
A Review of Data Canopy
Keith Daniel Lovett

Data Exploration

•Statistics:
• Reveal trends in data.
• Act as building blocks for machine learning formulas. (Which can help

reveal more nuanced trends we may not otherwise notice.)

•We want a means of exploring data using statistics
that is both fast and flexible.

What’s Flexible? What’s Fast?

FLEXIBLE (lots of functionality for
statistics, no data management) -
Numpy
Modeltools

FAST (limited statistical functionality,
good data management) –
Database Systems

Database
Connectors:
Psycopg,
MonettDB.R,
SciDB-Py

Can we make a system for data
exploration which…

FLEXIBLE (lots of functionality for
statistics, no data management) -
Numpy
Modeltools

FAST (limited statistical functionality,
good data management) –
Database Systems

Database
Connectors:
Psycopg,
MonettDB.R,
SciDB-Py

Maintains the
flexibility offered by
software libraries

Offers speeds faster than
those found when using
database connectors

What’s the hold-up?

…Data reusability!

How do we Define Query “Similarity”

Sub-range Sub-range, different statistic

Great!

• We’ve identified our problem (data-reusability) and defined the types of
ways in which data is potentially reusable…

• … But how do we reuse it?

?

The Solution? Aggregates!
• We can form a smart cache (a “Data Canopy”) of basic aggregates of data! We can

think about these aggregates in two ways:
• Those immediately needed

• Those not yet needed, but which can be formed from those which were immediately
needed.

• Example:
• Query 1: Request for mean temps for each day.

• Query 2: Request for mean temps for each week. (different granularity from first query.)

• Query 3: Request for variances in temps for every two weeks.

A More f(ormal) Definition…

• How should we think about
basic aggregates? What if we
define them as a function?

Great! One important point…

But is this Flexible Enough?

•Accounts for 90%+ of stats supported by
Numpy and SciPy, 75%+ of stats supported by
Wolfram.

How Often Does an Aggregate Form?

• 1 Chunk (of data)… For each chunk, one value exists FOR EACH basic
aggregate type.

• If the granularity of a query (i.e. daily, weekly) doesn’t match the granularity
of a chunk, we scan at most the two surrounding chunks at the edges of the
query range.

How are the Values Stored?

Segment Trees!

How Often Does a Segment Tree Form?

Per Column, Per Statistic

Matches structure of queries Matches structure of aggregates

Major Benefit…

•Easily Parallelizable!
•Univariate: Divide columns between available

threads.
•Multivariate: Independently build different

segment trees for each combination of columns.

Operation Modes

• Offline

• Data Canopy built in advance, library of basic aggregates available to start.

• Online

• Data Canopy populated incrementally during query processing.

• Speculative

• For a modest CPU/memory overhead to I/O tradeoff, incrementally construct more
segment trees than those which are immediately needed.

Query Processing

• Map query range to set of chunks
• If range fits chunks, synthesize result from basic aggregates

• If residual range, compute basic aggregates for range

• Map a statistic to a set of basic aggregates

• Evaluate plan…
• Offline Mode? No need to touch base data except to evaluate residual range.

• Online/Speculative Mode? Form chunks associated with any residual range.

Query Cost

How do these costs compare?
R is the range of data. Rb is the
point at which Cscan = Csyn

So when R > Rb use the synthesized
aggregates for optimal speed.

Selecting Chunk Size
• Dependent On…

Hardware, type of
requested statistic.

Selecting Optimal Tree Search Depth

• This is based on the optimal size of a data chunk.
When looking for answer to query, traverses
segment tree to depth dq. If answer not found,
skips to scan data instead.

What about Memory Size?

• Dependent on:

• Types of statistical measures contained

• Chunk size

• Data size

• This raises a more interesting question…

How / When do we Evict?

• Phase 1: Round-Robin removal of one layer of leaf nodes from every
segment tree.

• Phase 2: Caches frequent data.

• Phase 3: Pushes whole segment tree to disk, keeps bitvector that marks any
dirty chunks if the tree is later reloaded from disk.

Updating the Data Canopy

• To insert rows: When the capacity of the
Data Canopy is reached, double the
capacity of the segment trees by creating a
new root.

• To insert columns: Simply add to types of
trees Data Canopy can form.

• Updating Rows: Update old aggregate

• Deleting Rows: Decrement a counter on
the chunk. Maintain invalidity segment
tree.

Experimental Analysis

The longer the exploration path, the greater the benefit. Notice, as we increase in data repetition, we see
improvements in performance. Perhaps the drop in c and d is due to generation of the Data Canopy, or
switching of some of its policies.

Experimental Analysis

Online and Offline Performance of DC Speeding up ML Performance Linear Increase to Execution Time

Experimental Analysis

Linear Increase to Execution
Time

Rebound after Phase 2 Reduces memory footprint
according to pressure. (Phase
1/Phase 2)

Thoughts

• A really well formulated paper, on a topic that is conceptually easy to grasp,
but goes into a lot of depth.

• Could have expanded more on / tied together machine learning paradigms
and examples of how they were constructed via Data Canopy aggregates.

• Would have liked to have known more concretely about when a phase is
switched from one to the next in order to handle memory pressure.

