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Data Exploration

•Statistics:
• Reveal trends in data.
• Act as building blocks for machine learning formulas. (Which can help 

reveal more nuanced trends we may not otherwise notice.)

•We want a means of exploring data using statistics 
that is both fast and flexible.



What’s Flexible? What’s Fast?

FLEXIBLE (lots of functionality for 
statistics, no data management) -
Numpy
Modeltools

FAST (limited statistical functionality, 
good data management) –
Database Systems

Database 
Connectors:
Psycopg, 
MonettDB.R, 
SciDB-Py



Can we make a system for data 
exploration which…

FLEXIBLE (lots of functionality for 
statistics, no data management) -
Numpy
Modeltools

FAST (limited statistical functionality, 
good data management) –
Database Systems

Database 
Connectors:
Psycopg, 
MonettDB.R, 
SciDB-Py

Maintains the 
flexibility offered by 
software libraries

Offers speeds faster than 
those found when using 
database connectors



What’s the hold-up?

…Data reusability!



How do we Define Query “Similarity”

Sub-range Sub-range, different statistic



Great!

• We’ve identified our problem (data-reusability) and defined the types of 
ways in which data is potentially reusable…

• … But how do we reuse it?

?



The Solution? Aggregates!
• We can form a smart cache (a “Data Canopy”) of basic aggregates of data! We can 

think about these aggregates in two ways:
• Those immediately needed

• Those not yet needed, but which can be formed from those which were immediately 
needed.

• Example:
• Query 1: Request for mean temps for each day.

• Query 2: Request for mean temps for each week. (different granularity from first query.)

• Query 3: Request for variances in temps for every two weeks.



A More f(ormal) Definition…

• How should we think about 
basic aggregates? What if we 
define them as a function?

Great! One important point…



But is this Flexible Enough?

•Accounts for 90%+ of stats supported by 
Numpy and SciPy, 75%+ of stats supported by 
Wolfram.



How Often Does an Aggregate Form?

• 1 Chunk (of data)… For each chunk, one value exists FOR EACH basic 
aggregate type.

• If the granularity of a query (i.e. daily, weekly) doesn’t match the granularity 
of a chunk, we scan at most the two surrounding chunks at the edges of the 
query range.



How are the Values Stored?

Segment Trees!



How Often Does a Segment Tree Form?

Per Column, Per Statistic

Matches structure of queries Matches structure of aggregates



Major Benefit…

•Easily Parallelizable!
•Univariate: Divide columns between available 

threads.
•Multivariate: Independently build different 

segment trees for each combination of columns.



Operation Modes

• Offline

• Data Canopy built in advance, library of basic aggregates available to start.

• Online

• Data Canopy populated incrementally during query processing.

• Speculative

• For a modest CPU/memory overhead to I/O tradeoff, incrementally construct more 
segment trees than those which are immediately needed.



Query Processing

• Map query range to set of chunks
• If range fits chunks, synthesize result from basic aggregates

• If residual range, compute basic aggregates for range

• Map a statistic to a set of basic aggregates

• Evaluate plan…
• Offline Mode? No need to touch base data except to evaluate residual range.

• Online/Speculative Mode? Form chunks associated with any residual range.



Query Cost

How do these costs compare?
R is the range of data. Rb is the 
point at which Cscan = Csyn

So when R > Rb use the synthesized 
aggregates for optimal speed.



Selecting Chunk Size
• Dependent On…

Hardware, type of 
requested statistic.



Selecting Optimal Tree Search Depth

• This is based on the optimal size of a data chunk. 
When looking for answer to query, traverses 
segment tree to depth dq. If answer not found, 
skips to scan data instead.



What about Memory Size?

• Dependent on:

• Types of statistical measures contained

• Chunk size

• Data size

• This raises a more interesting question…



How / When do we Evict?

• Phase 1: Round-Robin removal of one layer of leaf nodes from every 
segment tree.

• Phase 2: Caches frequent data.

• Phase 3: Pushes whole segment tree to disk, keeps bitvector that marks any 
dirty chunks if the tree is later reloaded from disk.



Updating the Data Canopy

• To insert rows: When the capacity of the 
Data Canopy is reached, double the 
capacity of the segment trees by creating a 
new root.

• To insert columns: Simply add to types of 
trees Data Canopy can form.

• Updating Rows: Update old aggregate

• Deleting Rows: Decrement a counter on 
the chunk. Maintain invalidity segment 
tree.



Experimental Analysis

The longer the exploration path, the greater the benefit. Notice, as we increase in data repetition, we see 
improvements in performance. Perhaps the drop in c and d is due to generation of the Data Canopy, or 
switching of some of its policies.



Experimental Analysis

Online and Offline Performance of DC Speeding up ML Performance Linear Increase to Execution Time



Experimental Analysis

Linear Increase to Execution 
Time

Rebound after Phase 2 Reduces memory footprint 
according to pressure.  (Phase 
1/Phase 2)



Thoughts

• A really well formulated paper, on a topic that is conceptually easy to grasp, 
but goes into a lot of depth.

• Could have expanded more on / tied together machine learning paradigms 
and examples of how they were constructed via Data Canopy aggregates.

• Would have liked to have known more concretely about when a phase is 
switched from one to the next in order to handle memory pressure.


