MaSM: Efficient Online
Updates in Data Warehouses

by
Roberto Alcalde Diego

Introduction

Background

* Data Warehouses are optimized for read-only query performance
* When did the inserting and updating take place?
* Why does this not meet business needs anymore?

Background

* Data Warehouses are optimized for read-only query performance
* When did the inserting and updating take place?
* Why does this not meet business needs anymore?

Solution: Active Data Warehousing

What is the current situation?

* The main issue: How to efficiently execute analysis queries in the
presence of online updates

* There are 2 main approaches for supporting online updates:

What is the current situation?

* The main issue: How to efficiently execute analysis queries in the
presence of online updates

* There are 2 main approaches for supporting online updates:

Eno updates
* In-Place Updates
* Traditional

o OMMM L ﬂ li

° S LOW Flgure 3: TPC-H queries with random updates on a row store.

execution time normalized
to query w/o updates
- N w B [8)]

Eno updates
Equery w/ updates

il

Figure 4: TPC-H queries with emulated random updates on a
column store.

©
(]
)
®
E
1=
=]
c
Q
E
=
c
]
2
3
o
@
x
L

What is the current situation?

* The main issue: How to efficiently execute analysis queries in the
presence of online updates

* There are 2 main approaches for supporting online updates:

* In-Place Updates
* Traditional

e Straightforward
 SLOW

* Differential Updates

Differential Updates - Basics

e Cache incoming updates in an in-memory buffer

* Take the cached updates into account on-the-fly during query
processing -> Queries report fresh outputs

* Migrate the cached updates to the main data whenever the buffer is
getting full

Differential Updates - Basics

e Cache incoming updates in an in-memory buffer

* Take the cached updates into account on-the-fly during query
processing -> Queries report fresh outputs

* Migrate the cached updates to the main data whenever the buffer is
getting full

* Any problems? If not, congrats we get to go home!

Differential Updates — The big problem

* If the cache is in memory, you have to choose
* Small buffers: Small memory requirements -> you can use memory for
something else. -> Many migrations
* Big buffers: Few migrations -> memory will be occupied but you don’t have to
introduce updates into the main data disks until later.

state-of-the-art

(updates cached in memory) IS there a better Way?

overhead
—
- O
— o (e]

o
—

c
o
2
]
S
=
(=
o
Q@
N
®
£
|
o
c

\@\@ q}\@ ® q}@ R n}@ < q?@

in- memory buffer size

Summary of the Problem

* We want differential updates to match business needs

 We don’t want to have to compromise between memory
requirements and migration overhead in the incredibly expensive way
that current systems make us.

Batched

In place

In-memory differential

Cache Updates in SSDs instead of RAM

A few Specs:

e Cache size is 1% — 10% of main data size S —
e Both the disks and the SSD cache are Up-to-dat

searched when queries are received.

* Data is migrated to main disks when:
* Load on the system is low
e The SSD cache is almost full

Dlsks (main data)

Cache Updates in SSDs instead of RAM

A few Specs:
e Cache size is 1% — 10% of main data size o ——

* Both the disks and the SSD cache are Up-to-dat
searched when queries are received.

* Data is migrated to main disks when:
* Load on the system is low
e The SSD cache is almost full

Dlsks (main data)

state-of-the-art
(updates cached in memory)

our approach
(updates cached in SSD)

overhead

e
—

c
=]
2
©
=
=
£
o
o
N
©
£
=
=]
£

Persistent Storage |

Cache Updates in SSDs instead of RAM

A few Specs:
e Cachesize is 1% — 10% of main data size
* Both the disks and the SSD cache are
searched when queries are received.

* Data is migrated to main disks when:
* Load on the system is low
e The SSD cache is almost full

state-of-the-art
(updates cached in memory)

our approach
(updates cached in SSD)

overhead

e
—

c
=]
2
©
=
=
£
o
o
N
©
£
=
=]
£

2. Query processing 1. Incoming updates

Up-to- date

Dlsks (main data)

But, what are the limitations of SSDs?

Persistent Storage |

Implementation

System Goals

1. Low Query Overhead & Small Memory Footprint:
* Avoid having to make a lot of migrations and also avoid taking up RAM

2. No Random SSD writes:
» Often leads to expensive additional operations and can degrade performance of SSD.

3. Low total SSD writes per update:
* Since eventually the SSD memory will wear out, it is good to minimize writes per
update to decrease wear out rate.
4. Efficientin place migration:

* Previous approaches make a copy of the entire disk and then add updates, which
requires twice as much disk space.

5. ACID:

* Ensure that traditional concurrency control and crash recovery techniques still work.

Implementation

1. Incoming updates * What must be implemented:

Up-to-dat * Merging: Essentially an outer join
e Caching: Coordinate Buffer and SSD
* Migrating: Placing Updates in Disks

DISkS (main data) All of this must be done taking the 5
goals into account.

Prior Proposals to enable Indexed Updates

* In-Memory Indexed Updates(lU): Keep cache in memory and index it.
* During Query time: Random access to find relevant cached updates

* During Migration: Make a copy of the entire disk then make it available when
migration is completed.

Position Index
acking Updates
=

—
|
A

Prior Proposals to enable Indexed Updates

* In-Memory Indexed Updates(lU): Keep cache in memory and index it.
* During Query time: Random access to find relevant cached updates

* During Migration: Make a copy of the entire disk then make it available when
migration is completed.

e Simply extended IU to SSDs:
* Adds random access to SSDs
* An entire SSD page must be read
for retrieving each entry

Prior Proposals to enable Indexed Updates

* In-Memory Indexed Updates(lU): Keep cache in memory and index it.
* During Query time: Random access to find relevant cached updates

* During Migration: Make a copy of the entire disk then make it available when
migration is completed.

e Use log-structured merge trees:
* We reduce random reads
* We increase writes per update

MaSM: Materialized Sort-Merge

1. Incoming updates ¢ HOW iS Merging HandIEd?

Up-to-dat * Sort Merge:
* Cheaper than hash-based alternatives
* Preserve the record order

* How is Caching Handled?
D|sks (main data) e SSD Storage and External Sorting:

- - |- * SSD Storage reduces memory footprint
W W W . * External sorting is expensive!
* How is Migration Handled?

* Full table Scan and Write Back to Disk

MaSM — 2M: Minimizing SSD writes

e ¢ In-Memory Cache:
updates
* M pages to store new updates

 When the buffer is full, create a
materialized sorted run of size M in
the SSD. (Add a read-only index)

* SSD:
e Capacity: M? — At most M runs

€_Scan

g

2
Q
=
o
=
5
5
>

Table ran

SSD (updates) .
Materialized ¢ QU e ry .

Disks sorted runs,

(main data) cach with e One page per run for each run in SSD
* M pages for Table Range Scan

i

plates >

Merge_data_updates

€_Scan

Main memory

oY)
=
(ae]
S
@
S
H

‘Q'L*__
Merge_updates
7 4 \

Incoming
updates

|

///1/////

Disks

(main data)
'__/

/1111111
1111111

SSD (updates)

Materialized
sorted runs,

each with
run index

MaSM — 2M: Details

Timestamps:
* On Every Update and Every query -> Each query only sees previous updates
* To support in place migration, each page has the last update timestamp.

Update Record:

* Format: (timestamp, key, type, content)

Online Updates & Range Scan:

* Thanks to timestamps, only case when online updates can generate issues on scans are when
the cache must be flushed, so mutexes are used to protect the update buffer.

Concurrent Range Scans:
» Supported thanks read only indexes in SSDs and timestamps on cache

In- Place Migration:

* Perform a full range scan, returning pages instead of records. Apply the updates to the pages
and write them back to the disk

MaSM — M: Reducing Memory Footprint

To Merge data_updates Incoming ¢ 2 Ma|n D|ffe rences.

updates

Merge updates ‘\.
pages__ %

* Better Memory Management - M pages
* S of the M pages: Updates
* Rest: Queries

* Not all SSD runs have equal size:

* The query pages can only handle M-S
materialized sorted runs

Main memory

N] SSD (updates) ‘

% Materialized

S coch i
2—pass sorted runs 1—pass sorted runs TP Index The algorithm merges multiple smaller runs
(1 pass) into larger runs. (2 pass runs)

To Merge_data_updates Incoming

dat
Merge_updates PEEES
=7
4 N T

Main memory

SSD (updates)

Materialized
sorted runs,
each with
run index

MaSM — aM: Generalizing MaSM

e Recall M is number of pages allocated to
\WEMY

* Details:
* Tunable Memory Usage - «M pages
* Range 2/VvM3 to 2,
* Think of previous as special cases:
e MaSM —2M: a =2 (1 SSD write/update)
* MaSM— M :a=1(1.75SSD writes/update)

N

Q
)
1]
©
o
=
| -
)
o
(7]
Q
=
E
()]
179
(7]

1
0.2M Memory footprint = aM

Testing

All Schemes for Handling Online Updates

* In-place Updates:

e 1.7 - 3.7X slowdowns
* Indexed Updates:
1.1 -3.8X slowdowns
* MaSM w/ coarse-grain
index:

4KB 100KB 1MB 10MB 100MB 1GB 10GB 100GB e incurs little overhead for

range size 100MB to 100GB ranges

Bin-place updates B indexed updates (IU) * Bigger under 10mb
OMaSM w/ coarse-grain index OMaSM w/ fine-grain index

Synthetic Data * MaSM w/ fine-grain index:

* 4% overhead even at 4KB
ranges

o
E
=
©

@
N
©

S

-

o

c

TPCH — Replay Experiment

3537
B query w/o updates B query w/ in-place updates O query w/ MaSM updates

Sabbbidibd 44 bl

g2 g3 g4 g5 g6 q7 98 99 q10 g11 12 13 gq14 q15 q16 918 q19 g21 22

Flgure 14: Replaying I/0 traces of TPC-H queries on a real machine with online updates.

—
"
'
@
£
£
c
o
2
S
o
]
X
@

* |n place updates:

 1.6-—2.2X worse than no updates
 MaSM updates:

e Less than 1% overhead

Sustained Update Rate

6631 12498

3472 * 2 Main Points:

* Comparison:
68 48 ,
* MaSM schemes achieve orders of
I I magnitude higher sustained update rates
* Scalability:

random in-place MaSM MaSM MaSM * Doubling the flash space will roughly
writes updates 2GB 4GB 8GB double the sustained update rate
SSD SSD SSD

Conclusion

System Goals

1.

2.

3.

4.

Low Query Overhead & Small Memory Footprint:
* SSD reads can be completely overlapped with Disk reads

No Random SSD writes:
* As described in the algorithm

Low total SSD writes per update:
* Between 1 and 2 writes per update!

Efficient in place migration:
e Thanks to large SSD size (1-10% of disk) we have low frequency and will likely affect
all pages of disk.

ACID:

* Timestamps enable serializability
* Locking is supported
* Crash Recovery: only in-memory buffer needs recovery.

Paper Did Well:

* Analyzed business needs
* Thoroughly discussed previous attempts
* Aimed to reduce the implementation impact

* Considered alternative or additional implementations
* And showed why they may or may not work

| Wish the Paper had:

* Considered Full usage of SSDs:
* Lower energy consumption
* Leveraging main data storage as a cache extension

* Considered Additional Costs of SSDs Cache :

e Power?
* |[nvestment?

