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Access Path Selection: Scanning and Probing?




Access Path Selection: Scanning and Probing?

Scanning: Sequential search through all the data
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Access Path Selection: Scanning and Probing?
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Probing, Secondary Index Scan: Sort data and search




Historic Approach to Access Path Selection

* Selection of best Access Path based on a variety of
factors but largely dependent on query selectivity

* The more stuff you have to get, the more stuff you have to
look through

Sequential Scan Best

Secondary Index Scan Best

Selectivity




Access Path Selection? Performance is Key

Scan operator greatly optimized over the years

Rise of column data storage
mproved hardware capability
Parallel computing

Data compression *Possible to hide minor
inefficiencies

*Selection of access path might
not even matter



Summary: Access Path Selection Still Important!

* Selection based on query concurrency in addition to selectivity

* Possible to create a system that dynamically switches between

sequential and secondary index scanning
A

Scan is best

Historical Division

Our

m / Proposal

Concurrency

Selectivity

>




Methodology: Analytical and Experimental

* Mathematical model created to analyze scan performance
* Workload

* Data properties

* Hardware specifications

* Data structure characteristics

* Prototype data system, FastColumns, built and tested
* Four hardware configurations



Analytical Model

* Comprehensive mathematical model on the select operator

* Inputs point or range query
* Outputs collection of rows

e Other enhancements

* Data compression: Dictionary
compression to 2 bytes

* Zonemaps: Group data to
reduce tuples searched

Workload q number of queries
S selectivity of query i
Stot total selectivity of the workload
Dataset N data size (tuples per column)
ts tuple size (bytes per tuple)
Hardware Ca L1 cache access (sec)
Cy | LLC miss: memory access (sec)
BWs | scanning bandwidth (GB/s)
BWy | result writing bandwidth (GB/s)
BW; | leaf traversal bandwidth (GB/s)
p The inverse of CPU frequency
Ip Factor accounting for pipelining
Scan rw | result width (bytes per output tuple)
& b tree fanout
Index aw | attribute width (bytes of the indexed column)

offset width (bytes of the index column offset)




Analytical Model

e Focus on shared and index scans

(a)

Sequential
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Shared

Access Path Selection

_ Conclndex
APS = SharedScan

Can decide based
on what will be
less costly



Shared Scan Model

Cost of Predicate Evaluation

PE=2-f,-p-N

Cost of Moving Data

N-ts 7 . 7
I'Ds = Bve CPU Speed - “Calculations
Data Moved \ X0
Scan Rate /"2~ | sz Cost of Outputting Data
—— - N-rw
mem _
DR = gy
C ) R a)

Data Found
SharedScan = max(TDs,q - PE) + St - TDpg Write Rate



Index Scan Model

Cost of Tree Cost of
Traversal Writing

\ N\

ConcIndex =q-TT + Sior - (TL+TDy)+ Stor - TDr + SF - Cy

/ /

) Cost of Leaf Cost of

and Data Sorting
STDSC ST Traversal




Analytical Model Predictions

_ ConcIndex
APS = SharedScan

* Expanding the Analytical Model:

Function of Concurrency

q- l+(loﬂgfb(N] (BWS Cy +bBW5CA+bBWSpr>

APS (C],Sfof) =

max(ts,Z-fp'p'C]'BWS) + Stor 1w g‘v‘g;

BWs-C BW. BW.
. S ( 5-Cm —}-(aW‘f‘OW)-B—WS‘i"”W- B—Wz) Siort 1092 (Sior - N) - BWs - Cy

+
max (ts 2-fp-pP-q BWS)+Sror rw - %g max (fS 2:-fp-pP-q- BWS)‘|’Smr rw- %s
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Function of Selectivity



Analytical Results Dependent on Concurrency

Column
Grouping

Individual Avg. Query Sel. (%)

N=10% ts=4, BWS=40GB/s. CM=180ns, CA=2ns
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Results as a Function of Data Set Size

Heat map generated has a dependency on the number of
concurrent queries

Single Query Ten Queries Hundred Queries

_ q=100, ts=4, BW=40GB/s, CM=180ns, CA=2ns

10" e 10° 10° 10° 10" 10"
Data set size Data set size Data set size




Experimental Model

* Access Path Selection Algorithm Implemented
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Experimental Model Summary Results
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Thoughts on the Paper

* Brave paper attempting to challenge “common
knowledge”
 Alot of thought was put into the paper and there was
a really well developed analytical model
* Analytical model could be used to tune future
database systems

* Would be interesting to dig deeper into the model,
maybe with a Monte Carlo



Thoughts on the Paper

 Some information presented in the paper didn’t
support the main point the paper tried to convey
e However, that information showed some more
validity to the analytical model
 Disagree with the results and how the paper tried to
push the original intent of the study
* Possible that the results were biased by the
hardware selection and additional experimentation
with the analytical model would be useful



Thoughts on the Paper

Selectivity

m / Proposal

Scan is best
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gueries
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Thoughts on the Paper

Latency (ms)
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Seems like FastColumns had good results but it’s a

single query where the concurrency has large impact

* Monet probably does sequential scan when
FastColumns selected an index scan
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Index Scan Model

Cost of Tree Cost of
Traversal Writing

\ N\

ConcIndex =q-TT + Sior - (TL+TDy)+ Stor - TDr + SF - Cy

/ /

) Cost of Leaf Cost of

and Data Sorting
STDSC ST Traversal




Index Scan Model

ConcIndex =q-TT + Siot - (TL+TDy)+ Stor - TDR + SF - Cy

Workload | ¢ | number of queries
s; | selectivity of query i
Sior | total selectivity of the workload

Dataset N | data size (tuples per column)
ts | tuple size (bytes per tuple)

Hardware | C4 | LI cache access (sec)

Cy | LLC miss: memory access (sec)

BWs | scanning bandwidth (GB/s)

BWy | result writing bandwidth (GB/s)

BW; | leaf traversal bandwidth (GB/s)
p | The inverse of CPU frequency
fp | Factor accounting for pipelining

Scan rw | result width (bytes per output tuple) SF = Stot N -1 0g2» (Stot -N )
& b | tree fanout
Index aw | attribute width (bytes of the indexed column)

ow | offset width (bytes of the index column offset) SC, — §;- N -1 3) (S [° N ) -C A




Experimental Model Performance
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Figure 12: There exists a crossover point Figure 13: The number of concurrent Figure 14: The crossover point is also af-
for access path selection in analytical sys- queries is a critical component of access fected by the data set size (¢ = 8).

tems even when ¢ = 1. path selection in analytical data systems.
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Figure 15: Scans with strided accesses are Figure 16: FastColumns is able to accu- Figure 17: Working directly over com-
less efficient increasing the opportunities rately predict the crossover point for dif- pressed data gives a slight advantage for
where an index scan is beneficial. ferent hardware configurations. scans.



