Faster: A Concurrent
Key-Value Store with
In-Place Updates [

High Level

- 1 Design Principle: scalability
* 2 Building Blocks: epoch protection framework + hash index

* 3 Memory Allocators: in-memory + log-structured -> HybridLog

Context and

Infrastructure

+ Context(not orthogonal)

+ Concurrent: process but not execute all tasks at the same time
+ Atomic: all or nothing, CAS, FAA, FAI
* Multi-thread

* Cache-optimized, cache line aligned

+ Each address has fixed size bytes, 64-bit
* Important to keep track of address in multi-threading
+ Difficult to access otherwise
* Latch-free: check before apply operations to object

* Infrastructure: 64-bit machine, 2 sockets, single network

Thread 1

fetch_ fetch_ fetch_
multiply multiply multiply

NN NN
- - - -— - >
1 2 - 8 16

Thread 2 \fe{:_

multiply

shared

“*--. failed compare-and-swap because
shared was changed by other thread

https://howtodoinjava.com/java/multi-threading/concurrency-vs-parallelism/
https://en.wikipedia.org/wiki/Data_structure_alignment

- Hash index: later, key not part of it
* Record: linked-list, further studies can be done for entry’s history
- Allocators: later, comparison for now

Architecture nn P |

SYSte m Threads Hash Index (§3) Records Allocators

v
7
<
3
=}

<

A

\ 4 \ 4
-~
=

o

.

E:

1]

Concurrent & Larger-Than- In-Place

Record Allocator Latch-free Memory Updates
§4 In-Memory v 4
§5 | Append-Only-Log v v
§6 Hybrid-Log v v 4

Figure 1: Overall FASTER architecture.

Building Block #1: Epoch-Based Synchronization

(scalable threading model)

- Life cycle: Acquire -> (->BumpEpoch ->) Refresh -> Release
* Acquire: reserve an entry forT and set Et to E
* BumpEpoch(action): ¢ -> c+1, add <c, action> into drain-list

* Refresh: update Et periodically(e.g. 256 operations) to E, Es to current max safe epoch + trigger ready
actions in drain-list

* Release: remove entry for T from epoch table
* Epoch
* E, Es, Et: forall T, Es<Et<=E

* Trigger actions: trigger ready actions from drain-list, a list of <epoch, action>, whenever Ec = Es, using
compare-and-swap to ensure an action is executed exactly once.

* Scalability: recompute Es and scan through drain-list only when changes in current epoch

Building Block #2: Hash Index

(cache-aligned array of 2k hash buckets)

* Organization: <tentative bit, tag, address>

Tentative Bit Header
15 bits 48 bits | "I Koy | _—
« Address/offset: 2~k hash bucket for a key with hash value is | e | adies J R W
first identified via the first k bits of h e Sbyes
* find or delete: identify the hash-bucket with k hash bits and
then scan to find the matching tag to operate on operate
* Tag: increase the effective hashing resolution by reducing

B Address \‘\\ \\\\
| | \l |/ | | é i 16 bits 48 bits >«
hash collisions; next 15 bits of address or offset
 Tentative bit: two phase insert

Meta | Address
64 bytes

<
<

8 bytes i
Hash Bucket Format Record Format

Figure 2: Detailed FASTER index and record format.
* insert: deterministically choose the first empty slot and mark

tentative + rescan to either retry or reset

Building Block #2: Hash Index - cont.
(cache-aligned array of 2k hash buckets)

Resize and checkpointing the index
On-the-fly: epoch protection(low overhead) and state machine

Two versions: double or half the size, and set prepare-to-resize,
resizing, and stable states

Interaction with Current Memory Allocators

* In-Memory: store physical address in memory

- Append-Only Log Structured: store logical address in disk

https://superuser.com/questions/319000/what-differences-and-relations-are-between-logical-and-virtual-memory

* Analysis
* Pros: Enables latch-free access and in-memory updates
+ Cons: recovery

* Operations for records

Reads: find a matching tag, then traverse the linked-list for that entry to find a
record with the matching key

+ Updates and Inserts: Blind Update (Upserts) + Read-Modify-Write (RMW)
* Find the hash bucket entry for the key
+ If doesn’t exist: two phase insert
« If exists: scan the LL to find a record with a matching key

* If record exists: in-place update

Epoch guarantees the thread'’s access to the memory I n - M e m O ry -

safety as long as it doesn’t refresh its epoch

« Otherwise: splice the new record into the tail of LL via "
b Ny store physical

+ Deletes : splicing it out of the LL via compare-and-swap either on a record -
address in

header or hash bucket entry if it's the first record
* Set entry to o to make it available for future inserts
* Epoch protection enables in-place updates because of each thread’s memao ry
thread-local of drain-list

https://superuser.com/questions/319000/what-differences-and-relations-are-between-logical-and-virtual-memory

Append-Only Log Structured: store logical
address in disk (existing techniques + epoch

protection)
* Log-Structured Allocator Structure s Lot e et EZ‘L:k‘ﬁ“,i
» Tail offset: points to the next free address 7770007 /,‘ /,”,,l,,,,y ,
- Where new record allocation happens via fetch-and-add (reset -" 7 on-Disk /..) rMemory /%
or retry) S DN
 Updates epoch when cross page boundaries » ‘
» Flush, and bump epoch current epoch to set flush-status vush s [F[F[e[er]r] cowasans [clofofo]o]o]
- Head offset: tracks lowest Iogical address Figure 4: Tail Portion of the Log-Structured Allocator

» Evict pages: increment head offset and bump current epoch
with trigger action to set closed-status, once safely offloaded

« Circular Buffer: fixed-size page frames with a LA each, sector-

aligned, to avoid additional memory copies for unbuffered reads and
writes

Append-Only Log Structured: store logical
address in disk - cont.

(existing techniques + epoch protection)

- Operations A

Tail Offset
Increasing Logical Address LA : k LA =fk +A
* Update and Inserts: same as above, except for: // /,. //”I/II/I]V -
- setinvalid in header bit and to retry when fails 7 7 onie /") JMemory /é
* Insert updates to the tail of the log and link to previous record '/////// 775y P77 A 7/
* Delete: same as LSM tree, tombstone using a header bit and require T |> |
log garbage collection Flush Status | F | F [F[F[F[F

Closed status | c [0 [0]o]o]o]

« Read: check if address is more than current head
* If yes: like before
+ Otherwise: issue async to request to retrieve the record
* each user operation is associated with context

+ each thread-local has a pending queue of contexts of
completed async requests that refresh periodically

Figure 4: Tail Portion of the Log-Structured Allocator

* Advantages
* Higher level of cache for more frequently accessed records

* 1: Access path for keys of different hash buckets don't collide
* L:Updating parts of a larger value is efficient
* 1 & L: Most updates don‘t need to modify the FASTER hash index

* Structure
* Read-only offset

* Update: similar as log, except for now we employ Read-Copy-Update
- Safe read-only offset

" * Problem: both followed epoch correctly yet the RO offset changed, so incorrect
HYb rld Log result -> two copies of L now

* Tracks the read-only offset seen by all the threads. The values is between
minimum value of read-only offset seen by any active FASTER thread and
maximum read-only offset

* Only one could succeed

* Fuzzy region: region between safe read-only and read-only offset
- Different updates

+ CRDT: conflict-free replicated data types
* Each computed as independent partial values that can later be merged

* Recovery and Consistency
* states: none, only r, orraandr2

Increasing Logical Address Read-Copy-Update In-Place-Update
e e

)
T V SIS / 7 /7 //// / V A / 8 Logical Address Read-Modify-Write CRDT Update i Blind Update
< Stable Read-Only / Mutable I in:::; A: — :i:::';:yncmvl cr)e;::‘l, :tml-end Create a new record at tail-end .
5 < SafeReadonlyAddress | Add to pending list Create a delta record at tail-end | CTC4t€ @ new record at tail-end
//””// £ //l// = < ReadOnlyAddress Create an updated record at tail-end
<4—— Disk —> < In-M ory > <o Update in-place Update in-place 1 Update in-place 1

Table 2: Update scheme for different types of updates

Figure 5: Logical Address Space in HybridLog

HybridLog

T1 T2 T3 T4
Obtsin L Obtain L Minimum Read-Only Region
L<RI — | -]
RO Offset N
RT > 2 o | NN —
L<R2 R2) 7/ k uzzy Region
L:5 5 L Maximum ___ // > .
55 RO Offset 7 /7] F Mutable Region

Figure 6: Lost Update Anomaly Figure 7: Thread Local View of Hybrid Log Regions

Experiments

140 3

160 e FASTER-AOL (zipf) bay A’,\ A 140 1
~~+--FASTER-AOL (uni) T120 [egay hy g /¥ T 225 z
1y —*— FASTER-HL (uni) E od g w§ & S

3120 . FASTER-HL (zipf) £ 100 e ws % 2 g 01
S % 80 | —e—Throughput -Usi s, 0 5 E s E
. o Lo S

s % & 4 —® Throughput - Zipf = 5 s 001
S é" ~-® - Log Rate - Uni ' 0z %1 %
2 40—~ Log Rate - Zi a0 S5 8 E

5 40 (= \ % 0.001
z 20 W 3 § 0.5 §
W [-9 -9

B 0 00 0.5 70 002 03 04 05 06 07 08 09 1 0-0001

0 20 40 60 IPU Region Factor ’ ’ ']PU .Regi;)“ F ;‘mm'.) 0 Nuzr?nber 0f'1'h!'4€08d8 60

Number of Threads
Figure 11: Throughput with (a) Throughput & log growthrate. (b) Percentage of fuzzy ops. Figure 13: Percentage of fuzzy

append-only vs. hybrid logs. Figure 12: Effect of increasing IPU region. ops with increasing #threads.

07
1 wAFO WLRU_1 WLRU_2 0:2 WFFO ®WIRU_1 ®LRU.2 WIRU1 ®LRU2
o 0 "CLOCK WHLOG o ose "COCK mHLOG . 08 “CLOCK WHLOG
= 5 . 505
& & 03 s
% 06 2025 704
s =
s 04 s 02 203
< £ o015 S o2
8 02 8 01 I S
3 I I
0 0 . lll
112

18 116 1/4 116
Cache Size/Total Size Cache Size / Total Slze

Figure 14: Cache miss ratio (Uniform). Figure 15: Cache miss ratio (Zipf). Figure 16: Cache miss ratio (Hot Set).

Cache Size / Total Size

= Intel TBB ®FASTER = Intel TBB

, WFASTER wintel TBB 7 WFASTER ®Intel TBB ®FASTER
S g "MasTree =RocksDB 8 ¢ ®™MassTree »RocksDB S50 “MassTree =RocksDB E ®MassTree *RocksDB
2 = 2 z
Z s s s Z &
S = S =
= 4 < 4 = 100 < 100
- o - =
£ R H H
E g 2 ® 50 2 50
£ N || S L o Hu - [
L I- - n i I- - - - B - o Han el En
0:100 0:100 50:50 100:0 (ro) 0:100 0:100 50:50 100:0 (ro) 0:100 0:100 50:50 100:0 0:100 0:100 50:50 100:0
RMW (wo) RMW Wo)
YCSB-A Variants (uniform) YCS%—A Variants (Zipf) YCSB-A Variants (uniform) YCSB-A Variants (Zipf)

(c) All threads; uniform distr.

(d) All threads; Zipf distr.

(a) Single thread; uniform distr. (b) Single thread; Zipf distr.
Figure 8: Throughput comparison of FASTER to other systems, YCSB dataset fitting in memory.

150 . FASTER (lcpu) = Intel TBB (lcpu) 100
FASTER (1 Intel TBB (1 50
; Clmmis o TimiR e 3
| e C] o
2 e Masstree (Gepu) = RocksDB (2cpu) gs0 :;ﬁﬂ{ﬁ? = jmel THE. ((“) ;2. 40
Z100 Z) 2
60 v
n g = 330 ——~FASTER (50:50)
H Z40 2 2 RocksDB (50:50)
éo 50 ‘én E" —~e—FASTER (0:100)
= £20 é 10 ~o~RocksDB (0:100)
0 10 20 30 40 50 0 10 2 30 40 50 60 0 5 10 1S 20 25 30 35 40 45
Number of Threads (}‘Jumber of Threads Total Memory Budget (GB)

Figure 10: Throughput with increasing

(a) RMW updates; 8-byte payloads. (b) Blind updates; 100-byte payloads.
memory budget, for 27GB dataset.

Figure 9: Scalability with increasing #threads, YCSB dataset fitting in memory.

Reviews

* Appreciate:
* connect the research with code implementation

* analyzed state-of-the-art approaches thoroughly

* Would appreciate:
- what happens if the queries have high percentage on read-only or other variants?

- what happens if we could apply more sockets?

