
Learned Indexes
Sumer Rathinam



Traditional Indexes
• B-Trees: For range requests

• Hash-maps: Single key lookups

• Bloom Filters: Check for record 
existence



Problem
• Traditional indexes are general 

purpose data structures
• Assume nothing about the data 

distribution
• Doesn't take advantage of common 

prevalent patterns in real world data 



Example
Goal: Index all integers from 1 to 100M

1, 2, 3, 4, 5, 6, 7, 8, 9, 10 … 100M

B-Tree?



Key Insight
Knowing the exact data distribution 
allows for instance based optimization



Real World Data
• Real data doesn’t follow perfectly 

known pattern
• Engineering cost to build specialized 

solution is too high



Machine Learning
• ML can learn a model to reflect data 

patterns
• Creates specialized index structures
• Low engineering costs
• Cannot provide semantic guarantees
• Traditionally high compute costs



Disclaimers
• Learned indexes are not meant to 

completely replace existing indexes
• Complement existing work
• Most data structures can be broken down 

into a learned model and an auxiliary 
structure

• Continuous functions describing data 
distribution are used to build efficient data 
structures and algorithms



3 Key Learned Indexes
• Learned indexes using B-Trees

• Learned indexes using Hash-maps

• Learned indexes using Bloom filters



Range Index

• Only index every nth key where n is page size
• Min error of 0, max error of the page size
• ML model only needs to provide these error guarantees 



ML models
• Have same guarantees as B-Trees
• B-Trees are rebalanced with new data
• ML models retrain to do the same
• Linear regression or neural net are 

common models that could replace B-
Trees



New Challenges
• B-Trees have bounded insert and lookup 

costs
• Takes advantage of the cache
• Can map keys to pages that are not 

continuously mapped to memory or disk

* Assumption: we only index an in-memory 
dense array that is sorted by key



Model Complexity
• Needs to match the same number of operations it 

takes to traverse B-Tree
• Precision of model needs to be more efficient than 

a B-Tree
Assumption: B-Tree that indexes 100M records with a 
page size of 100
With this assumption a model needs to have a better 
precision gain than1/100 per 400 arithmetic operations
(50 cycles per b-tree page traversal * 8 CPU SIMD 
operations per cycle)
*This is with all B-Tree pages in cache



CDF Models
• Model that predicts the position of a key inside a 

sorted array approximates the cumulative 
distribution function

• p is the position estimate
• F (Key) is the estimated CDF for the data to 

estimate the likelihood to observe a key smaller or 
equal to the look-up key P(X ≤ Key)

• N is the total number of keys

p = F (Key) ∗ N



Key Takeaways
• B-Tree learns the distribution by 

creating a regression tree
• ML model can do the same by 

minimizing the squared error of a linear 
function

• CDF will play a key role in optimizing 
other types of index structures 



Naïve Learned Index
• Used 200M web server log records
• Built secondary index over the timestamps
• Trained a two-layer fully connected neural 

network with 32 neurons per layer
• Timestamps are input features
• Positions in sorted array are the labels
• Took 80,000 nano-seconds to execute
• B-Tree took 300 nano-seconds



Recursive Model Index

• Takes key as input 
• Predicts position with certain error 
• Selects another model based on error of prediction
• Final stage gives position



Hybrid Indexes 
• Recursive model allows for a mixture of models 

depending on the stage
• Top layers are more likely to use small Neural Nets so 

they can learn a wide range of data
• Bottom layers can use thousands of simple linear 

regression models as they are inexpensive in space 
and execution time

• Paper replaces NN models with B-Trees if absolute 
min-/max-error is above a predefined threshold 

* Hybrid indexes bind the worst case performance of 
learned indexes to the performance of B-Trees.



Results

• Learned index dominates B-Tree
• Most configurations 1.5 - 3 times faster
• Up to 2 orders of magnitude smaller in size



Indexing Strings
• Tokenize input string into input vector
• Treated the same as real valued keys 

except with a vector instead of single 
value

• Linear models scale the number of 
multiplications and additions linearly 
with regards to input length



Results For Strings

• 10M non continuous document IDs of a large web index
• Learned QS is a non hybrid recursive model index using quaternary 

search
• Best performance for strings, while normal learned index did not 

perform as well 



Point Index
• Hash-maps traditionally used
• Key is to prevent too many conflicts
• Example:

o 100M records
o Hash-map size of 100M
o Uniformly random keys
o Leads to 33% or 33M conflicts

*Machine learning models can reduce conflict



ML Models
• Using learned models as a hash-

function already exists
• Existing solutions don’t take advantage 

of underlying data distribution
• Machine learning models can provide 

a more customized solution



Comparison

• H(K) = F (K)∗M, M is the size of the hash-map
• Scales the CDF by targeted size of M
• If we perfectly learn the CDF of keys, no conflicts would occur
• Uses the same recursive model index as before



Hash Model
• Tradeoff between size of index and 

performance
• Benefits of learned model depend on

o How accurately the model represents the CDF
o Hash map architecture

Example:
• With small keys and little to no values, traditional 

hash functions will perform well
• With larger payloads learned models will perform 

better



Results

• Used the same 3 sets of data from b-tree evaluation
• 2 stage recursive model index used
• 100k models on the second stage



Existence Index

• Traditional bloom filters are space efficient, but still 
can occupy a lot of memory

• False negative rate of 0
• Specific false positive rate
• Learned model can achieve these requirements



Existence Index Model

• Learn a model f that predicts whether query x is a key or 
non key

• Use Recurrent NN or Convolutional NN to do this
• Will need an overflow bloom filter to keep false negative 

rate at 0
• Still has a certain false positive rate



Results



Future Work
• Using other ML models i.e. not just 

linear models and NN
• Multidimensional indexes i.e. position of 

all records filtered by any combination 
of attributes

• Beyond indexing: learned algorithms
o Learning the CDF model could speed up 

sorting and joins, not just indexes
• GPU/TPU improvements and speedups 



Overall Thoughts
• Does a great job of putting complex 

concepts into simple terms
• The mapping between traditional indexes 

and learned models is great
• Experiments were well thought out and 

covered worst cases
• Could've talked more on how these new 

findings will impact the industry
• How can we get learned indexes into 

some sort of commercial system


