Monkey: Optimal Navigable
Key-Value Store

By
Efstathios Karatsiolis

Monkey: Optimal Navigable Key-Value Store

* Monkey maps the design of LSM trees and is able to tune critical design knobs

* Monkey is able to navigate the curve and find the best trade-off for a given application

l m L.
«t+—— The Pareto curve, beyond which lookup cost cannot be
improved without harming update cost, and vice versa.

|
1
|
|
|
1
\

"
o
=
+2
o
I'-u-!‘:
A
'
L]
—
—
T
F_"d
-~
O
L]
-

Update cost (amortized 1/0Os)

LSM Trees Background
Key Words
Runs:

& A block of data as stored in the LSM Tree
BloomFilter:

& A probabilistic structure that can answer maybe/no. Has a False Positive Rate (FPR), which describes
how often the bloomfilter was wrong in its “Yes” prediction.

FencePointer:

¢ Metadata presenting the minimum and the maximum value of a page

Tier/Level:
& A level of the LSM tree. Levels start at 0
Lookup:

¢ Either a single value lookup or a ranged query

Update:

¢ Either an insert or update or delete

Overview of an LSM-tree and list of terms used
throughout the paper.

Total number of entries

Number of levels
Number of entries that fit into a disk page

-
E
Size of an entry

fence
lookup buffer filters pointers

Size of the buffer in disk pages

Size ratio between adjacent levels

Size ratio value at which point L converges to 1 -

- Total amount of main memory in system bits
ain memory allocated to the buffer

-B-Tt i
memory allocated to the Bloom filters

M = My, + Mgper. + M Total = Main memory allocated to the fence pointers

pointers

LSM Trees Background
Key Concepts

¢ Buffering Updates :

& A buffer in memory receives all the updates.
The buffer 1s in Level 0.
When buffer fills 2 empty contents to disk.

&
&
& Disk levels start at 0.
& The size of the buffer Mbuffer = P*B*E
&

The overall number of levels.

& Merge Operations :

& To bound the number of runs that a lookup has to probe, an LSM-tree organizes runs among the
different levels based on their sizes, and it merges runs of similar sizes.

& Two merging policies : lelveling and tiering

Tier vs Level

Tiered LSM-Tree Leveled LSM-Tree

insert 13 EI:' s insert 13
E

[]

merge &

- move [ilsfr]ufis]ie
| 4|8 -

24 s]u21s|s] |1]s]7]r0fu3[re] [1[2]8[4]7]|s]10{12]13[15]18]19

L.SM Trees Background
Key Concepts

¢ Lookups:

& A lookup starts from the memory buffer and traverses the other levels. After finding the first
matching entry it terminates. Range lookups require merging of runs on different levels.

& Probing a Run:
& Fence pointers allow to read almost exactly as many pages as we need
¢ Bloom Filters:

¢ Each run has a Bloomfilter to facilitate lookups. False positive rate is derived from the number
of bits allocated to each entry and the total number of entries

Tier vs Level — Round 2

Technique
(1) Log
(2) Tiering
(3) Leveling

(4) Sorted Array

':) |: J'\‘r : E

“Mbuffer

T i NE
O(T -logy('
(ST\ Mpuffer)

ay ¢ NE
O(logr(%
ogr s buff

M filters _

Update Cost

Merge Policy

——— Tiering

Update cost (I/Os)

Size Ratio T

Cost Analysis
Tier vs Level — Round 3

. M filters -
Tier Lookup Cost OL-T-e =7) 1/Os

Tier Update Cost

Level Lookup Cost 15Y§3 t—iq—, I/0s

Level Update Cost

Design space contentions

¢ Contention 1:

How do we allocate a given amount of main memory of M-filters among the different Bloom filters?

- Reallocating memory from one filter to another reduces/increases false positive
rate, what 1s the optimal ?

¢ Contention 2:

How to allocate the available main memory between the buffer and the filters?

— Larger buffer == faster lookup AND smaller update cost
BUT smaller Bloom Filters == slower lookup

¢ Contention 3:

How to tune the size ratio and merge policy?

- Decreasing/increasing size ratio on tiering/leveling improves lookup but degrades update.
With different workloads, how do we optimize ?

That’s where MONKEY comes 1n

Monkey

& Monkey is an LSM tree based key-value store

& Is able to reach the Pareto curve and find the best possible balance between lookups and
updates g

¢ Maximized throughput for uniformly random workloads

& Key features:
& Design Knobs

¢ Minimizing Lookup Cost
& Performance Prediction

& Autotuning

Term describing Monkey

Level State-of-the-art Monkey l

P11 =M1

pL =p

Figure 6: Overview of how Monkey allocates false positive rates p;, p>...pr to Bloom filters in proportion to the number of key-value
pairs in a given level, and a further list of terms used to describe Monkey.

Minimizing IL.ookup Cost

& Average worst case lookup cost: ¢ Main Memory Footprint

_ Y i1 pi. Wwithleveling . B N T_—1 i In(p;)
(T —1)-XE | pi, with tiering TS T Q)2 T = Tl
where 0 < p; <1

R

Leveling Tiering

l1 jf ll.:I :::" L'fi’fr{rrt:d] i'f f } Lfifrt’r{‘d

! n__f':'fr ered) (T—1)

pLfiltered t 11 else 7 filtered ¥

ere e[T—1)
n filtered ™\ . else

for 0O<R<L for 0O<R<L-(T-1)
and 1 <i<L and 1 <i<L

and L ¢ijereq = L — max (0, @J) and L fijtereq = L — max (0, U)

(5) (6)

Bloomfilters in Monkey

& Monkey does not implement BloomFilters to all the levels. Why ?
& —> Because of the FPR
& Because of the fence pointer, probe cost 1s the same no matter the level
& Bloomfilters are T times bigger in every level compared to the 1-1 level

& Maintaining low FPR requires much more space

¢ Monkey finds optimal number of levels to have a BloomFilter

& Monkey sets the FPR proportional to their size

Bloomfilters
everywhere

Bloomtfilters

where 1t 1S
usetul

Predicting I.ookup and Update Cost

& Modeling zero result lookup cost (R)

R= R__f'm ered 1 H:.rul_f'm ered

'F] M .
7= — futers .]n,:":'_i'-l21Tln;|‘_f'i"|rn.-‘.f'|?-.é'
I —1

- € with leveling

R filtered —

M filters In(2)2 _Tlu.u__f"a'!r ered

T " " |.
I'T-T-e" with tiering
Lynfittered s with leveling

R;.-H_.f'm ered — -. ‘ o
L:.ru__f'm ered ’ 1.._T — 1 _,]1 with tieri ng

Predicting I.ookup and Update Cost

& Number of deeper levels that have no filter

Mihreshold < J'w_f'ﬁ ters

T (M) —‘ "wrh.r'f.-.:h.-:.u’:f

M g ers — L < M__fﬂ ters < Mihreshold

[} < A/ - ‘I’wf exshold
L, 0 < Myitters < h.}‘h
N In(T)

M hreshold = In(2]Il ' ﬁ

Modeling Worst-Case Non-Zero-Result I.ookup Cost (V)

with leveling

with tiering

Modeling Worst-Case Range Lookup Cost (Q).

s-y+L. with leveling
,_

s - % +L-(T—1). with tiering

Time to compare

State of the Art Lookup Cost

Merge policy Update

Cost (W} Mj'r'!rfr.'.' < Mijyeshola M preshold < Mj'e'.!'rfrs

(b)

(c)

(1) Tiering (T = Tj;,)

(2) Tiering 2 < T < Tjin)
(3) Leveling (2 < T < Tiim)
(4) Leveling (T = Tim)

O(T -logy (

0 N-E

{ Mbuj'_,l"fr

N-E
M.E‘anf_f'ﬂr J }

O(IGgT ll(M;::_ff'w ’]

O(1)

M filters
e _LN_ J

~ Mjfilters
)-e N)

N-E
G[My, ffer

O(T -lo N.E
[&T { Mbu_f'_,l"fr)
ol ~ Mfilters
L] e i
L er { Mhu_f' fer }
M filters

N-E
Ole — ¥)

Merge policy Monkey Lookup Cost (R)
M

P ithreshold .
% i M_f'r!rfr.'i i: Mrhmﬂmh!

(d)

Miireshota = M filters
(e)
, M filters

Mbu_f' fer
~ Mfilters
OT-e N)

M filters
{}(E—_ fla'r }

~ Mfiliers
Ole — 7)

N-E
Mbu_f' fer
N
GI{T . IDgT [Mj':'!rfr'.' ”

O(togr (775,))

ilters

O(1)

(1) Tiering (T = Tj;,,)

O(
(2) Tiering 2 < T < Tijn)
(3) Leveling 2 < T < Tjm)

(4) Leveling (T = Ty)

Time to compare

3 (B, - Hitters) i Merge Policy Size Ratio T
L . fY x i . ¢ |k Mpay g fer € *'ILU-% o
. Leveling: X =1 e State of the art I ———- Tiering o 2
é Tiering: X =T —1 —— Monkey = A — Leveling o 4
—~ = o s
4+ - * -Thm
o %
= = ot o Sorted
3 T—T X o - ol M fitters \ State of the art Array
3 g i (e~ L8) : Arryy
0 ' / Monkey
. '
Hthreshold (1 (1 _NE)
t] 0 Of(g) J O\ Thugser)
M ¢iters (bits) Update cost (1/0s)

Figure 7: Monkey dominates the state of the art in terms of Figure 8: Monkey dominates the state of the art for any merge
lookup cost R for all values of M jj; ¢ys. policy and size ratio.

Scalability and Tunability

¢ Scaling Bloom filters’ footprint with the number of data, lookup cost remains fixed whereas
in the state of the art it increases at a logarithmic rate.

¢ Lookup cost is independent of the entry size, and so it does not increase for data sets with
larger entry sizes.

& Lookup cost 1s independent of the buffer size. This simplifies tuning relative to the state of
the art 2 no need to carefully balance main memory allocation between the buffer and
filters to optimize lookup performance.

Scalability and Tunability

(X - logp| NEy)
. erl =57)

Lookup cost R (I/0s)

T ; lI|r-. W
Ol hrj. v - logp(- T))

i 1
Rt
! ;
-
—
o
—
I'-"'
L
ced
|'T;!
]
et
-
By
—
[—

]_.{"".'{"1111,!_'_{,': X =1 mumm State of the art
Tiering: X =T == MNonkey

Unfiltered
LSM-tree

Sweet spot

Unfiltered

Sweet spot

Buffer size Mpyfrer (log scale)

Tuning the Size

Ratio and Merge
Policy

The merge policy and size ratio are

complementary means of navigating the
same tradeoffcontinuum.

Monkey a divide and conquer algorithm
that linearizes this continuum into a
single imension and finds the tuning
that maximizes throughput.

Term

Definition

Units

Proportion of zero-result point lookups

Proportion of non-zero-result point lookups

Proportion of updates

Proportion of range lookups

Main memory to divide between the filters and buffer

bits

Average operation cost in terms of lookups

/0

Time to read a page from persistent storage

sec

Worst-case throughput

1/O / sec

Lookup cost R (I/0s)

Table 2: Table of terms used for tuning.

— Tiering
— Leveling

nitial point

[

[terati
[terat
[

ion 1
ion 2

teration 3

target

Update cost W (1/0Os)

Tuning Main Memory Allocation

& Three-step strategy

& Alocate first M bytes to buffer, since there are levels where bloomfilters might have no
use.

& Allocate 5% to the buffer and the rest 95% to the bloomfilters

& Continue following step two until the I/O overhead due to false positives becomes
negligible

& If there 1s more main memory in our budget beyond step two —> allocate it to the buffer
to further reduce update cost.

Experiments

& Monkey Scales Better with Data Volume

¢ Figure 11 (A) shows how lookup latency corresponds to disk I/Os. The average number of 1/Os per
lookup is lower than one because the lookups target non-existing keys, and so they do not issue I/Os most
of the time due to the filters.

¢ Figure 11 (B) depicts results for a similar experiment, with the difference that this time we keep the
number of data entries fixed and we instead increase the entry size.

& Monkey Needs Less Main Memory

¢ Repeat the default experimental setup multiple times, each time using a different number of bits-per-entry
ratio allocated to the filters. The results are shown in Figure 11 (C).

& Monkey Improves Lookup Cost for Different Workloads

& Experiment shows that Monkey significantly improves lookup latency for non-zero-result lookups across a
wide range of temporal locality in the query workload. The results are shown in Figure 11 (D).

[
]

—
evel DB -
..» Monkey

Ij Il,m:el]I:)BI
O Monkey

[d=]

o B o LI = T B

Lookup latency (ms)
Lookup latency (ms)

Lookup latency (ms)

~ 0.2 1/Os per lookug]
257 ! ?Iw ' Elm ' 128 256 512 1024 2048 4096 2 3 4 '

(A) Number of entries (log scale) (B) Entry size (bytes, log scale) (C) Bits per entry in filters

i — 4000 |
_—|:| Level DB _ ‘ Size Ratios I

pO Monkey ——- LevelDB O 2

—Aa—E—8—o—O —— Monkey A4

[18

<16

[

= =
= ot
b 7

-
]

T T I
. O Navigable Monkey 1
3900 7 & Fixed Monkey

3000 [1 Level DB

2500
2000 L6 L6 L8
1500
1000

500

L 1 L 1 L 1 L 1 . 1 L] L 1 L D I 1 L 1 . 1 . 1 L] L 1 L 1 . 1 . 1

01 02 03 04 05 06 07 08 09 02 03 04 05 06 07 08 09 1.0 01 02 03 04 05 06 07 08 09
(D) Temporality coefficient (E) Update latency (ms)

¥
=

tiering
SUI[DAI]

~1 [(s per] 1| |]~'_l',]| 4

Jp————EFT

Lookup latency (ms)
Lookup latency (ms)
Throughput (ops/s)

i

| least most
L Tecent uniform recent

(F) % lookups in workload

Figure 11: Monkey improves lookup cost under any (A) number of entries, (B) entry size, (C) amount of memory, (D) lookup locality,
and (F) merge policy and size ratio. It navigates the design space to find the design that maximizes throughput (F).

Experiments

& Monkey Reaches the Pareto Curve

¢ Repeat the experimental setup multiple times, each time using a different configuration of size ratio and
merge policy. Measure the average latencies of lookups and updates and plot them against each other
for Monkey and LevelDB. The result is shown in Figure 11 (E).

& Monkey Navigates the Design Space to Maximize Throughput.

¢ Repeat the default experimental setup multiple times, with the difference that during the query
processing phase we vary the ratio of zero-result lookups to updates from 10% to 90%. Results are
shown in Figure 11 (F).

Discussion

	Monkey: Optimal Navigable Key-Value Store
	Monkey: Optimal Navigable Key-Value Store
	LSM Trees Background�Key Words
	Overview of an LSM-tree and list of terms used throughout the paper.
	LSM Trees Background�Key Concepts
	Tier vs Level
	LSM Trees Background�Key Concepts
	Tier vs Level – Round 2
	Cost Analysis�Tier vs Level – Round 3
	Design space contentions
	That’s where MONKEY comes in
	Monkey
	Term describing Monkey
	Minimizing Lookup Cost
	Bloomfilters in Monkey
	Slide Number 16
	Predicting Lookup and Update Cost
	Predicting Lookup and Update Cost
	Modeling Worst-Case Non-Zero-Result Lookup Cost (V)
	Modeling Worst-Case Range Lookup Cost (Q).
	Time to compare
	Time to compare
	Scalability and Tunability
	Scalability and Tunability
	Tuning the Size Ratio and Merge Policy
	Tuning Main Memory Allocation
	Experiments
	Slide Number 28
	Experiments
	Discussion
	Thank you

