
UpBit: Scalable In-Memory Updatable 
Bitmap Indexing

Guanting Chen, Yuan Zhang
2/21/2019



BACKGROUND



Some words to know

Bitmap: a bitmap is a mapping from some domain to bits

Bitmap Index: A bitmap index is a special kind of database 
index that uses bitmaps

https://en.wikipedia.org/wiki/Index_(database)
https://en.wikipedia.org/wiki/Index_(database)
https://en.wikipedia.org/wiki/Bit_array


● Typically a single bit per row

● One bitvector per value 

● Advantage: Fast read for equality 
and range queries.

● Need to be compressed for 
space-efficient

Bitmap Index



● Bitvectors contain redundancy

● Reduce redundancy

● And improve read performance

● So we have compression and encoding!

Keep Bitvectors Small



How to compress/encode?
One way:



THE PROBLEM



Traditional Bitmap Index

● Read-optimized

● Bitvectors are encoded



Traditional Bitmap Index

What if we want to update?

● Costly decoding whole bitvectors

● Re-encoding updated bitvectors

Do not offer efficient updates!!!



To Solve The Problem

Bitmap indexing should deliver both:

● Good READ performance

● Efficient UPDATE!!!



POSSIBLE SOLUTION



UCB: Update Conscious Bitmap

● State-of-the-art update-optimized

● Using existence bitvector(EB): indicate 
bits are valid or not



UCB Advantages

● Efficient deletes by invalidation



UCB Advantages

● Faster updates by deleting then 
appending



UCB Read

● Read: bitwise AND with EB



UCB Limitations

● More updates, read becomes more 
expensive 



Why?

● Repetitive bitwise operations

● Single auxiliary bitvector 



WE STILL HAVE THE 
PROBLEM !



The Bitmap Index Should:

● Distribute update cost

● Efficiently access compressed bitvectors

● Re-use results of bitwise operations 



A BETTER SOLUTION



UpBit: Updatable Bitmap 
Indexing



UpBit

Offer efficient updates without hurting read performance!!!



UpBit

Maintain update bitvectors(UB):

● One per value
● Initialized to 0s
● Every update flips on a bit on UB
● Double the amount of 

uncompressed data
● Sparse, compressed size is 

small(only small ones)



UpBit: Update

Three steps to update:

1. Find old value of row 2(20)
2. Flip bit of row 2 of UB of 20
3. Flip bit of row 2 of UB of 10



UpBit VS UCB: Update

UpBit:

● No single bitvector(EB) receives all updates
● Distribute the update burden to multiple UB 



UpBit: Update

Will be faster if we speed up step 1!

How?



UpBit: Retrieve Value Of A Row

Using fence pointer:

● Avoid decoding entire bitvector

● Decode only a small part of the bitvector

● Efficiently retrieve a value



UpBit: Read

Return the XOR of VB and UB



UpBit: Read

Can we re-use the result?

How?



UpBit: Merge

Why merge?

● Accumulated operations lead to less compressible UB
● More expensive bitwise operations and decoding
● Need to maintain high compressibility of UB

How and When to merge?



UpBit: Merge

Merge periodically:

● Maintain a threshold based on # updates

Query-driven merge:

● “query then merge”

● Use the result of XOR

● Update VB using the result

● Set UB to zeros



UpBit VS UCB: Read

UpBit:

● Bitwise XOR between VB and UB

● Partially decode and encode bitvector

● Merge to maintain compressibility

● Read performance scales with updates ?

                                                        UCB:

● Bitwise AND between VB and EB

● Decode and encode entire bitvector

● No merge(merge EB means merge with all VB)

● Read performance does not scale with updates



BENCHMARKING



Scalability 

● 100M values of real life data set

● 100 unique values of domain

● 100k operations of query mix



Update & Read Performance

● Fence pointer enables fast read & update 
● UpBit has 8% read overhead at most due to XOR operations 



UpBit vs Scan

● Compared with a fast scan, UpBit 

is faster for range queries with up 

to 1% selectivity.



Design element - Fence Pointer

● Fence pointer alone - NOT maintaining COMPRESSIBILITY
● Updates bitvectors needs fence pointer to amortize their cost

UpBit-FP: Using fence pointer and only ONE update bitvector(like UCB’s EB)



Design element - Merging Threshold

20% updates workload 50% updates workload overall comparison

● Threshold of 10 updates(bits set to 1) leads to fastest workload execution 



Further improvement - Parallelism

● Each pair of VB & UB are actually decoupled and domain-isolated
● Which means they can be queried in parallel

Thread 2Thread 1



Further improvement - Parallelism

● Performance UpBit(Update) does not scale with the number of threads after 8



CONCLUSION



Design goals

● Multiple Update Vectors →  distribute update cost → maintain more 
compressible UBs

● Fence pointer →  partial decoding →  efficient retrieval of a value at 
arbitrary position 

● Query-driven UB merging →  keep maintaining high compressibility 



Pros
● On the surface: 

○ Straightforward design idea, clear illustration
(easy to understand)

● Underneath: 
○ Interesting details and effects 

(the way it distributes update cost and maintains compressibility is really cool!)

○ Concrete pseudocode 
(better understanding of logical implementation underneath the design)



Cons

● Does not cover the marterialization of BitMap index

● What if Read-Optimized BitMap index also employs fence pointer?

● What about different cardinality?



THANK YOU


