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Terms:

Knobs :

E.g.

The amount of memory to use for caches. 

How often data is written to storage.

Metrics:

E.g. 

How fast DBMS can collect new data.

How fast DBMS can respond to requests.



Difficulties:

● Dependencies
● Continuous Settings 
● Non-Reusable Configurations
● Tuning Complexity



Dependencies:



Continuous Settings 



Non-Reusable Configurations

Figure 1. c



Tuning Complexity 

Figure 1. d



Existing Solutions 

1. Hiring experts
● Non-Reusable 
● High-Cost 
● Tuning Complexity

2. Existings Automatic 
Tuning Tools

● Dependencies
● Non-Reusable



Goal:

Overcome the four problems we discussed. 



OtterTune 

An automated approach that leverages past 
experience and collects new information to tune 
DBMS configurations. 



Architecture 

Figure 2



New Tuning Session:

1. Database Administrator (DBA) tells OtterTune what metric to optimize when selecting 
a configuration.

2. Controller connects to the DBMS and collects its hardware profile and knob 
configuration.

3. Controller then starts the first observation period. 
4. OtterTune measures metrics chosen by the DBA.
5. Stores data in repository.
6. Modeling, Learning, and Recommendation 





Workload Characterization

● Discover a model that best represents the distinguishing 
aspects of the target workload.

● Identify which previously seen workloads in the repository are 
similar to it. 



Workload Characterization

● Statistics Collection
○ Controller.  
○ DBMS’s internal runtime metrics.  
○ Provide a more accurate representation of a workload because they capture more aspects of its 

runtime behavior.
○ Metrics are directly affected by the knob’s setting. 

● Pruning Redundant Metrics 
○ The smallest set of metrics that capture the characteristics for different workloads. 
○ Speed up the process. 





Redundant Metrics 

● Metrics that provide different granularities for the exact same 
metric in the system. 
○ E.g. The amount of data read in terms of bytes and pages. 

● Metrics whose values are strongly correlated. 



Algorithms:

1. Factor Analysis (Dimensionality Reduction): transform the high 
dimensional DBMS metric data into lower dimensional data. 

2. K-Means (Clustering): cluster the lower dimensional data into 
meaningful groups.  



Dimensionality Reduction 
(SVD Example) 



Clustering 



Identifying important knobs

● After pruning the metrics, OtterTune identifies which knobs have 
biggest impact on DBA’s target objective function

● While there can be hundreds of knobs on a DBMS, only a subset 
affect performance
○ Cannot reduce as this will limit configurations that should be 

considered
● To find positive and negative correlations between knobs and 

systems performance, OtterTune uses Lasso
○ Lasso is a feature selection technique for linear regression



Lasso

● Lasso uses ordinary least squares (OLS) to estimate regression 
weights by minimizing residual squared error

● Uses polynomial features to account for nonlinear correlations and 
dependencies between knobs

● Reduces effect of irrelevant variables by penalizing models with 
large weights

● Only keeps non-zero weight features
● Keeps only number of features based on penalty strength
● Lasso is more interpretable, stable and computationally efficient 

than regularization / other feature selection methods



Knob Selection

● Lasso uses ordinary least squares (OLS) to estimate regression 
weights by minimizing residual squared error

● OtterTune now has a ranked list of all knobs
○ Lasso path algorithm orders list of knobs by the strength of 

statistical evidence that they are relevant
● OtterTune decides how many knobs to use

○ Too many exponentially grows optimization time
○ Too few limits it from finding best configuration

● Automates selection through dynamically increasing the number of 
knobs used in a tuning session over time



Automated Tuning

● Two step analysis for each knob configuration
● Step 1: Find workload from a previous tuning session which best 

represents the target workload. 
○ Compares current metrics against previous workloads to see 

determine those that will react similarly to knob settings.
○ Calculates Euclidean distance between the vector of 

measurements for the target workload and the corresponding 
vector for each workload 
■ Builds score for each workload by taking average of the 

distances over all metrics 
○ Chooses workload with lowest score (most similar)



Automated Tuning

● Step 2: chooses a configuration that is explicitly selected to maximize the 
target objective.
○ Path to configurations by Gaussian Process

● Gaussian Process
○ Form of regression used to recommend configurations that will improve 

the target metric
○ returns configuration along with the expected improvement from 

running this configuration to the client
○ The DBA can use the expected improvement calculation to decide 

whether they are satisfied with the best configuration that OtterTune 
has generated thus far.

● Uses Gradient Descent for initialized knob configuration



Step 2 Continued

● Tries to find a better configuration than the best current configuration. This is 
done by either of two options:

1. Exploration: searching an unknown region in its GP (i.e., workloads for 
which it has little to no data for)

2. Exploitation: Selecting a configuration that is near the best configuration 
in its GP. 
■ Tries slight modifications to the knobs to see whether it can further 

improve the performance
● Uses gradient descent to find the local optimum on the surface predicted by 

the GP model using a set of configurations, called the initialization set, as 
starting points



Experimental Evaluation

● Performed testing on three DBMS: MySQL (v5.6), Postgres (v9.3) and Actian 
Vector (v4.2)

● Over 100K trials per DBMS
● All evaluations were run on Amazon EC2 with two instances

○ Instance 1: OtterTune’s controller integrated with the OLTP-Bench 
framework.
■ Deployed on m4.large instances w/ 4 vCPUs + 16 GB RAM.

○ Instance 2: Target DBMS + tuning manager and repository
■ Target DBMS deployed on m3.xlarge instances w/ 4 vCPUs + 15 

GB RAM. 
■ Manager deployed on a local server with 20 cores and 128 GB 

RAM.



Evaluation Workloads

● YCSB - Yahoo! Cloud Serving Benchmark
○ Six OLTP transaction types that access random tuples based on a Zipfian distribution
○ Database contains a single table of 18m tuples (∼18 GB) with 10 attributes 

● TPC-C
○ Industry standard for evaluating performance of online transaction processing systems (OLTP)
○ Consists of five transactions with nine tables that simulate an order processing application
○ Database of 200 warehouses (∼18 GB) in each experiment

● Wikipedia
○ Used for stress testing
○ The database contains 11 tables and eight different transaction types (100k articles, ∼20 GB in 

total)
● TPC-H

○ Decision support system workload that simulates an OLAP environment with little prior 
knowledge of the queries

○ Contains eight tables in 3NF schema and 22 queries with varying complexity
○ Scale factor of 10 in each experiment (∼10 GB)



Evaluation Results

- The optimal number of 
knobs for a tuning session 
varies per DBMS and 
workload

- These results show that increasing the number of knobs that 
OtterTune considers over time is the best approach because it 
strikes the right balance between complexity and performance

- OtterTune is able to tune 
DBMSs like MySQL and 
Postgres that have few 
impactful knobs, as well as 
DBMSs like Vector that 
require more knobs to be 
tuned



Results vs. Current Solution
- Workload Execution: Time for DBMS 

to execute the workload in order to 
collect new metric data.

- Prep & Reload Config: The time that 
OtterTune’s controller takes to 
install the next configuration and 
prepare the DBMS for the next 
observation period (i.e. restarting)

- Workload Mapping: Time for 
OtterTune’s dynamic mapping 
scheme to identify the most similar 
workload

- Config Generation: Time for 
OtterTune’s tuning manager to 
compute the next configuration for 
the target DBMS. (Gradient Descent 
+ GP modeling)

- ITuned cannot reuse training data, so this compares performance between them



Future Work

● Approximate or generalize hardware capabilities
● Adapt techniques to optimize physical design of database



Our Thoughts + Questions?

● Possible work with ITuned to utilize their more advanced algorithms with their training 
data reuse process?


