored in the
ame file.

» Partially filled blocks would use as much space
s full blocks.

Instrumenting HDFS Replication

nodel node2 node3 node4
RO1 RO2 RO3||R04 RO5 RO6||R07 RO8 R0O09||R10 R11 R12
S01 S02 S03|(|S04 S05 S06||S07 SO08 S09|/S10 S11 S12
R10a R1lla R12al|R0O1a R02a R03a||R04a R05a R06a||[R07a RO8a R09a
S10a Slla S12a|[SOla S02a S03a|[S0O4a S05a S06a|[S07a SO08a S09a
RO7b RO8b RO9b|[R10bR11b R12b|[RO1b R02b R03b||[R04b R05bR06b
SO7b SO8b S09b||S10b S11b S12b|(S01b S02b S03b||S04b SO05b S06b

after node4 failure:
R0Ola R02a R03||R04 RO05 R06a||R07 RO8 R09

SO0la S02a S03 || S04 S05 S06a||S07 S08 S09
R10 R11 R12||R0O1 RO2 R0O3a||R04a R0O5a RO6
S10 S11 S12||S01 S02 S03a||S0O4a S05a S06

S07b S08b S09b|[S10b S11b S12b|[S01b S02b S03b

R04b RO5b RO6b||[R07a R0O8a R09a||R10a R11a R12a| re-replicated
S04b S05b S06b|[S07a S08a S09al|[S10a S1lla S12a

partitions

node3

« Partition Affinity Mapping for the 12 partitions of table R,S
before (top) & after (bottom) node4 failure. Responsible
partitions in bold; a/b are the second/third copy (R=3).

Elasticity With YARN

Elasticity With YARN

« Workers and Master

» Out-of-band YARN

Workers and Master

o \Workers: A subset of the whole Hadoop clusters

Out-of-band YARN

« Why? Long running processes,
latency, not allow to modity the
resources of a container.

e Out-of-band: Separate from its
containers.

« How?” VectorH runs a dbAgent
process that acts as its YARN
client.

e VectorH runs multiple AMs with
corresponding containers on
the worker set, each allocating
a slice of its resources.

Min-cost Flow Network Algorithms

Partitions edge: cost/capacity Workers

—_—>
CN
0/RMax Cr
/ /. 0/PCap
A /

0/RMax

o C \
0/RMax . : 0/PCap

@ - C/1 . @
RMax — - 0/PCaf
::.‘_ 0/PCap

« When? VectorH initially starts, or when it recovers from node
failures.

« Why? dbAgent must select N machines with most data locality.

« How? Min-cost Flow Network Algorithms.

Dynamic Resource Management

e VectorH will negotiate with YARN to get to its
onfigured target of resources.

« VectorH will start as long as it gets above a
red minimum

rarallelism With MP|

Parallelism With MP]

e Exchange operators are the base of parallelism |
VectorH.

i

» An Xchg operator only redistributes data streams.

Distributed Exchange

op erator op erator operator
e next() — next{)
recelver recelver recelver

DXchg

e
o
-~
©
=
o
Q.
o

(thread)

child
operator

Stream
Node 2

Using MPI tor network communication and intel MP|
library.

e For better parallelism, implementing a thread-to-node
approach.

Query Optimization

« Most query optimization changes were made In
the Parallel Rewriter.

Detecting locality

SELECT FIRST 10 s_suppkey, s_name, count(*) as l_count
FROM 1lineitem, orders, supplier
WHERE 1_orderkey=o_orderkey AND 1_suppkey=s_suppkey AND
1_discount>0.03 AND
o_orderdate BETWEEN ’1995-03-05’ AND ’1997-03-05’
GROUP BY s_suppkey, s_name
ORDER BY 1_count

TopN (final) [I_count]

TopN (partial) [I_count]

Aggr (final) [s_suppkey,s_name][l_count]

DXchgHashSplit[s_suppkey

Aggr (partial) [s_suppkey,s_name][l_count]

HashJoin[|_suppkey][s_suppkey]

XchgHashSplit[|_suppkey]| [XchgHashSplit [s_suppkey
HashJoinl_orderkey][o_orderkey]| | Scan[supplier] (replicated
Select [|_discount>0.03]| |Select[o_orderdate in ..]

TRANSACTION IN

Vectorwise transaction management

« Updates are stored in a Positional Delta Tree
il

Distributed Transaction in VectorH

e Use tabl

Q

rtition-specific WALs(Write-Ahead

VectorH - Log Shipping

VectorH-Update Propagation

VectorH - Referential Integrity

CONNECTIVITY WITH

Figure 6: Mapping Spark RDDs to VectorH RDDs
and ExternalScan operators

W Hawk B Spark W Impala W Hive

Q5 Q6 Q7

1000

Q2 Q3

Ql Q4

[VectorH | 1.5 [1.14]8.16] 0.17 |
[TAWQ__[158.2[21.46[32.06] 38.21 |
[SparkSQL[155.4[74.08[62.38] 68.27 |
Tmpala__[585.4[81.81[167.7[163.18]
[Mive _ [490.1[63.57|266.6] 59.08 |

Does the paper prove its claims?

- More like a design summary than an

