
Bridging the Archipelago between
Row-Stores and Column-Stores

for Hybrid Workloads

John C. Merfeld – 2 / 7 / 19

BACKGROUND
(getting everyone on board with jargon)

We should know these “words”

• DBMS –

• OLTP –

• OLAP –

• HTAP –

We should know these “words”

• DBMS – DataBase Management System

• OLTP –

• OLAP –

• HTAP –

We should know these “words”

• DBMS – DataBase Management System

• OLTP – On-Line Transaction Processing

• OLAP –

• HTAP –

We should know these “words”

• DBMS – DataBase Management System

• OLTP – On-Line Transaction Processing (HOT)

• OLAP –

• HTAP –

We should know these “words”

• DBMS – DataBase Management System

• OLTP – On-Line Transaction Processing (HOT)

• OLAP – On-Line Analytical Processing

• HTAP –

We should know these “words”

• DBMS – DataBase Management System

• OLTP – On-Line Transaction Processing (HOT)

• OLAP – On-Line Analytical Processing (COLD)

• HTAP –

We should know these “words”

• DBMS – DataBase Management System

• OLTP – On-Line Transaction Processing (HOT)

• OLAP – On-Line Analytical Processing (COLD)

• HTAP – Hybrid Transactional-Analytical Processing

We should know these “words”

• DBMS – DataBase Management System

• OLTP – On-Line Transaction Processing (HOT)

• OLAP – On-Line Analytical Processing (COLD)

• HTAP – Hybrid Transactional-Analytical Processing
{

Workloads

We should know these “words”

• OLTP – On-Line Transaction Processing (HOT)

• OLAP – On-Line Analytical Processing (COLD)

• HTAP – Hybrid Transactional-Analytical Processing

• NSM –

• DSM –

We should know these “words”

• OLTP – On-Line Transaction Processing (HOT)

• OLAP – On-Line Analytical Processing (COLD)

• HTAP – Hybrid Transactional-Analytical Processing

• NSM – n-ary Storage Model

• DSM –

We should know these “words”

• OLTP – On-Line Transaction Processing (HOT)

• OLAP – On-Line Analytical Processing (COLD)

• HTAP – Hybrid Transactional-Analytical Processing

• NSM – n-ary Storage Model (Why is this good for writes?)

• DSM –

We should know these “words”

• OLTP – On-Line Transaction Processing (HOT)

• OLAP – On-Line Analytical Processing (COLD)

• HTAP – Hybrid Transactional-Analytical Processing

• NSM – n-ary Storage Model (Why is this good for writes?)

• DSM – Decomposed Storage Model{
Storage models

Here’s your pneumonic device

O L T P

Tea is hot

new data  
(Updates and writes)

n-ary Storage

O L A P

You Analyze history

History is (c)old 
(Scans and aggregations)

Decomposed Storage

THE PROBLEM

Today we’re concerned with HTAP

• Not just a “dynamic workload”

• Transactions and analytics queries running simultaneously

• Both historical and fresh data are equally relevant to analysis

Today we’re concerned with HTAP

• Not just a “dynamic workload”

• Transactions and analytics queries running simultaneously

• Both historical and fresh data are equally relevant to analysis

• Examples?

You might work with IoT sensors

Or you might run a search engine

Or you might feel positively about
the concept of money

One approach is to physically
separate the use cases

System A gives data
to System B at…

some point!
System A System B

Workload OLTP OLAP

Storage Model n-ary Decomposed

Data stored as… Rows Columns

Used for… Inserts & Updates Reads

Is this really HTAP?
System A gives data

to System B at…
some point!

System A System B

Workload OLTP OLAP

Storage Model n-ary Decomposed

Data stored as… Rows Columns

Used for… Inserts & Updates Reads

Separating the use cases defeats
the purpose of HTAP

There are other reasons not to
want two distinct systems

• What are they?

There are other reasons not to
want two distinct systems

• What are they?

• Two different execution engines

There are other reasons not to
want two distinct systems

• What are they?

• Two different execution engines

• Twice the software

There are other reasons not to
want two distinct systems

• What are they?

• Two different execution engines

• Twice the software

• Twice the people!

• (at least twice the cost…)

THE SOLUTION

A flexible storage model (FSM)
takes the “temperature” of tuples

Source: D. Beaver, S. Kumar, H. C. Li, J. Sobel, P. Vajgel, and F. Inc. Finding  
a needle in haystack: Facebook’s photo storage. In OSDI, 2010.

A flexible storage model (FSM)
takes the “temperature” of tuples

A “tile” is part row, part column

“Physical tiles” store subsets of
tuple attributes

Great! Let’s put physical tiles in
our favorite DBMS

Great! Let’s put physical tiles in
our favorite DBMS

Oh, we can’t?

Why can’t we just put physical
tiles in our favorite DBMS?

Why can’t we just put physical
tiles in our favorite DBMS?

• Two words:

Why can’t we just put physical
tiles in our favorite DBMS?

• Two words:

Query execution!

“Logical tiles” store information
about multiple physical tiles

Logical tile columns contain sets
of physical tiles columns

• The underlying physical data are released during
materialization

“Tile algebra” is an abstracted
extension of relational algebra

Tile algebra offers several
advantages

Tile algebra offers several
advantages

• Single execution engine 

• Vectorized processing (tiles instead of tuples) 

• DBMS can optimize what materializes when and what
goes in the cache

The paper goes into detail about
concurrency protocols

• And if you care about that, I invite you to read the paper!

None of this matters unless tile
layouts can be reconfigured

• How might we do this?

None of this matters unless tile
layouts can be reconfigured

• How might we do this?

• Copy data to optimal layout before executing query?

None of this matters unless tile
layouts can be reconfigured

• How might we do this?

• Copy data to optimal layout before executing query?

None of this matters unless tile
layouts can be reconfigured

• How might we do this?

• Copy data to optimal layout before executing query? 

• Background process reorganize one tile at a time?

None of this matters unless tile
layouts can be reconfigured

• How might we do this?

• Copy data to optimal layout before executing query? 

• Background process reorganize one tile at a time?

The system needs to gather
statistics about incoming queries
• Record attributes found in SELECT and WHERE clauses 

The system needs to gather
statistics about incoming queries
• Record attributes found in SELECT and WHERE clauses 

• Only do this for a random sample of queries 

The system needs to gather
statistics about incoming queries
• Record attributes found in SELECT and WHERE clauses 

• Only do this for a random sample of queries 

• We have millions of writes and only a few big reads… 
 
…is that a problem? 

The system needs to gather
statistics about incoming queries
• Record attributes found in SELECT and WHERE clauses 

• Only do this for a random sample of queries 

• We have millions of writes and only a few big reads… 
 
…is that a problem?

• Record the cost of the queries too 

These statistics are used to re-
partition the tables into new tiles
• Clustering algorithm chooses which attributes belong

together in physical tiles 

• Greedy algorithm groups tiles together based on how
“important” they are to workloads 

• This is done incrementally to amortize the cost

EVALUATION
(NSM vs. DSM vs. FSM)

The system was evaluated using
workloads based on these queries

• The underlying physical data are released during
materialization

Narrow => 50 attributes;
Hybrid => 1M writes per read

Wide => 500 attributes;
Aggregate => MAX(x, y, z, …)

We can see how FSM learns over
time

CONCLUSION

I think the paper did a pretty good
job of…

• Demonstrating the importance of the problem and their
solution 

• (Usually) going into the right amount of detail 

• Talking about different ways to implement each step 

• Conducting a lot of difference experiments

I wish the paper had…

• Done more join queries besides a few self-joins (major)

• Said either way more or slightly less about tiles 
(I know they said way more in the appendix, but… yikes) 

• Benchmarked their approach against another HTAP solution 
(there was some hand waving in their critiques of such systems)

