
An Evaluation of
Morsel-Driven Parallelism:
A NUMA-Aware Query Evaluation
Framework for the Many-Core Age
Presented by Matthew Cote

Overview

Setting the Stage:

● Rise of many-core architectures

○ More parallelism, less single-thread optimizations

○ ~10s to 100s of threads in modern architectures

● Main memory capacities have increased

○ Query processing not always I/O bound

● Rise of NUMA architecture

○ Needed to scale throughput from large memories

○ Allows multiple cores to access different memory banks simultaneously

NUMA Architecture
NUMA = Non-Uniform Memory Access

● Memory access cost varies depending on which chip the accessing thread and memory are

located

The Problem: Part 1

● Single threaded database applications have already been significantly optimized.

● Modern processor design focuses more on adding more cores instead of improving

each core.

What about multi-core database designs?

Previous Approach to Parallelism

Parallel Volcano Model

● Operators unaware of parallelism

● Tuple streams routed among threads executing a pipeline

● Statically determine # of threads, operation for each thread

Previous Approach to Parallelism

Parallel Volcano Model

● Operators unaware of parallelism

● Tuple streams routed among threads executing a pipeline

● Statically determine # of threads, operation for each thread

Weaknesses:

● Poor load-balancing

● Not NUMA-Aware

● Not dynamically elastic

Proposed System

Morsel Driven Query Execution Framework for Main Memory Databases

● Multiple threads execute each pipeline (as before)

● Flexible and dynamic dispatcher assigns tasks at runtime

● Tasks organized by what memory they access

● Tasks work on small morsels of data

Solving the Problem
Perfect Load Balancing

● Threads for a given pipeline finish at the same time

● Possible due to morsel-size work increments and work stealing

NUMA - Awareness

● Thread (primarily) reads/writes to memory in own socket

Elasticity

● Dispatcher determines at run-time what each thread will work on

● Threads can be moved to other pipelines upon finishing a morsel

Depiction of Three-Way Hash Join

● Color = Socket

● Line = Thread

● Line Group = Pipeline

Implementation Details

Execution Overview: Scheduling Pipelines

● QEPobject controls the execution of a query

○ Transfers executable pipelines to the dispatcher

■ Only pipelines with no dependencies

○ Allocates storage for results from threads

○ Creates new morsels from results of past operations

Scheduling Threads

● Dispatcher has list of available pipelines

● Allows for inter-query parallelism

● Pipeline has list of morsels to process, one list per

memory bank.

● Assigns each thread a task (pipeline job + morsel)

● Dispatcher = lock free, run by the

work-requesting thread.

Scheduling Threads

● Queries dynamically assigned threads

● Preemption occurs at morsel boundary

● All cores working on a pipeline finish at same time

○ Prevents fast threads from idling

○ Requires work stealing

Solving the Problem
Perfect Load Balancing

● Threads for a given pipeline finish at the same time

● Possible due to morsel-size work increments and work stealing

NUMA - Awareness

● Thread (primarily) reads/writes to memory in own socket

Elasticity

● Dispatcher determines at run-time what each thread will work on

● Threads can be moved to other pipelines upon finishing a morsel

Example Query Execution

Three Way Hash Join

Important First Step: Distributing a Table

● Tables partitioned semi-evenly among the memory banks

● Partition by hashing the primary key/foreign key

Building the Hash Table

● Threads processes morsel at a time

○ Write to own socket’s memory

● All threads finish phase one before going to next.

● Hash table = distributed, lock-free, perfect size

Building the Hash Table

● Each hash bucket has 16 bit hash tag

summarizing contents.

● Probe checks tag before searching list.

● Compare and Set used to atomically grow the

hash table

Finishing the Join

Repeat similar steps as before, but now probing

the hash tables.

Testing

Evaluation Technique

Two different architectures

Different NUMA topologies/BWs

Performance Evaluation

Normalized by execution of

single-threaded HyPer

Primarily compared with

Vectorwise

Significantly faster than

PostgreSQL and commercial

column store

NUMA Awareness Evaluation

Near maximum bandwidth of 100 GB/s for queries 1 and 6.

% Remote is very low - indicates most memory accesses are

local

QPI is lower - indicating lower congestion on most used link

Elasticity Evaluation

System works for a large range of number of query

streams

Demonstrates threads can be dynamically scheduled

and load balanced

Evaluation of the Paper

What the Paper Did Well

● Provided concrete example to follow throughout

● Used helpful and illustrative diagrams

● Clearly stated the weakness of old systems and how this system fixes it

● Justified most architecture decisions in detail and discussed alternatives

● Created experiments to test the key optimizations

What the Paper Could Improve:

● Discuss potential applications to non in-memory databases

● Including priority based scheduling

● Including more detail on lock-free data structures - especially the dispatcher

● Talk about how queries were interwoven during testing

● Present weaknesses of this system - no real sense of a trade-off

● Calculate overhead of scheduling

