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I. Background



Data Structure Defined
• A data organization, 

management, and storage 
format that enables efficient 
access and modification
• A collection of data values, the 

relationships among them, and 
the functions or operations that 
can be applied to the data



Types



Common Examples
• Relational databases use B-tree 

indexes to retrieve data
• Compilers use hash tables to 

look up identifiers
• CPUs use queues to serve FIFO 

requests or stacks to serve LIFO 
requests



Basically…



II. Problem Statement



The Problem: Human-Driven Design
• Hard to design due to a massive design space and the 

dependence of performance on variable workload and 
hardware



Design Questions to Consider
• Data structure for a specific 

workload:
• Should we strip down an existing 

complex data structure?
• Should we build off a simpler one?
• Should we design and build a new 

one from scratch?

• Data structure for variable 
workload:
• How will performance change?
• Should we redefine our core data 

structures?



Design Questions to Consider 
• We add flash drives with more 

bandwidth and add more system 
memory:
• Should we change the layout of 

our B-tree nodes?
• Should we change the size ratio in 

our LSM-tree?

• We want to improve throughput:
• How beneficial would it be to buy 

faster disks? More memory?
• Should we invest the same budget 

in redesigning our core data 
structure?



Side-Effects of Complexity
• Slow design process
• Increased time to market
• Difficult to predict the 

impact of design choices, 
workloads, etc.
• Expensive!



What’s the Perfect Data Structure?



An Actual Quote
• “I know from experience that getting a new data structure into 

production takes years. Over several years, assumptions made about 
the workload and hardware are likely to change, and these changes 
threaten to reduce the benefit of a data structure. This risk of change 
makes it hard to commit to multi-year development efforts. We need 
to reduce the time it takes to get new data structures into 
production.” – a sad system architect



Another Actual Quote
• “Another problem is the limited ability we have to iterate. While some 

changes only require an online schema change, many require a dump 
and reload for a data service that might be running 24x7. The budget 
for such changes is limited. We can overcome the limited budget with 
tools that help us determine the changes most likely to be useful. 
Decisions today are frequently based on expert opinions, and these 
experts are in short supply.” – another sad system architect



III. Solution Overview



Vision Step 1: Design Synthesis from 
First Principles
• Nearly all new designs are 

about combining a small set 
of fundamental concepts in 
different ways or tunings
• “If we can describe the set 

of the first principles of data 
structure design, then we 
will have a structured way to 
express all possible designs.”



Vision: A Periodic Table



Vision: Periodic Table of Data 
Structures
• Express massive design space
• Present a set of first principles 

that can synthesize orders of 
magnitude more data structure 
designs than what has been 
published
• Same concept of Periodic Table 

of Elements



Vision Step 2: Cost Synthesis from 
Learned Models
• Accelerate and automate design and 

testing process
• Can we accelerate this process to quickly 

test alternative designs (or combos of 
hardware, data, queries, etc.) in the 
order of seconds?
• Enable new kinds of adaptive systems 

that can decide core parts of their design 
and the right hardware



Overall Architecture



A Concept: The Data Calculator
• Computes the performance of 

arbitrary data structure designs 
as combinations of fundamental 
design primitives
• If we can describe the set of the 

first principles of data structure 
design, then we will have a 
structured way to express all 
possible designs as combinations 
of these principles



The Data Calculator
• Able to answer what-if data structure design questions 

to understand how the introduction of new design 
choices, workloads, and hardware affect the 
performance of an existing design
• Supports read queries for basic hardware conscious 

layouts



I/O
• Input: allows users to input a high-level specification of the layout of a data 

structure (combination of primitives), along with workload and hardware 
specification
• Output: a calculation of the latency to run the input workload on the input 

hardware



IV. Inspiration & 
Contributions



Inspiration
• Can be seen as a step toward the 

Automatic Programmer challenge set by 
Jim Gray in his Turing award lecture
• A step toward the “calculus of data 

structures” challenge set by Turing 
award winner Robert Tarjan
• “What makes one data structure better 

than another for a certain application? 
The known results cry out for an 
underlying theory to explain them.”



Contributions
• Introduce a set of data layouts design primitives that capture the first 

principles of data layouts, including hardware conscious designs 
• Show how combinations of the design primitives can describe typical data 

structures 
• Show that design primitives form a massive space of possible designs that 

has been minimally explored
• Show how to synthesize the latency cost of basic operations of arbitrary 

data structure designs from a small set of access primitives



Contributions
• Show how to use cost synthesis to answer what-if design questions
• Introduce a design synthesis algorithm that completes partial layout 

specifications given a workload and hardware input
• Demonstrate that the Data Calculator can accurately compute the 

performance impact of design choices for state-of-the-art designs and 
diverse hardware
• Demonstrate that the Data Calculator can accelerate the design process 

by answering complex questions in seconds or minutes



V. Data Layout Primitives 
and Structure Specifications



Data Layout Primitives
• The Data Calculator contains a small set of design 

primitives that represent fundamental design choices 
when constructing a data structure layout   
• Each belongs to a higher class:
• Node data organization 
• Partitioning
• Node physical placement
• Node metadata management        



From Layout Primitives to Data Structures

• An element is a full 
specification of a single data 
structure node; it defines the 
data and access methods 
used to access the node’s 
data
• An element may be 

“terminal” or “non-terminal”, 
which means it may be 
describing a node that 
further partitions data to 
more nodes or not



Size of Design Space

• Data Layout Primitive: A 
primitive pi belongs to a domain 
of values Pi and describes a 
layout aspect of a data structure 
node
• Data Structure Element: A data 

structure element E is defined as 
a set of data layout primitives: E
= {p1, … pn} ∈ Pi x … x Pn that 
uniquely identify it



Size of Design Space

• Given a set of Inv(P) invalid 
combinations, the set of all 
possible elements that can be 
designed as distinct 
combinations of data layout 
primitives has the following 
cardinality:



VI. Data Access Primitives 
and Cost Synthesis



So, what’s the damage?
• Traditional cost analysis in systems 

and data structures happen through 
experiments and analytical cost 
models – not scalable
• Intuition: synthesize complex 

operations from their fundamental 
components, and develop a hybrid 
way to assign costs to each 
individual component



Cost Synthesis
• For each operation in a 

workload, the data calculator 
synthesizes the exact algorithm 
and its cost for the target 
hardware 
• Based on the specification of the 

layout of each data structure 
node in the path of an 
operation, it decides the best 
access pattern; based on the 
learned models, it knows the 
expected cost



Learned Cost Models

• The data calculator 
contains a library of 
learned models that 
describe fundamental 
access patterns in 
blocks of data. 
• Captures algorithmic, 

engineering, and 
hardware properties



Example: Binary Search Model

• We know that the performance is related to the size of the array by 
a logarithmic component
• Relationship for small array sizes (< 8 elements) might not exactly 

fit a logarithmic function, so add a linear term to capture some 
small linear dependency on the data size
• Cost of binary searching an array of n elements can be aprox. as:

are coefficients learned through linear regression



Example: Binary Search Model

• The values of these coefficients help us 
translate the abstract model into a 
predictive model, which has taken into 
account factors such as CPU speed and 
the cost of memory accesses across the 
sorted array for the specific hardware
• The Data Calculator can then use this 

learned model to query for the 
performance of binary search within 
the trained range of data sizes



VII. What-If Design and 
Auto-Completion



Benefits of What-If
• Improves the productivity of engineers 

by quickly iterating over designs and 
scenarios before committing to an 
implementation
• Accelerates research by allowing 

researchers to easily and quickly test 
completely new ideas
• Develops educational tools that allow 

for rapid testing of concepts
• Develops algorithms for online auto-

tuning and online adaptive systems 
that transition between designs



What-If Design
• One can form design questions by varying any one of the input 

parameters of the Data Calculator
• Data structure (layout) specification
• Hardware profile
• Workload (data and queries)



Auto-Completion
• Can complete partial layout specifications 

and a hardware profile, given a workload
• Input is a partial layout specification, data, 

queries, hardware, and the set of the design 
space that should be considered as part of 
the solution
• Data Calculator computes the rest of the 

missing subtree of the hierarchy of elements
• Algorithm considers a new element as 

candidate for one of the nodes of the 
missing subtree and computes the cost



VIII. Experimental Analysis



Experiment 1: Accurate Cost Synthesis
• Tests the ability to accurately cost 

arbitrary data structure 
specifications across different 
machines
• Compares the cost generated 

automatically by the Data 
Calculator with the cost by testing a 
full implementation of that data 
structure



Experiment Setup

• Data workload of 100,000 
uniformly distributed 
integers with a sequence of 
100 Get requests
• Incrementally insert more, 

and repeat query workload

• Tested algorithms on each:
• Get
• Range Get
• Bulk Load
• Update

• Tested the following structures:
• Array
• Sorted array
• Linked-list
• Partitioned linked-list
• Skip-list
• Trie
• Hash-table
• B+ tree



Overview of Experiment Results



Experiment Results for Hardware 1



Experiment 2: Training Access Primitives

• Data Calculator can 
accurately synthesize 
the bulk loading costs 
for all data structures

• The time needed to train 
all primitives on a 
diverse set of machines 
is inexpensive



Experiment 3: Cache-Friendly Designs

• Data Calculator 
accurately predicts the 
performance behavior 
across a diverse set of 
machines, capturing 
caching effects of 
growing data sizes and 
design patterns where 
the relative position of 
nodes affects tree 
traversal costs



Experiment 4: Rich Design Questions
• B-Tree design, 1M inserts and 100 point gets, H/W 1

• User asks: “What if we change to H/W 3?” 
• Data Calculator takes 20 seconds to compute that performance will 

decrease

• User asks: “Would it be beneficial to add a bloom filter in all B-tree 
leaves?”

• Data Calculator takes 20 seconds to compute that the performance 
will increase



IX. Summary



Takeaways
• Data Calculator allows researchers and engineers to interactively and 

semi-automatically navigate complex design decisions when designing 
or re-designing data structures, considering new workloads, and 
hardware
• Broke down and clearly explained each aspect of overall architecture
• Provided great visualizations and diagrams to get a clear picture
• Great paper to conclude this class; touches on many topics we’ve 

studied throughout semester



Improvements & Future Work
• Vague on how data structures were implemented when 

comparing to Data Calculator
• Should talk about how this can be commercialized 
• Maybe add a case study where a software company uses Data 

Calculator, and give real-world results and benefits
• Translate performance savings into monetary savings
• The full Periodic Table of Data Structures



Final Remarks



THANK YOU!
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