The Data Calculator

Jake Bloomfeld

April 25, 2019

Overview

* |. Background

* Il. Problem Statement

* lll. Solution Overview

* V. Inspiration & Contributions

* V. Data Layout Primitives and Structure Specifications
 VI. Data Access Primitives and Cost Synthesis

* VII. What-If Design and Auto-Completion

* VIll. Experimental Analysis

* |IX. Summary

. Background

Data Structure Defined

* A data organization,
management, and storage
format that enables efficient
access and modification

e A collection of data values, the
relationships among them, and
the functions or operations that
can be applied to the data

Types

Types of Data Structure

!

Integer

' J "\
|
' |
Primitive Data Non-Primitive Data
Structure Structure
| VS _ b ,
O T G
Float Character Boolean Linear Data Non-Linear
Structure Data Structure

/ P — ri\
{ ' vy 4 4 }

Arrays Linked List Stack Queue Trees Graphs

Fig. Types of Data Structure

bloow filters: on

Common Examples

keys function buckets
00

. ; 01 | 521-8976

* Relational databases use B-tree fohn Smith 7: 02 [5211234
indexes to retrieve data Lisa Smith ”
. 13

* Compilers use hash tables to sandrabee’ —— _ _ 1941 [5210655
look up identifiers -

* CPUs use queues to serve FIFO

requests or stacks to serve LIFO Stack: Queue:

requests Y

12 4 5 6 I 40 50| 70 80 82 84 86 First in, first out

I+

/

Basically...

DATA STRUCTURES ARE EVERWHERE

this is how any data driven subfield and industry
store and access data

Google ¢
* .

e} :
® o
\G((,:(nyp
Q\ po Daf “A)‘\/{.”
o© a

l. Problem Statement

The Problem: Human-Driven

Design

* Hard to design due to a massive design space and the
dependence of performance on variable workload and

hardware

LET US CALCULATE

WHAT IF WE COULD REASON ABOUT THE

DESIGN SPACE OF DATASTRUCTURES?

Design Questions to Consider

e Data structure for a specific e Data structure for variable
workload: workload:
* Should we strip down an existing * How will performance change?
complex data structure? * Should we redefine our core data
* Should we build off a simpler one? structures?

* Should we design and build a new
one from scratch?

Design Questions to Consider

* We add flash drives with more * We want to improve throughput:
bandwidth and add more system * How beneficial would it be to buy
memory: faster disks? More memory?

* Should we change the layout of * Should we invest the same budget
our B-tree nodes? in redesigning our core data
structure?

* Should we change the size ratio in
our LSM-tree?

Side-Effects of Complexity

* Slow design process
* Increased time to market
* Difficult to predict the

impact of design choices, P«
workloads, etc. E

* Expensive!

Big-O Complexity

tttttt

What's the Perfect Data Structure?

THERE IS NO PERFECT DATA STRUCTURE

~100 new data structures are designed every year due to
continuous hardware and workload changes

An Actual Quote

* “I know from experience that getting a new data structure into
production takes years. Over several years, assumptions made about
the workload and hardware are likely to change, and these changes
threaten to reduce the benefit of a data structure. This risk of change
makes it hard to commit to multi-year development efforts. We need
to reduce the time it takes to get new data structures into
production.” — a sad system architect

Another Actual Quote

* “Another problem is the limited ability we have to iterate. While some
changes only require an online schema change, many require a dump
and reload for a data service that might be running 24x7. The budget
for such changes is limited. We can overcome the limited budget with
tools that help us determine the changes most likely to be useful.
Decisions today are frequently based on expert opinions, and these
experts are in short supply.” — another sad system architect

&/

1l. Solution Overview

Vision Step 1: Design Synthesis from
First Principles

* Nearly all new designs are
about combining a small set (s

e ~N
S @ o =
s % 8 Liwla
S 2 D2 7 % §/F5
o R \2 2 8 g &
_/ ¢ % % '8 & 3 ¥/ c 3
. ; % - %\ 2 1R g/ =5/ 9 N
p— - — “ %' 8.8 22 8§ & . & &
/ N 8 % \3 . 2'\%3'%(2I8¥ F . §F L s
/ \ L ‘Q %G =2 & ¥ 9 & & S 3o
{ ZONE Y 110G % 08552 R 83/ &S qu
{ L7 I TN T - A 2R < A & &
. . MAPS PART.) 6\% %, 20, % % |8 S &I & o
different ways or tUIIIIIgS s ot 0 || T S e
Laai, N % o o
”"‘Y/Oa, ~ ’70,,%(// 2 Qw@dcﬁ"\\ o W
g a“
"\(-'ufs;'on A ‘e{")"u(/,c‘p' A i val
o “If w n describe the set Pty o
Ve E ,/- rr‘!.c,-.',, B val jinks.n X
e ca h A b . e =

[NEXT |\

of the first principles of data \"**4
structure design, then we

will have a structured way to (i)

4 exial
[PREV partitioning. function key_value

\ UNKS) \taintenance YPe (read, bulk load)
aFac”

oroe

[saar) &EE N %, S
<> 3 - =) 6 >
\ VALUES TERED | §§ K g LEE3 9 “3!,’ "”-’% %
® F/ e s 8T 2 %
express all possible designs.” - - S EEIT R AN
= = = (4 ~ <) “
p p g ° :’/ \ @) B 3 e
[HOLDS & T ®

Vision: A Periodic Table

grquz-ﬂ 2 3 13 14 15 16 17 18
v

1 1 2
H He
2 4 5 6l 7| 8 [l 9 (|10
Be BI| C||NJ|l Ofl F|[|Ne
3 12 13 ([14 [[15 ([16 || 17 || 18
Mg Al || Si || P S (| CI || Ar
4 20 || 21 23 311132 || 33 || 34 || 35 || 36
Ca || Sc Vv Ga || Ge || As || Se || Br || Kr
5 38 || 39 41 || 42 47 ([48 || 49 || 50 || 51 || 52 || 53 || 54
Sr || Y Nb || Mo Ag ||Cd || In [| Sn || Sb || Te | I || Xe
6 56 || 57 |* 73 || 74 79 |1 80 (1 81 (|82 [83 (|84 || 85 || 86
Ba || La Ta [| W Au [[Hg|[| TI || Pb || Bi || Po || At || Rn
7 88 || 89 | *[104[105 1T11(1112(|1113 ([114([115[[116[[117|[118
Ra || Ac |* Db Cn ||Nh || FI ||Mc|| Lv || Ts || Og

* 67 || 68 || 69 || 70 || 71

Ho || Er [[Tm]| Yb [| Lu

X 99 [|1100(|101((102|[103

Es || Fm ||Md || No || Lr

Vision: Periodic Table of Data

Structures

* Express massive design space

* Present a set of first principles
that can synthesize orders of
magnitude more data structure

designs than what has been
published

* Same concept of Periodic Table
of Elements

Read Optimized

Hash

oint &Tre
indexes

B-Tree Trie
Skiplist

Cracking
Adaptive structures

PDT Merging Sparse Index

LSM -
Bloom filter
Differential 27 0 Ajppéroximat

structures MaSM Bitmap indexes

Write Optimized Space Optimized

Fionra 1+ Farh dAacion eamnramicac hatuaan

Vision Step 2: Cost Synthesis from
Learned Models

* Accelerate and automate design and
testing process LOW COST

e Can we accelerate this process to quickly
test alternative designs (or combos of
hardware, data, queries, etc.) in the
order of seconds?

* Enable new kinds of adaptive systems
that can decide core parts of their design
and the right hardware

HIGH PERFORMANCE

Overall Architecture

_ Structure Layout Spec. Sec2: Data Layout Primitives ' Sec3: Data Access Primitives Cost Synthesis with Learnegqtlzﬂal?ts%I:an (Secd: What-if Design - Latency
- Data & Query Workload /& Bloom Filter o | Serial Scan (mw (Machine Learning k | | - Full Design: Layout
- Hardware Profile " o ! ! ccess (AST)
r ------ S s -
| g | | s R .
R ' |
'What If) ' (
) e ’I’ l ’
C r-——————————— ’
S 277 | .
.§ L/ CE- FE TR ’
' ' o M
= :Auto- \\
O : ! l 1S, "
2 {completion | N
D / « completion,-”
D N34 F S s . Ol B 22 T o T
Q! oA - R
'Locate ,
' i /| B+Tree = : L “ | Y
BadDesion | hem 218300 P boa Desan’
: ® 0\ Get Range BulkLoad ange Bukload) I - Bad Design -

A Concept: The

* Computes the performance of

primitives
]
[
\

arbitrary data structure designs N key

as combinations of fundamental

design primitives

e |f we can describe the set of the
first principles of data structure

design, then we will have a
structured way to express all

possible designs as combinations

of these principles

Random
Access

. Binary
Search

data access
primitives

partitioning

Data Calculator

data layout —————____

design primitive

s . .
combinations

Key order /

Fanout

o priMitiyq
2- Data "o
o Structures

Zone-map
filters

Immediate
node links

Serial
Scan

The Data Calculator

* Able to answer what-if data structure design questions
to understand how the introduction of new design
choices, workloads, and hardware affect the
performance of an existing design

e Supports read queries for basic hardware conscious
layouts

/O

* Input: allows users to input a high-level specification of the layout of a data
structure (combination of primitives), along with workload and hardware
specification

e Qutput: a calculation of the latency to run the input workload on the input
hardware

layout
fsign

Data o
X complete design
CaICLfléa%E\ r Hﬂw_\m % | a comput%I pter?orm?ance

workload

V. Inspiration &
Contributions

Inspiration

* Can be seen as a step toward the
Automatic Programmer challenge set by
Jim Gray in his Turing award lecture

* A step toward the “calculus of data
structures” challenge set by Turing
award winner Robert Tarjan

* “What makes one data structure better
than another for a certain application?
The known results cry out for an
underlying theory to explain them.”

Conftributions

* Introduce a set of data layouts design primitives that capture the first
principles of data layouts, including hardware conscious designs

* Show how combinations of the design primitives can describe typical data
structures

* Show that design primitives form a massive space of possible designs that
has been minimally explored

* Show how to synthesize the latency cost of basic operations of arbitrary
data structure designs from a small set of access primitives

Conftributions

* Show how to use cost synthesis to answer what-if design questions

* Introduce a design synthesis algorithm that completes partial layout
specifications given a workload and hardware input

 Demonstrate that the Data Calculator can accurately compute the
performance impact of design choices for state-of-the-art designs and

diverse hardware

* Demonstrate that the Data Calculator can accelerate the design process
by answering complex questions in seconds or minutes

V. Data Layout Primitives
and Structure Specifications

Data Layout Primitives

* The Data Calculator contains a small set of design
primitives that represent fundamental design choices
when constructing a data structure layout

* Each belongs to a higher class:
* Node data organization
* Partitioning
* Node physical placement
* Node metadata management

From Layout Primifives to Data Structures

o An element iS a fu” Data layout primitives

L L L [] 4/ <\ g - <
specification of a single data S S I
. 1 : O’% % @, gi -] 3? Q(JU g &
structure node; it defines the A S I e
%6\ Oc:f 2N\ % % = g & é? 4 c;\\o 3
data and access methods o % 083588558 S
4 R AT & o
’ 0o, % %%, '3 QS &
used to access the node’s g, 1 e S
data P g g2 s
o ‘apa()\
Daffifioﬂing.ry::d e;\ema] \mksﬂen
¢ An e ement may be Dartrtloniﬂg.functio;p8 ?xternallhnks_prev
o . V) o . V2 d (Mam\el‘ance‘\ anoUtﬁxedVal
terminal” or “non-terminal”, galse oy e
. . Q- 10,
which means it may be T e M
00 R\ QI S 4’/@ o
H . N @S e % e %, oy
describing a node that o MR A NS
ey ¥/ 8 52% %% %,
further partitions data to S FEEFELLRE Y
S8 £ <9 '3 = 22
more nodes or not GG S, oy
< g @ =

Size of Design Space

* Data Layout Primitive: A
primitive p; belongs to a domain
of values P; and describes a
layout aspect of a data structure
node

e Data Structure Element: A data
structure element E is defined as
a set of data layout primitives: E
={p; ... pp} € P;x ... X P, that
uniquely identify it

Size of Design Space

e Given a set of Inv(P) invalid
combinations, the set of all
possible elements that can be
designed as distinct
combinations of data layout
primitives has the following
cardinality:

1E] = P X ... X Py — [nv(P) =]_[1P;| — Inv(P)
VP;€E

VI. Data Access Primitives
and Cost Synthesis

SO0, what's the damageze

* Traditional cost analysis in systems
and data structures happen through
experiments and analytical cost
models — not scalable

* Intuition: synthesize complex
: : 5483
operations from their fundamental %
components, and develop a hybrid
way to assign costs to each
individual component

Cost Synthesis

* For each operation in a
workload, the data calculator
synthesizes the exact algorithm
and its cost for the target I
hardware D """"

RULES

If ..., then ..., else

decide access pattern
based on the data block’s
physical organization

* Based on the specification of the
layout of each data structure
node in the path of an
operation, it decides the best
access pattern; based on the
learned models, it knows the
expected cost

Learned Cost Models

e The data calculator
contains a library of

learned models that - VINIMAL €OBE 2.BENCHMARK 3. FIT MODEL
describe fundamental }({[]” %O e f [
dCCESS patterns in :nid:(lg: -= (lr:::jile::gh)/z; Run ga_ | Train » | ‘:\ﬂea‘wc’de\
blocks of data. A~ b, R
BNEERR0E owasweee | (@) =az+blogztoc

e Captures algorithmic,
engineering, and
hardware properties

Example: Binary Search Model

* We know that the performance is related to the size of the array by
a logarithmic component

 Relationship for small array sizes (< 8 elements) might not exactly
fit a logarithmic function, so add a linear term to capture some
small linear dependency on the data size

* Cost of binary searching an array of n elements can be aprox. as:

f(n) = cin + czlogn + yo where cq, ¢z, and yg
are coefficients learned through linear regression

Example: Binary Search Model

* The values of these coefficients help us
translate the abstract model into a
predictive model, which has taken into
account factors such as CPU speed and
the cost of memory accesses across the
sorted array for the specific hardware

* The Data Calculator can then use this
learned model to query for the
performance of binary search within
the trained range of data sizes

VIl. What-It Designh and
Auto-Completion

Benefits of What-If

* Improves the productivity of engineers
by quickly iterating over designs and
scenarios before committing to an
implementation

* Accelerates research by allowing
researchers to easily and quickly test
completely new ideas

* Develops educational tools that allow
for rapid testing of concepts

* Develops algorithms for online auto-
tuning and online adaptive systems
that transition between designs

WHAT-IF DESIGN

What-If Design

* One can form design questions by varying any one of the input
parameters of the Data Calculator
e Data structure (layout) specification
* Hardware profile
 Workload (data and queries)

What-if we add bloom filters . ‘;’ f;_i

in the hash-table buckets? | \
What-if the workload ‘b
changes to 90% writes? ‘t ""
el

What-if we buy faster CPU X? - M

Auto-Completion

e Can complete partial layout specifications
and a hardware profile, given a workload

* Input is a partial layout specification, data,
qgueries, hardware, and the set of the design
space that should be considered as part of
the solution

e Data Calculator computes the rest of the
missing subtree of the hierarchy of elements

* Algorithm considers a new element as
candidate for one of the nodes of the
missing subtree and computes the cost

AUTO-DESIGN

VIll. Experimental Analysis

Experiment 1. Accurate Cost Synthesis

* Tests the ability to accurately cost
arbitrary data structure
specifications across different
machines

 Compares the cost generated
automatically by the Data
Calculator with the cost by testing a
full implementation of that data
structure

Experiment Setup

» Tested the following structures: ¢ Tested algorithms on each:

* Array * Get

e Sorted array * Range Get

* Linked-list e Bulk Load

 Partitioned linked-list e Update

' ik,'p'l'St * Data workload of 100,000
e Trie

uniformly distributed
integers with a sequence of
100 Get requests

* Incrementally insert more,
and repeat query workload

 Hash-table
e B+ tree

Overview of Experiment Results

LINKEDLIST

1.5e-02-
1.0e-02-

hatta)

5.0e-03-

Latency (sec.)

0.0e+00-g-00H ?

1.5e-02-
1.0e-02-
5.0e-03-

Latency (sec.)

0.0e+00-5-bgeA [
3.0e-02-

2.0e-02-

1.0e-02-

Latency (sec.)

0.0e+00-5-BgE B°
3.0e-02-

2.0e-02-

1.0e-02-

Latency (sec.)

0.0e+00-5- b
2.0e-01-

1.5e-01-
1.0e-01-
5.0e-02-
0.0e+00-§-B-,

1
=]
é}.
o
=5
g!?’
g

Latency (sec.)

g

10° 10%% 10° 10%5 107

ARRAY

1.5e-02-
1.0e-02-
5.0e-03-

0.0e+00-8-00F
1.0e-02-

1.0e-02-
5.0e-03-

0.0e+00-8-BOH
2.0e-02-
1.5e-02-
1.0e-02-
5.0e-03-
0.0e+00-0-80

2.0e-02-
1.5e-02-
1.0e-02-
5.0e-03-
0.0e+00-0-00M

1.5e-01-
1.0e-01-
5.0e-02-

0.0e+00-8-8

10° 10°° 10° 10°% 107

g§

]

D*

Q@

a

o

RANGE-PARTIT.

 SBED 185T SKIP-LIST TRIE B+TREE SORTED-ARRAY HASH-TABLE
g 80 149 8.0e-07- 9 o] b.bdadgh
1.5e-04- ol 4-0e-06- Déﬂw 15e-06-7 D50 GEEETT g0 g7- " e (P48, o BEd SontF%? yu
3.0e-06- o7 o - - o ' - .
1.0e-04- 0 5 0o 06- pod #ab 1.0e-06- 6.0e—07- PO B 4.0e_07-5 0B 6 point gets
B 14 O Data Calculator g ' 2.0e-07- CPU: 64x2.3GHz
9.0e-05- 1.0e-06- 5.0e-07- .~ 3.0e-07- 2.0e-07- L3: 46MB
UEP @ Implementation RAM: 256GB
0.0e+00-8-POF T L | | 006400ttt 0.0€400 it 0.08400~—t—t—f—f——t—t— 0.084+00~————————1 0.08400~}————t————|
g 5-0e-06- o T e &) L Jol 8.0e-07- |11 | oohdde
1.5e-04- 4.0e-06- gy 1.5e-06-0- D& L L 9.0e-07- Ao 6.0e-07 EF*:“:’8 4.0e_o7-0 BEH oEAeH S HW2
°1 3.0e-06- Lo T &8 0e-07- Gof : A
1.0e-04- g% P 1.0e-06- 6.0e-07--— B9 40e07-0 B0 point gets
& 2.0e-06g =1==8 g : 2 0e—_07- CPU: 4x2.3GHz
5.0e-05- ngts 1.0e—06- 5.0e-07- 3.0e-07- 2 0e-07- L3: 46MB
o RAM: 16GB
0.06-(-00"0 uiﬂ 1 1 1 O%m_l 1 1 1 1 o'oem_l 1 1 1 1 ooe+oo-l 1 1 1 1 0'Oe".oo_l 1 1 1 1 0'oe+00_l 1 1 1 1
3.0e-04- o) B 1.5e-06- 1 Jot 1.0e-06- # 1.0e-06- 4o o
57 4.0e_06- n;;mgtl 20e-06- o DE:E ponfs - gmoo 7 507 anrﬁpa 75¢_07-g OO Senof HN.3
2.0e-04- ol o0 A e 1.0e-06- B OE 08 : a ’ point gets
& | 20e-06-5 8% i 1.0e-06- i 5.0e-07-8-F e L CPU: 64x2GHZ
1.0e-04- d : 5.0e-07- 2 56_07- 2 5e-07- L3: 1lohs
E -
0.0e+00-§-BIE =L 006400+ 0.0e400~| |+ 006400+t 0.08+00~| |+ 0.0e400~|—+—
3.0e-04- o o A 1.5e-06- Lot 1.0e-06- BB 1.0e—06- Ll Lob
a| 4.0e-06- n~>‘“ﬂﬁ 2.0e-06-7-2FH gen) 8000 45 o gaﬁadﬂ 75e—07-8 Beed Lepafim HW3
2.0e-04- 1° 4o 1.0e-06- g afH 5.00_07- B ' updates
o - oy
1 0e_04- B 20069 g 1.0e-06- 5.00_07-0 © >00-07 CPU: 64x2GHz
i : 25¢-07- 2 5e-07- L3: 16HB
g% AM: 1
o'oe+oo_? DF 1 1 1 O.W‘FW_I 1 1 1 1 o'oem_l 1 1 1 1 00e+oo-l 1 1 1 1 O'Oe+oo_l 1 1 1 1 0'oe“—O()_l 1 1 1 1
- o . . . 4 2.0e-01- o
6.0e-02 g 4.0e-02- , §- 6.0e-02- § 5.0e-02 3 & w3
£ 9.0e-01- © (. 4.0e-02- ‘ﬁ 15e_01- gl
4.0e—02- 3.0e-02- &' 4.0e-02- - ¢ g
5 0002 {7 6.0e-01- i 3.0e-02 & oeor- & range gets
2.0e-02- b1 N B 8 D 2.0e-02- & gF - CPU: 64x2GHz
I 1.0e-02- .- 3.0e-01- o B ' 1.0e-02- . B 9.0e-02- : B L Toms
0.0e+00-8- 8- 1 0.0e400-8- B | 0.0e+00-8 B - 0.0e+00-§-8-—+9 1 00es00-0- 8| 00e+00-3-B :

10° 1055 10° 10°5 107

10° 10°% 10° 10%° 107 105 1055 108 1o65 107
Number of entries (log scale)

10° 10%% 10° 10%5 107

10° 10°° 10° 10%° 107

10° 1055 106 1055 107

Figure 6: The Data Calculator can accurately compute the latency of arbitrary data structure designs across a diverse set of
hardware and for diverse dictionary operations.

Experiment Results for Hardware 1

RANGE-PARTIT.
LINKEDLIST ARRAY L BEETh 1 SKIP-LIST
g 1.5e-02- B g O
S 1.5e-02- 1.5e-04- 4.0e-06- 1o B0
% B 1.0e-02- 8 B 3.0e-06- o
= 1.0e-02- 1.0e-04- = &80
g 5 | 5.0e-03- o g 20e-06 BEH
) -03- : _ =
$ 5.0e-03 Dga p° 5.0e—05 Epg 2 O 0~
- m O op @ nom 7
0.0e+00-g-00OCH T | L | | 00e+00-0-BOF = | L | 00e+00-8-ROF T | | 00e+00- |t
TRIE B+TREE SORTED-ARRAY HASH-TABLE
15e-06-T : 9.0e-07 - e aL ¢ oo HW1
T Ped T : 4 THET 6.0e-07- oo 4.0e-07-F ot o _
1.0e-06- 6.0e-07 - —2A& Qi 40e07-g 08T point gets
O Data Calculator P ' 2 0e-07- CPU: 64x2.3GHz
2.0e-07- o Implementation 3.0e-07- 2 0e-07- L3: 46MB
) RAM: 256GB
0.0e+00 - 0.0e+00-, 0.0e+00- 0.0e+00-

Experiment 2: Training Access Primitives

— 60~ . Data Calculator
o Implementation G 100-
& o E * Data Calculator can
S E accurately synthesize
20- (@) .
3 < 2. l the bulk loading costs
= o
" o .@ " T 4 o for all data structures
N4 \ N \s NS Q> . .
< &8 Q,Q‘”,&v@ & 5 (b) Hardware * The time needed to train
(O\J? ,&& @O\%_Q/Q?E‘O\z\ \\3{.‘ ” . e, ®
FEE O all primitives on a
(a) Data Structure diverse set of machines

Figure 7: Computing Bulk-loading cost (left) and Training L .
cost across diverse hardware (right). IS Inexpensive

Experiment 3: Cache-Friendly Designs

CSB+Tree Hw1 HW2 HW3

5 0.8-

§ O Data Calculator © Implementation

O 06- & R ofERED
g Sl oo Egj@}ﬂ ST O

E 04-gapom hog-¢ ST

3 00-7 il

Q p2-

2

S 00- .

Figure 8: Accurately computing the latency of cache con-
scious designs in diverse hardware and workloads.

! o 1 U o ! 11 o 1 -
10°10°°10°10%°1010° 10> 10° 10%° 10"10° 10> 10° 10°° 10’

Data Calculator
accurately predicts the
performance behavior
across a diverse set of
machines, capturing
caching effects of
growing data sizes and
design patterns where
the relative position of
nodes affects tree
traversal costs

Experiment 4: Rich Design Questions

B-Tree design, 1M inserts and 100 point gets, H/W 1

User asks: “What if we change to H/W 3?”
Data Calculator takes 20 seconds to compute that performance will
decrease

User asks: “Would it be beneficial to add a bloom filter in all B-tree
leaves?”

Data Calculator takes 20 seconds to compute that the performance
will increase

[X. Summary

Data

Takeaways Calculater

* Data Calculator allows researchers and engineers to interactively and
semi-automatically navigate complex design decisions when designing
or re-designing data structures, considering new workloads, and
hardware

* Broke down and clearly explained each aspect of overall architecture
* Provided great visualizations and diagrams to get a clear picture

* Great paper to conclude this class; touches on many topics we’ve
studied throughout semester

Improvements & Future Work

* Vague on how data structures were implemented when
comparing to Data Calculator

* Should talk about how this can be commercialized

* Maybe add a case study where a software company uses Data
Calculator, and give real-world results and benefits

* Translate performance savings into monetary savings
* The full Periodic Table of Data Structures

Final Remarks

Did you know?

THERE ARE MORE POSSIBLE DATA STRUCTURES THAN STARS IN THE SKY

IS THIS GOING TO REPLACE ENGINEERS?

did the arithmetic calculator replace mathematicians?

References

e S. ldreos, K. Zoumpatianos, B. Hentschel, M. S. Kester, and D.
Guo, “The Data Calculator: Data Structure Design and Cost Synthesis
From First Principles, and Learned Cost Models,” in ACM SIGMOD

International Conference on Management of Data.

 http://daslab.seas.harvard.edu/datacalculator/

https://stratos.seas.harvard.edu/files/stratos/files/datacalculator.pdf
http://daslab.seas.harvard.edu/datacalculator/

