
Jake Bloomfeld

April 25, 2019

The Data Calculator

Overview
• I. Background
• II. Problem Statement
• III. Solution Overview
• IV. Inspiration & Contributions
• V. Data Layout Primitives and Structure Specifications
• VI. Data Access Primitives and Cost Synthesis
• VII. What-If Design and Auto-Completion
• VIII. Experimental Analysis
• IX. Summary

I. Background

Data Structure Defined
• A data organization,

management, and storage
format that enables efficient
access and modification
• A collection of data values, the

relationships among them, and
the functions or operations that
can be applied to the data

Types

Common Examples
• Relational databases use B-tree

indexes to retrieve data
• Compilers use hash tables to

look up identifiers
• CPUs use queues to serve FIFO

requests or stacks to serve LIFO
requests

Basically…

II. Problem Statement

The Problem: Human-Driven Design
• Hard to design due to a massive design space and the

dependence of performance on variable workload and
hardware

Design Questions to Consider
• Data structure for a specific

workload:
• Should we strip down an existing

complex data structure?
• Should we build off a simpler one?
• Should we design and build a new

one from scratch?

• Data structure for variable
workload:
• How will performance change?
• Should we redefine our core data

structures?

Design Questions to Consider
• We add flash drives with more

bandwidth and add more system
memory:
• Should we change the layout of

our B-tree nodes?
• Should we change the size ratio in

our LSM-tree?

• We want to improve throughput:
• How beneficial would it be to buy

faster disks? More memory?
• Should we invest the same budget

in redesigning our core data
structure?

Side-Effects of Complexity
• Slow design process
• Increased time to market
• Difficult to predict the

impact of design choices,
workloads, etc.
• Expensive!

What’s the Perfect Data Structure?

An Actual Quote
• “I know from experience that getting a new data structure into

production takes years. Over several years, assumptions made about
the workload and hardware are likely to change, and these changes
threaten to reduce the benefit of a data structure. This risk of change
makes it hard to commit to multi-year development efforts. We need
to reduce the time it takes to get new data structures into
production.” – a sad system architect

Another Actual Quote
• “Another problem is the limited ability we have to iterate. While some

changes only require an online schema change, many require a dump
and reload for a data service that might be running 24x7. The budget
for such changes is limited. We can overcome the limited budget with
tools that help us determine the changes most likely to be useful.
Decisions today are frequently based on expert opinions, and these
experts are in short supply.” – another sad system architect

III. Solution Overview

Vision Step 1: Design Synthesis from
First Principles
• Nearly all new designs are

about combining a small set
of fundamental concepts in
different ways or tunings
• “If we can describe the set

of the first principles of data
structure design, then we
will have a structured way to
express all possible designs.”

Vision: A Periodic Table

Vision: Periodic Table of Data
Structures
• Express massive design space
• Present a set of first principles

that can synthesize orders of
magnitude more data structure
designs than what has been
published
• Same concept of Periodic Table

of Elements

Vision Step 2: Cost Synthesis from
Learned Models
• Accelerate and automate design and

testing process
• Can we accelerate this process to quickly

test alternative designs (or combos of
hardware, data, queries, etc.) in the
order of seconds?
• Enable new kinds of adaptive systems

that can decide core parts of their design
and the right hardware

Overall Architecture

A Concept: The Data Calculator
• Computes the performance of

arbitrary data structure designs
as combinations of fundamental
design primitives
• If we can describe the set of the

first principles of data structure
design, then we will have a
structured way to express all
possible designs as combinations
of these principles

The Data Calculator
• Able to answer what-if data structure design questions

to understand how the introduction of new design
choices, workloads, and hardware affect the
performance of an existing design
• Supports read queries for basic hardware conscious

layouts

I/O
• Input: allows users to input a high-level specification of the layout of a data

structure (combination of primitives), along with workload and hardware
specification
• Output: a calculation of the latency to run the input workload on the input

hardware

IV. Inspiration &
Contributions

Inspiration
• Can be seen as a step toward the

Automatic Programmer challenge set by
Jim Gray in his Turing award lecture
• A step toward the “calculus of data

structures” challenge set by Turing
award winner Robert Tarjan
• “What makes one data structure better

than another for a certain application?
The known results cry out for an
underlying theory to explain them.”

Contributions
• Introduce a set of data layouts design primitives that capture the first

principles of data layouts, including hardware conscious designs
• Show how combinations of the design primitives can describe typical data

structures
• Show that design primitives form a massive space of possible designs that

has been minimally explored
• Show how to synthesize the latency cost of basic operations of arbitrary

data structure designs from a small set of access primitives

Contributions
• Show how to use cost synthesis to answer what-if design questions
• Introduce a design synthesis algorithm that completes partial layout

specifications given a workload and hardware input
• Demonstrate that the Data Calculator can accurately compute the

performance impact of design choices for state-of-the-art designs and
diverse hardware
• Demonstrate that the Data Calculator can accelerate the design process

by answering complex questions in seconds or minutes

V. Data Layout Primitives
and Structure Specifications

Data Layout Primitives
• The Data Calculator contains a small set of design

primitives that represent fundamental design choices
when constructing a data structure layout
• Each belongs to a higher class:
• Node data organization
• Partitioning
• Node physical placement
• Node metadata management

From Layout Primitives to Data Structures

• An element is a full
specification of a single data
structure node; it defines the
data and access methods
used to access the node’s
data
• An element may be

“terminal” or “non-terminal”,
which means it may be
describing a node that
further partitions data to
more nodes or not

Size of Design Space

• Data Layout Primitive: A
primitive pi belongs to a domain
of values Pi and describes a
layout aspect of a data structure
node
• Data Structure Element: A data

structure element E is defined as
a set of data layout primitives: E
= {p1, … pn} ∈ Pi x … x Pn that
uniquely identify it

Size of Design Space

• Given a set of Inv(P) invalid
combinations, the set of all
possible elements that can be
designed as distinct
combinations of data layout
primitives has the following
cardinality:

VI. Data Access Primitives
and Cost Synthesis

So, what’s the damage?
• Traditional cost analysis in systems

and data structures happen through
experiments and analytical cost
models – not scalable
• Intuition: synthesize complex

operations from their fundamental
components, and develop a hybrid
way to assign costs to each
individual component

Cost Synthesis
• For each operation in a

workload, the data calculator
synthesizes the exact algorithm
and its cost for the target
hardware
• Based on the specification of the

layout of each data structure
node in the path of an
operation, it decides the best
access pattern; based on the
learned models, it knows the
expected cost

Learned Cost Models

• The data calculator
contains a library of
learned models that
describe fundamental
access patterns in
blocks of data.
• Captures algorithmic,

engineering, and
hardware properties

Example: Binary Search Model

• We know that the performance is related to the size of the array by
a logarithmic component
• Relationship for small array sizes (< 8 elements) might not exactly

fit a logarithmic function, so add a linear term to capture some
small linear dependency on the data size
• Cost of binary searching an array of n elements can be aprox. as:

are coefficients learned through linear regression

Example: Binary Search Model

• The values of these coefficients help us
translate the abstract model into a
predictive model, which has taken into
account factors such as CPU speed and
the cost of memory accesses across the
sorted array for the specific hardware
• The Data Calculator can then use this

learned model to query for the
performance of binary search within
the trained range of data sizes

VII. What-If Design and
Auto-Completion

Benefits of What-If
• Improves the productivity of engineers

by quickly iterating over designs and
scenarios before committing to an
implementation
• Accelerates research by allowing

researchers to easily and quickly test
completely new ideas
• Develops educational tools that allow

for rapid testing of concepts
• Develops algorithms for online auto-

tuning and online adaptive systems
that transition between designs

What-If Design
• One can form design questions by varying any one of the input

parameters of the Data Calculator
• Data structure (layout) specification
• Hardware profile
• Workload (data and queries)

Auto-Completion
• Can complete partial layout specifications

and a hardware profile, given a workload
• Input is a partial layout specification, data,

queries, hardware, and the set of the design
space that should be considered as part of
the solution
• Data Calculator computes the rest of the

missing subtree of the hierarchy of elements
• Algorithm considers a new element as

candidate for one of the nodes of the
missing subtree and computes the cost

VIII. Experimental Analysis

Experiment 1: Accurate Cost Synthesis
• Tests the ability to accurately cost

arbitrary data structure
specifications across different
machines
• Compares the cost generated

automatically by the Data
Calculator with the cost by testing a
full implementation of that data
structure

Experiment Setup

• Data workload of 100,000
uniformly distributed
integers with a sequence of
100 Get requests
• Incrementally insert more,

and repeat query workload

• Tested algorithms on each:
• Get
• Range Get
• Bulk Load
• Update

• Tested the following structures:
• Array
• Sorted array
• Linked-list
• Partitioned linked-list
• Skip-list
• Trie
• Hash-table
• B+ tree

Overview of Experiment Results

Experiment Results for Hardware 1

Experiment 2: Training Access Primitives

• Data Calculator can
accurately synthesize
the bulk loading costs
for all data structures

• The time needed to train
all primitives on a
diverse set of machines
is inexpensive

Experiment 3: Cache-Friendly Designs

• Data Calculator
accurately predicts the
performance behavior
across a diverse set of
machines, capturing
caching effects of
growing data sizes and
design patterns where
the relative position of
nodes affects tree
traversal costs

Experiment 4: Rich Design Questions
• B-Tree design, 1M inserts and 100 point gets, H/W 1

• User asks: “What if we change to H/W 3?”
• Data Calculator takes 20 seconds to compute that performance will

decrease

• User asks: “Would it be beneficial to add a bloom filter in all B-tree
leaves?”

• Data Calculator takes 20 seconds to compute that the performance
will increase

IX. Summary

Takeaways
• Data Calculator allows researchers and engineers to interactively and

semi-automatically navigate complex design decisions when designing
or re-designing data structures, considering new workloads, and
hardware
• Broke down and clearly explained each aspect of overall architecture
• Provided great visualizations and diagrams to get a clear picture
• Great paper to conclude this class; touches on many topics we’ve

studied throughout semester

Improvements & Future Work
• Vague on how data structures were implemented when

comparing to Data Calculator
• Should talk about how this can be commercialized
• Maybe add a case study where a software company uses Data

Calculator, and give real-world results and benefits
• Translate performance savings into monetary savings
• The full Periodic Table of Data Structures

Final Remarks

THANK YOU!

References
• S. Idreos, K. Zoumpatianos, B. Hentschel, M. S. Kester, and D.

Guo, “The Data Calculator: Data Structure Design and Cost Synthesis
From First Principles, and Learned Cost Models,” in ACM SIGMOD
International Conference on Management of Data.
• http://daslab.seas.harvard.edu/datacalculator/

https://stratos.seas.harvard.edu/files/stratos/files/datacalculator.pdf
http://daslab.seas.harvard.edu/datacalculator/

