Access Path Selection in Main-
Memory Optimized Data Systems:
Should | Scan or Should | Probe?

CS 591A: Data Systems Architecture
February 26", 2019

Aleksandr Kim

Content

* Background

* Motivation and Summary
* Paper Methodology

* Analytical Model Details

* Analytical Model Results
* Experimental Model
* Final thoughts

Access Path Selection: Scanning and Probing?

Access Path Selection: Scanning and Probing?

Scanning: Sequential search through all the data

’) P H
T ‘
AT q

LU

Q L L
D D D
<C <C <C
+ + +
Q Q Q
4 4 4
S S S
= = =
S . - S
Q Q Q
O O O
> > >
V) V) V)

|
|
|
|
|
|
|
|
|
v

__________>

__________>

__________>

«—————————
«—————————

Access Path Selection: Scanning and Probing?

22Npo.id Ysa.d
P00 U3z0.4

SpaaN subjeg
©9)J0)/ea]

Probing, Secondary Index Scan: Sort data and search

Historic Approach to Access Path Selection

* Selection of best Access Path based on a variety of
factors but largely dependent on query selectivity

* The more stuff you have to get, the more stuff you have to
look through

Sequential Scan Best

Secondary Index Scan Best

Selectivity

Access Path Selection? Performance is Key

Scan operator greatly optimized over the years

Rise of column data storage
mproved hardware capability
Parallel computing

Data compression *Possible to hide minor
inefficiencies

*Selection of access path might
not even matter

Summary: Access Path Selection Still Important!

* Selection based on query concurrency in addition to selectivity

* Possible to create a system that dynamically switches between

sequential and secondary index scanning
A

Scan is best

Historical Division

Our

m / Proposal

Concurrency

Selectivity

>

Methodology: Analytical and Experimental

* Mathematical model created to analyze scan performance
* Workload

* Data properties

* Hardware specifications

* Data structure characteristics

* Prototype data system, FastColumns, built and tested
* Four hardware configurations

Analytical Model

* Comprehensive mathematical model on the select operator

* Inputs point or range query
* Outputs collection of rows

e Other enhancements

* Data compression: Dictionary
compression to 2 bytes

* Zonemaps: Group data to
reduce tuples searched

Workload q number of queries
S selectivity of query i
Stot total selectivity of the workload
Dataset N data size (tuples per column)
ts tuple size (bytes per tuple)
Hardware Ca L1 cache access (sec)
Cy | LLC miss: memory access (sec)
BWs | scanning bandwidth (GB/s)
BWy | result writing bandwidth (GB/s)
BW; | leaf traversal bandwidth (GB/s)
p The inverse of CPU frequency
Ip Factor accounting for pipelining
Scan rw | result width (bytes per output tuple)
& b tree fanout
Index aw | attribute width (bytes of the indexed column)

offset width (bytes of the index column offset)

Analytical Model

e Focus on shared and index scans

(a)

Sequential

_.f'
o
.
2
s
S
—

(b) 519

g

Shared

Access Path Selection

_ Conclndex
APS = SharedScan

Can decide based
on what will be
less costly

Shared Scan Model

Cost of Predicate Evaluation

PE=2-f,-p-N

Cost of Moving Data

N-ts 7 . 7
I'Ds = Bve CPU Speed - “Calculations
Data Moved \ X0
Scan Rate /"2~ | sz Cost of Outputting Data
—— - N-rw
mem _
DR = gy
C) R a)

Data Found
SharedScan = max(TDs,q - PE) + St - TDpg Write Rate

Index Scan Model

Cost of Tree Cost of
Traversal Writing

\ N\

ConcIndex =q-TT + Sior - (TL+TDy)+ Stor - TDr + SF - Cy

/ /

) Cost of Leaf Cost of

and Data Sorting
STDSC ST Traversal

Analytical Model Predictions

_ ConcIndex
APS = SharedScan

* Expanding the Analytical Model:

Function of Concurrency

q- l+(loﬂgfb(N] (BWS Cy +bBW5CA+bBWSpr>

APS (C],Sfof) =

max(ts,Z-fp'p'C]'BWS) + Stor 1w g‘v‘g;

BWs-C BW. BW.
. S (5-Cm —}-(aW‘f‘OW)-B—WS‘i"”W- B—Wz) Siort 1092 (Sior - N) - BWs - Cy

+
max (ts 2-fp-pP-q BWS)+Sror rw - %g max (fS 2:-fp-pP-q- BWS)‘|’Smr rw- %s

\ e

Function of Selectivity

Analytical Results Dependent on Concurrency

Column
Grouping

Individual Avg. Query Sel. (%)

N=10% ts=4, BWS=40GB/s. CM=180ns, CA=2ns

1.0p 3.0

25

o
©

20

o
D

1.5

1.0

0.5

o0
0

10° 1

Baseline

Individual Avg. Query Sel. (%)
(&)

o
(S

o
—

o >

10°
Concurrent Querics

N=10% ts=40, BWS=40GB/s, CM=180ns, CA=2ns
10—

10’

10°
Concurrent Queries

N=10%, ts=2
1.0,

o
©

o
»

Individual Avg. Query Sel. (%)
o ©
N BN

o
—
o

N=108, ts=4,
1.0,

10’

, BWS=40GB/s, CM=180ns, CA=2ns

3

10° 10 1

Concurrent Querics

BWS=160GB/s, CM=100ns, CA=2ns

Individual Avg. Query Sel. (%)
o © o o
N s D [oe)

(=
—=
o

10’

- —~
-—b :

—41.'5,_

3

10 1

10°
Concurrent Querics

1.0

0.5

o0
0

o'

3.0

25

+ 20

1.5

3.0
25
20

[o=
O
(7))
(7))
Q
S
Q.
£
@)
(@)
Q9
wc @©
c 3
S
v O
ofd
- (°)
< T

Results as a Function of Data Set Size

Heat map generated has a dependency on the number of
concurrent queries

Single Query Ten Queries Hundred Queries

_ q=100, ts=4, BW=40GB/s, CM=180ns, CA=2ns

10" e 10° 10° 10° 10" 10"
Data set size Data set size Data set size

Experimental Model

* Access Path Selection Algorithm Implemented

[SQL Front-End]

| — ::_______________Tl

: Parser :
——— y

Optimizer Egpicate emoss o] Scheduler

5 77 - 3 W\w:\ Helps

: M:[HH Storage Engine [ﬂ] [] /= >\ Query Engine fd@bo\]: faCi I itate
________________________________ J

. optimizer
Contains APS by batching

algorithm queries

Experimental Model Summary Results

ok o

S

Latency (Secs)

0.01

Neither the Index nor Share scans are best throughout but
FastColumns is able to make the best of both options

Point Get

Selectivity

_ X Postgres 1 MonetDB
0.5% : 5% B PG w/Index M FastColumns

i 1 Index Scan
- XX Share Scan

] B Fast Columns

il

10000 F

1000 F

Latency (ms)

Al

1

. : 100 - X

; ' 10 |

. | [%
Lo Md Hi Lo '

<
Q.
=

Low Selectivity High Selectivity
Concurrency

Thoughts on the Paper

* Brave paper attempting to challenge “common
knowledge”
 Alot of thought was put into the paper and there was
a really well developed analytical model
* Analytical model could be used to tune future
database systems

* Would be interesting to dig deeper into the model,
maybe with a Monte Carlo

Thoughts on the Paper

 Some information presented in the paper didn’t
support the main point the paper tried to convey
e However, that information showed some more
validity to the analytical model
 Disagree with the results and how the paper tried to
push the original intent of the study
* Possible that the results were biased by the
hardware selection and additional experimentation
with the analytical model would be useful

Thoughts on the Paper

Selectivity

m / Proposal

Scan is best

Historical Division

Our

>

Concurrency

N=10%, ts=4, BWS=40GB/s, CM=180ns, CA=2ns
Opr—

31 3.0

Bos l2-5

> | P20

06

C 15

- .

> 04

< 1.0

4]

302

50 05

N o]

£0.0 0.0
10° 10" 10° 10° 10°

Concurrent Queries

The index may have some dependency on concurrency
but it vanishes really quickly, after a few concurrent
gueries

X Axis is logarithmic

Thoughts on the Paper

Latency (ms)

KXX] Postgres 1 MonetDB

B3 PG w/ Index Hm FastColumns N#10Y ts=4, BWS=40GB/s, CM=180ns, CA=2ns
:\0\1.0 3.0
10000 L S o8 \
Z‘ ““““““
1000 [ELL N e —
100 [Lo
| E
10 — -90
I >
L ©
| ¢ £o0.

10°

Low Selectivity High Selectivity Concurrent Queries

Seems like FastColumns had good results but it’s a

single query where the concurrency has large impact

* Monet probably does sequential scan when
FastColumns selected an index scan

BACKUP

Index Scan Model

Cost of Tree Cost of
Traversal Writing

\ N\

ConcIndex =q-TT + Sior - (TL+TDy)+ Stor - TDr + SF - Cy

/ /

) Cost of Leaf Cost of

and Data Sorting
STDSC ST Traversal

Index Scan Model

ConcIndex =q-TT + Siot - (TL+TDy)+ Stor - TDR + SF - Cy

Workload | ¢ | number of queries
s; | selectivity of query i
Sior | total selectivity of the workload

Dataset N | data size (tuples per column)
ts | tuple size (bytes per tuple)

Hardware | C4 | LI cache access (sec)

Cy | LLC miss: memory access (sec)

BWs | scanning bandwidth (GB/s)

BWy | result writing bandwidth (GB/s)

BW; | leaf traversal bandwidth (GB/s)
p | The inverse of CPU frequency
fp | Factor accounting for pipelining

Scan rw | result width (bytes per output tuple) SF = Stot N -1 0g2» (Stot -N)
& b | tree fanout
Index aw | attribute width (bytes of the indexed column)

ow | offset width (bytes of the index column offset) SC, — §;- N -1 3) (S [° N) -C A

Experimental Model Performance

10 F > 1.2% 1.8%
Index Scan —e— . ' ((.
Fast Scan —A— . 1.0% | Scan is Best - 1.6% | Scan is Best
_ 1k 0.59% Sel. [[] = = 14%
3 Z 08% 3 12% |
¢ o S 0.6%¢ 2 10%
p \ s :;" 0.8% F
: 4 7 04% Z 06% |
0.01 O . C 04% | .
(0.2% | Index is Best 0.2 Index is Best /
512 batched =T
0.0% L ! 0.0%V ! L L
0.001 VA
0.1 1 10 100 1 10 100 10% 10° 106 107 108 10
Selectivity (%) Concurrent Queries Relation Size (Millions of Integers)

Figure 12: There exists a crossover point Figure 13: The number of concurrent Figure 14: The crossover point is also af-
for access path selection in analytical sys- queries is a critical component of access fected by the data set size (¢ = 8).

tems even when ¢ = 1. path selection in analytical data systems.
2.5% 0.6 0.8% — -
1 5 HEl Measured Predicted o SZ-bit Reys ——7—

o o Scan 1s Best Zos | 07% t X {6t Keys <
— L. (4 - z o |
2 S04} 7 7 z 0.6%
2 15% ({-‘_’ 03 L % / V / 3 0.5% |
po 2 / / / / B 04% | g
,) 2oa L -
2 10% | Index is Best 2 / / / / |
4 S0 / / / / 3
E v C 29 L
S 05% | .) % %) S o2

0.0% Primary Alt-cpu Alt-mem Alt-gen 0.1% r

. A CPU: 20GHz 29GHz 25GHz 2.4 GHz 0.0% , n - . , ,

o 5 10 15 20 25 30 BW: 40GB/s 24GB/s S0GB/s 40GB/s 0 2 40 6 80 100 120 140
Data Layout (Column Group Size) Lat: 180ns 90ns 120ns 100ns Concurrent Queries

Figure 15: Scans with strided accesses are Figure 16: FastColumns is able to accu- Figure 17: Working directly over com-
less efficient increasing the opportunities rately predict the crossover point for dif- pressed data gives a slight advantage for
where an index scan is beneficial. ferent hardware configurations. scans.

