
MaSM: Efficient Online 
Updates in Data Warehouses

by

Roberto Alcalde Diego



Introduction



Background

• Data Warehouses are optimized for read-only query performance

• When did the inserting and updating take place?

• Why does this not meet business needs anymore?



Background

• Data Warehouses are optimized for read-only query performance

• When did the inserting and updating take place?

• Why does this not meet business needs anymore?

Solution: Active Data Warehousing



What is the current situation?

• The main issue: How to efficiently execute analysis queries  in the 
presence of online updates

• There are 2 main approaches for supporting online updates:



What is the current situation?

• The main issue: How to efficiently execute analysis queries  in the 
presence of online updates

• There are 2 main approaches for supporting online updates:

• In-Place Updates
• Traditional

• Straightforward

• SLOW



What is the current situation?

• The main issue: How to efficiently execute analysis queries  in the 
presence of online updates

• There are 2 main approaches for supporting online updates:

• In-Place Updates
• Traditional

• Straightforward

• SLOW

• Differential Updates



Differential Updates - Basics

• Cache incoming updates in an in-memory buffer

• Take the cached updates into account on-the-fly during query 
processing -> Queries report fresh outputs

• Migrate the cached updates to the main data whenever the buffer is 
getting full



Differential Updates - Basics

• Cache incoming updates in an in-memory buffer

• Take the cached updates into account on-the-fly during query 
processing -> Queries report fresh outputs

• Migrate the cached updates to the main data whenever the buffer is 
getting full

• Any problems? If not, congrats we get to go home!



Differential Updates – The big problem

• If the cache is in memory, you have to choose
• Small buffers: Small memory requirements -> you can use memory for 

something else. -> Many migrations
• Big buffers: Few migrations -> memory will be occupied but you don’t have to 

introduce updates into the main data disks until later.

Is there a better way?



Summary of the Problem

• We want differential updates to match business needs

• We don’t want to have to compromise between memory 
requirements and migration overhead in the incredibly expensive way 
that current systems make us.



Cache Updates in SSDs instead of RAM

• A  few Specs:
• Cache size is 1% – 10% of main data size
• Both the disks and the SSD cache are 

searched when queries are received.
• Data is migrated to main disks when:

• Load on the system is low
• The SSD cache is almost full



Cache Updates in SSDs instead of RAM

• A  few Specs:
• Cache size is 1% – 10% of main data size
• Both the disks and the SSD cache are 

searched when queries are received.
• Data is migrated to main disks when:

• Load on the system is low
• The SSD cache is almost full



Cache Updates in SSDs instead of RAM

• A  few Specs:
• Cache size is 1% – 10% of main data size
• Both the disks and the SSD cache are 

searched when queries are received.
• Data is migrated to main disks when:

• Load on the system is low
• The SSD cache is almost full

• But, what are the limitations of SSDs?



Implementation



System Goals

1. Low Query Overhead & Small Memory Footprint:
• Avoid having to make a lot of migrations and also avoid taking up RAM

2. No Random SSD writes:
• Often leads to expensive additional operations and can degrade performance of SSD.

3. Low total SSD writes per update:
• Since eventually the SSD memory will wear out, it is good to minimize writes per 

update to decrease wear out rate.

4. Efficient in place migration:
• Previous approaches make a copy of the entire disk and then add updates, which 

requires twice as much disk space.

5. ACID:
• Ensure that traditional concurrency control and crash recovery techniques still work.



Implementation

• What must be implemented:
• Merging: Essentially an outer join

• Caching: Coordinate Buffer and SSD

• Migrating: Placing Updates in Disks

All of this must be done taking the 5 
goals into account.



Prior Proposals to enable Indexed Updates

• In-Memory Indexed Updates(IU): Keep cache in memory and index it.
• During Query time: Random access to find relevant cached updates

• During Migration: Make a copy of the entire disk then make it available when 
migration is completed. 



Prior Proposals to enable Indexed Updates

• In-Memory Indexed Updates(IU): Keep cache in memory and index it.
• During Query time: Random access to find relevant cached updates

• During Migration: Make a copy of the entire disk then make it available when 
migration is completed. 

• Simply extended IU to SSDs:
• Adds random access to SSDs  

• An entire SSD page must be read

for retrieving each entry



Prior Proposals to enable Indexed Updates

• In-Memory Indexed Updates(IU): Keep cache in memory and index it.
• During Query time: Random access to find relevant cached updates

• During Migration: Make a copy of the entire disk then make it available when 
migration is completed. 

• Use log-structured merge trees:
• We reduce random reads

• We increase writes per update 



MaSM: Materialized Sort-Merge

• How is Merging Handled?
• Sort Merge:

• Cheaper than hash-based alternatives 

• Preserve the record order

• How is Caching Handled?
• SSD Storage and External Sorting:

• SSD Storage reduces memory footprint

• External sorting is expensive!

• How is Migration Handled?
• Full table Scan and Write Back to Disk



MaSM – 2M: Minimizing SSD writes

• In-Memory Cache:
• M pages to store new updates

• When the buffer is full, create a 
materialized sorted run of size M in 
the SSD. (Add a read-only index)

• SSD:
• Capacity: M2 – At most M runs

• Query:
• One page per run for each run in SSD

• M pages for Table Range Scan





• Timestamps:
• On Every Update and Every query -> Each query only sees previous updates
• To support in place migration, each page has the last update timestamp.

• Update Record:
• Format: (timestamp, key, type, content)

• Online Updates & Range Scan:
• Thanks to timestamps, only case when online updates can generate issues on scans are when 

the cache must be flushed, so mutexes are used to protect the update buffer.

• Concurrent Range Scans:
• Supported thanks read only indexes in SSDs and timestamps on cache

• In- Place Migration:
• Perform a full range scan, returning pages instead of records. Apply the updates to the pages 

and write them back to the disk

MaSM – 2M: Details



MaSM – M: Reducing Memory Footprint

• 2 Main Differences:
• Better Memory Management - M pages

• S of the M pages: Updates

• Rest: Queries

• Not all SSD runs have equal size:
• The query pages can only handle M-S 

materialized  sorted runs

The algorithm merges multiple smaller runs 
(1 pass) into larger runs. (2 pass runs)





MaSM – ⍺M: Generalizing MaSM

• Recall M is number of pages allocated to 
MaSM

• Details:
• Tunable Memory Usage - ⍺M pages

• Range 2/√M3 to 2,
• Think of previous as special cases:

• MaSM – 2M: ⍺ = 2 (1 SSD write/update)
• MaSM – M : ⍺ = 1 (1.75 SSD writes/update)



Testing



All Schemes for Handling Online Updates

• In-place Updates:
• 1.7 – 3.7X slowdowns

• Indexed Updates:
• 1.1 – 3.8X slowdowns

• MaSM w/ coarse-grain 
index:
• incurs little overhead for 

100MB to 100GB ranges
• Bigger under 10mb

• MaSM w/ fine-grain index:
• 4% overhead even at 4KB 

ranges

Synthetic Data



TPCH – Replay Experiment

• In place updates:
• 1.6 – 2.2X worse than no updates

• MaSM updates:
• Less than 1% overhead



Sustained Update Rate

• 2 Main Points:
• Comparison:

• MaSM schemes achieve orders of 
magnitude higher sustained update rates

• Scalability:
• Doubling the flash space will roughly 

double the sustained update rate



Conclusion



System Goals
1. Low Query Overhead & Small Memory Footprint:

• SSD reads can be completely overlapped with Disk reads 

2. No Random SSD writes:
• As described in the algorithm

3. Low total SSD writes per update:
• Between 1 and 2 writes per update!

4. Efficient in place migration:
• Thanks to large SSD size (1-10% of disk) we have low frequency and will likely affect 

all pages of disk.

5. ACID:
• Timestamps enable serializability
• Locking is supported
• Crash Recovery: only in-memory buffer needs recovery.



Paper Did Well:

• Analyzed business needs

• Thoroughly discussed previous attempts

• Aimed to reduce the implementation impact

• Considered alternative or additional implementations
• And showed why they may or may not work



I Wish the Paper had:

• Considered Full usage of SSDs:
• Lower energy consumption

• Leveraging main data storage as a cache extension

• Considered Additional Costs of SSDs Cache :
• Power?

• Investment?


