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BACKGROUND 
(getting everyone on board with jargon)
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Storage models



Here’s your pneumonic device

O L T P


Tea is hot


new data  
(Updates and writes)


n-ary Storage

O L A P


You Analyze history


History is (c)old 
(Scans and aggregations)


Decomposed Storage



THE PROBLEM 
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• Transactions and analytics queries running simultaneously
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• Examples?



You might work with IoT sensors



Or you might run a search engine



Or you might feel positively about 
the concept of money



One approach is to physically 
separate the use cases

System A gives data 
to System B at… 

some point!
System A System B

Workload OLTP OLAP

Storage Model n-ary Decomposed

Data stored as… Rows Columns

Used for… Inserts & Updates Reads
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Used for… Inserts & Updates Reads



Separating the use cases defeats 
the purpose of HTAP
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There are other reasons not to 
want two distinct systems

• What are they?


• Two different execution engines


• Twice the software


• Twice the people!


• (at least twice the cost…)



THE SOLUTION 



A flexible storage model (FSM) 
takes the “temperature” of tuples

Source:  D. Beaver, S. Kumar, H. C. Li, J. Sobel, P. Vajgel, and F. Inc. Finding  
a needle in haystack: Facebook’s photo storage. In OSDI, 2010.  



A flexible storage model (FSM) 
takes the “temperature” of tuples



A “tile” is part row, part column



“Physical tiles” store subsets of 
tuple attributes
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Why can’t we just put physical 
tiles in our favorite DBMS?

• Two words:

Query execution!



“Logical tiles” store information 
about multiple physical tiles



Logical tile columns contain sets 
of physical tiles columns

• The underlying physical data are released during 
materialization



“Tile algebra” is an abstracted 
extension of relational algebra



Tile algebra offers several 
advantages



Tile algebra offers several 
advantages

• Single execution engine 

• Vectorized processing (tiles instead of tuples) 

• DBMS can optimize what materializes when and what 
goes in the cache



The paper goes into detail about 
concurrency protocols

• And if you care about that, I invite you to read the paper!
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The system needs to gather 
statistics about incoming queries
• Record attributes found in SELECT and WHERE clauses 

• Only do this for a random sample of queries 

• We have millions of writes and only a few big reads… 
 
…is that a problem?


• Record the cost of the queries too 



These statistics are used to re-
partition the tables into new tiles
• Clustering algorithm chooses which attributes belong 

together in physical tiles 

• Greedy algorithm groups tiles together based on how 
“important” they are to workloads 

• This is done incrementally to amortize the cost



EVALUATION 
(NSM vs. DSM vs. FSM)



The system was evaluated using 
workloads based on these queries

• The underlying physical data are released during 
materialization



Narrow => 50 attributes;  
Hybrid => 1M writes per read



Wide => 500 attributes;  
Aggregate => MAX(x, y, z, …)



We can see how FSM learns over 
time



CONCLUSION



I think the paper did a pretty good 
job of…

• Demonstrating the importance of the problem and their 
solution 

• (Usually) going into the right amount of detail 

• Talking about different ways to implement each step 

• Conducting a lot of difference experiments



I wish the paper had…

• Done more join queries besides a few self-joins (major)


• Said either way more or slightly less about tiles 
(I know they said way more in the appendix, but… yikes) 

• Benchmarked their approach against another HTAP solution 
(there was some hand waving in their critiques of such systems)


