[Learned Indexes

Sumer Rathinam

Traditional Indexes
* B-Trees: For range requests

* Hash-maps: Single key lookups

 Bloom Filters: Check forrecord
existence

Problem

» Tradifional indexes are general
purpose data structures

* Assume nothing about the data
distribution

« Doesn't take advantage of common
prevalent patterns in real world dato

Example

Goal: Index all infegers from 1 to 100M
1,2,3,4,5 6,7,8, 9,10 ... 100M

B-Tree?¢

B-Tree of Order 4

30|70

JAN -/

Key Insight

Knowing the exact data distribution
allows for instance based optimization

Real World Data

 Real data doesn’t follow perfectly
known pattern

* Engineering cost to build specialized
solution is oo high

Machine Learning
ML can learn a model 1o reflect data
patterns
Creates specialized index structures
Low engineering Ccosts
Cannot provide semantic guarantees
Traditionally high compute costs

Disclaimers

Learned indexes are not meant to
completely replace existing indexes

Complement existing work

Most data structures can be broken down
into a learned model and an auxiliary
structure

Continuous functions describing data
distribution are used to build efficient data
stfructures and algorithms

3 Key Learned Indexes

» Learned indexes using B-Trees
« Learned indexes using Hash-maps

» Learned indexes using Bloom filters

Range Index

(a) B-Tree Index (b) Learned Index
Key Key

y Y

Model
BTree (e.g., NN)

pos \ pos\q
pos -0 pos + pagezise pos - min_err pos + max_er

Figure 1: Why B-Trees are models

* Only index every nth key where n is page size
* Min error of 0, max error of the page size
* ML model only needs to provide these error guarantees

ML models

Have same guaranfees as B-Trees
B-Trees are rebalanced with new data
ML models retrain to do the same

Linear regression or neural net are
common models that could replace B-
Trees

New Challenges
» B-Trees have bounded insert and lookup
Costs
» Takes advantage of the cache

« Can map keys to pages that are not
continuously mapped to memory or disk

* Assumption: we only index an in-memory
dense array that is sorted by key

Model Complexity

 Needs to match the same number of operations it
takes to tfraverse B-Tree

* Precision of model needs to be more efficient than
a B-Tree

Assumption: B-Tree that indexes 100M records with a
page size of 100

With this assumption a model needs to have a better
precision gain than1/100 per 400 arithmetic operations

(50 cycles per b-tree page traversal * 8 CPU SIMD
operations per cycle)

*This is with all B-Tree pages in cache

CDF Models

Model that predicts the position of a key inside a
sorted array approximates the cumulative

distribution function pos L
p=F (Key) *x N /Z/ % i
p Is the position estimate e

Figure 2: Indexes as CDFs

F (Key) is the estimated CDF for the data to
estimate the likelihood to observe a key smaller or
equal o the look-up key P(X < Key)

N is the total number of keys

Key Takeaways

* B-Tree learns the distribution by
creatfing a regression tree

ML model can do the same by
Minimizing the squared error of a linear

function
« CDF will play a key role in optimizing
other types of index structures

Naive Learned Index

Used 200M web server log records
Built secondary index over the timestamps

Trained a two-layer fully connected neural
network with 32 neurons per layer

Timestamps are input features
Positions in sorted array are the labels
Took 80,000 nano-seconds to execute
B-Tree took 300 hano-seconds

Recursive Model Index
lKe_\,

5]

0 Model 1.1

)

N

gp Model 2.1 Model 2.2 Model 2.3
)

Y

o

g:f Model 3.1 Model 3.2 Model 3.3 Model 3.4
)

Position
Figure 3: Staged models

« Takes key as input

* Predicts position with certain error

 Selects another model based on error of prediction
 Final stage gives position

Hybrid Indexes

« Recursive model allows for a mixture of models
depending on the stage

« Top layers are more likely to use small Neural Nets so
they can learn a wide range of data

« Bottom layers can use thousands of simple linear
regression models as they are inexpensive in space
and execution tfime

« Paperreplaces NN models with B-Trees if absolute
min-/max-error is above a predefined threshold

* Hybrid indexes bind the worst case performance of
learned indexes to the performance of B-Trees.

Results

Map Data Web Data Log-Normal Data
Type Config Size (MB) JLookup (ns)] Model (ns) | Size (MB) JLookup (ns)] Model (ns) | Size (MB)]Lookup (ns)] Model (ns)
Btree |page size: 32 52.45 (4.00x)] 274 (0.97x)] 198 (72.3%)|51.93 (4.00x)] 276 (0.94x)] 201 (72.7%)] 49.83 (4.00x)|274 (0.96x)] 198 (72.1%)|
page size: 64 26.23 (2.00x)]277 (0.96x)] 172 (62.0%)] 25.97 (2.00x)| 274 (0.95x)] 171 (62.4%)] 24.92 (2.00x)|274 (0.96x)] 169 (61.7%)|
page size: 128 13.11 (1.00x)] 265 (1.00x)| 134 (50.8%)] 12.98 (1.00x)] 260 (1.00x)] 132 (50.8%)] 12.46 (1.00x)|263 (1.00x)| 131 (50.0%)|
page size: 256 6.56 (0.50x)] 267 (0.99x)] 114 (42.7%)] 6.49 (0.50x)] 266 (0.98x)] 114 (42.9%)| 6.23 (0.50x)|271 (0.97x)] 117 (43.2%)]
page size: 512 3.28 (0.25x)]286 (0.93x)] 101 (35.3%)] 3.25 (0.25x)] 291 (0.89x)] 100 (34.3%)] 3.11 (0.25x)|293 (0.90x)] 101 (34.5%)]
Learned [2nd stage models: 10k | 0.15 (0.02x)] 98 (2.70x)] 31 (31.6%)] 0.15 (0.01x)] 222 (1.17x)] 29 (13.1%)] 0.15 (0.01x)]178 (1.47x)] 26 (14.6%)]
Index [2nd stage models: 50k | 0.76 (0.06x)] 85 (3.11x)] 39 (45.9%)] 0.76 (0.06x)] 162 (1.60x)] 36 (22.2%)] 0.76 (0.06x)]162 (1.62x)] 35 (21.6%)|
2nd stage models: 100k | 1.53 (0.12x)] 82 (3.21x)] 41 (50.2%)] 1.53 (0.12x)] 144 (1.81x)] 39 (26.9%)] 1.53 (0.12x)]152 (1.73x)] 36 (23.7%)]
2nd stage models: 200k | 3.05 (0.23x)] 86 (3.08x)] 50 (58.1%)] 3.05 (0.24x)]126 (2.07x)] 41 (32.5%)] 3.05 (0.24x)]146 (1.79%)] 40 (27.6%)]

Figure 4: Learned Index vs B-Tree

« Learned index dominates B-Tree
* Most configurations 1.5 - 3 fimes faster
« Up to 2 orders of magnitude smaller in size

Indexing Strings
» Tokenize input string Intfo Input vector

* Treated the same as real valued keys

except with a vector instead of single
value

e Linear models scale the number of

multiplications and additions linearly
with regards to input length

Results For Strings

Config Lookup (ns) Model (ns)

Btree page size: 32 13.11 (4.00x)| 1247 (1.03x) | 643 (52%)
page size: 64 6.56 (2.00x) | 1280 (1.01x) 500 (39%)

page size: 128 3.28 (1.00x) | 1288 (1.00x) 377 (29%)

page size: 256 1.64 (0.50x) | 1398 (0.92x) | 330 (24%)

Learned Index|1 hidden layer 1.22 (0.37x) | 1605 (0.80x) 503 (31%)
2 hidden layers 2.26 (0.69x) 598 (36%)

Hybrid Index |t=128, 1 hidden layer 1.67 (0.51x) | 1397 (0.92x) | 472 (34%)
t=128, 2 hidden layers | 2.33 (0.71x) | 1620 (0.80x) | 591 (36%)

t= 64, 1 hidden layer 2.50 (0.76x) | 1220 (1.06x) | 440 (36%)

t= 64, 2 hidden layers 2.79 (0.85x) | 1447 (0.89x) 556 (38%)

Learned QS |1 hidden layer 1.22 (0.37x) | 1155(1.12x) | 496 (43%)

Figure 6: String data: Learned Index vs B-Tree

10M non continuous document IDs of a large web index
Learned QS is a non hybrid recursive model index using quaternary

search
Best performance for strings, while normal learned index did not

perform as well

Point Index

* Hash-maps traditionally used
« Key Is fo prevent too many conflicts

« Example:

o 100M records
o Hash-map size of T00M

o Uniformly random keys
o Leads to 33% or 33M conflicts

*Machine learning models can reduce conflict

ML Models

» Using learned models as a hash-
function already exists

 Existing solutions don’t take advantage
of underlying data distribution

 Machine learning models can provide
a more customized solution

Comparison

(a) Traditional Hash-Map (b) Learned Hash-Map

Key ey
) Hash- —p| Model

Function

Figure 7: Traditional Hash-map vs Learned Hash-ma

H(K) =F (K)*M, M is the size of the hash-map

Scales the CDF by targeted size of M

If we perfectly learn the CDF of keys, no conflicts would occur
Uses the same recursive model index as before

Hash Model

 Tradeoff between size of iIndex and
performance

» Benefits of learned model depend on

o How accurately the model represents the CDF
o Hash map architecture

Example:

« With small keys and little to no values, traditional
hash functions will perform well

* With larger payloads learned models will perform
better

Results

I % Conflicts Hash Map % Conflicts Model Reduction
Map Data 35.3% 07.9%
Web Data 35.3% 24.7% 30.0%
Log Normal 35.4% 25.9% 26.7% |

Figure 8: Reduction of Conflicts

Used the same 3 sets of data from b-tree evaluation
2 stage recursive model index used
100k models on the second stage

Existence Index

(a) Traditional Bloom-Filter Insertion (b) Learned Bloom-Filter Insertion
key1 key2 key3 key1 key2 key3
h h, | |h, h, [|h,||hs Model Model Model

3

o o ol

Traditional bloom filters are space efficient, but still
can occupy a lot of memory

False negative rate of O
Specific false positive rate
Learned model can achieve these requirements

Existence Index Model

(c) Bloom filters as a classification problem

Key — Model l&\ Bfli(;:? /
is ; Yes
Learn a model f that predicts whether query x is a key or
non key

Use Recurrent NN or Convolutional NN to do this

Will need an overflow bloom filter to keep false negative
rate at O

Still has a certain false positive rate

Results

—— BloomFilter
— W=128,E=32
— W=32,E=32
— W=16,E=32

(&3]

=
[

N
|

Memory Footprint (Megabytes)

o

0 05 10 15 2
False Positive Rate (%)
Figure 10: Learned Bloom filter improves memory foot-
print at a wide range of FPRs. (Here W is the RNN width

and E is the embedding size for each character.)

Future Work

Using other ML models i.e. noft just
inear models and NN

Multidimensional indexes I.e. position of
all records filtered by any combination
of attributes

Beyond indexing: learned algorithms

o Learning the CDF model could speed up
sortfing and joins, not just indexes

GPU/TPU improvements and speedups

Overall Thoughts

Does a great job of putting complex
concepts info simple terms

The mapping between traditional indexes
and learned models is great

Experiments were well thought out and
covered worst cases

Could've talked more on how these new
findings will impact the industry

How can we gef learned indexes info
some sort of commercial system

