
Faster: A Concurrent
Key-Value Store with

In-Place Updates presented by Shirley Hu

Faster: A Concurrent
Key-Value Store with

In-Place Updates presented by Shirley Hu

High Level

� 1 Design Principle: scalability

� 2 Building Blocks: epoch protection framework + hash index

� 3 Memory Allocators: in-memory + log-structured -> HybridLog

Context and
Infrastructure

� Context(not orthogonal)
� Concurrent: process but not execute all tasks at the same time

� Atomic: all or nothing, CAS, FAA, FAI

� Multi-thread

� Cache-optimized, cache line aligned

� Each address has fixed size bytes, 64-bit

� Important to keep track of address in multi-threading

� Difficult to access otherwise

� Latch-free: check before apply operations to object

� Infrastructure: 64-bit machine, 2 sockets, single network

https://howtodoinjava.com/java/multi-threading/concurrency-vs-parallelism/
https://en.wikipedia.org/wiki/Data_structure_alignment

System
Architecture

� Hash index: later, key not part of it
� Record: linked-list, further studies can be done for entry’s history
� Allocators: later, comparison for now

Building Block #1: Epoch-Based Synchronization

(scalable threading model)

� Life cycle: Acquire -> (->BumpEpoch ->) Refresh -> Release

� Acquire: reserve an entry for T and set Et to E

� BumpEpoch(action): c -> c+1, add <c, action> into drain-list

� Refresh: update Et periodically(e.g. 256 operations) to E, Es to current max safe epoch + trigger ready

actions in drain-list

� Release: remove entry for T from epoch table

� Epoch

� E, Es, Et: for all T, Es < Et <= E

� Trigger actions: trigger ready actions from drain-list, a list of <epoch, action>, whenever Ec = Es, using

compare-and-swap to ensure an action is executed exactly once.

� Scalability: recompute Es and scan through drain-list only when changes in current epoch

Building Block #2: Hash Index
(cache-aligned array of 2^khash buckets)

• Organization: <tentative bit, tag, address>
• Address/offset: 2^k hash bucket for a key with hash value is

first identified via the first k bits of h
• find or delete: identify the hash-bucket with k hash bits and

then scan to find the matching tag to operate on operate

• Tag: increase the effective hashing resolution by reducing
hash collisions; next 15 bits of address or offset

• Tentative bit: two phase insert
• insert: deterministically choose the first empty slot and mark

tentative + rescan to either retry or reset

Building Block #2: Hash Index - cont.
(cache-aligned array of 2^khash buckets)

� Resize and checkpointing the index
� On-the-fly: epoch protection(low overhead) and state machine
� Two versions: double or half the size, and set prepare-to-resize,

resizing, and stable states

Interaction with Current Memory Allocators

� In-Memory: store physical address in memory

� Append-Only Log Structured: store logical address in disk

https://superuser.com/questions/319000/what-differences-and-relations-are-between-logical-and-virtual-memory

In-Memory:
store physical
address in
memory

� Analysis
� Pros: Enables latch-free access and in-memory updates
� Cons: recovery

� Operations for records
� Reads: find a matching tag, then traverse the linked-list for that entry to find a

record with the matching key
� Updates and Inserts: Blind Update (Upserts) + Read-Modify-Write (RMW)

� Find the hash bucket entry for the key
� If doesn’t exist: two phase insert
� If exists: scan the LL to find a record with a matching key

� If record exists: in-place update
� Epoch guarantees the thread’s access to the memory

safety as long as it doesn’t refresh its epoch
� Otherwise: splice the new record into the tail of LL via

compare and swap.
� Deletes : splicing it out of the LL via compare-and-swap either on a record

header or hash bucket entry if it’s the first record
� Set entry to 0 to make it available for future inserts
� Epoch protection enables in-place updates because of each thread’s

thread-local of drain-list

https://superuser.com/questions/319000/what-differences-and-relations-are-between-logical-and-virtual-memory

Append-Only Log Structured: store logical
address in disk (existing techniques + epoch
protection)

� Log-Structured Allocator Structure
� Tail offset: points to the next free address

� Where new record allocation happens via fetch-and-add (reset
or retry)

� Updates epoch when cross page boundaries
� Flush, and bump epoch current epoch to set flush-status

� Head offset: tracks lowest logical address
� Evict pages: increment head offset and bump current epoch

with trigger action to set closed-status , once safely offloaded
� Circular Buffer: fixed-size page frames with a LA each, sector-

aligned, to avoid additional memory copies for unbuffered reads and
writes

Append-Only Log Structured: store logical
address in disk - cont.
(existing techniques + epoch protection)

� Operations
� Update and Inserts: same as above, except for:

� set invalid in header bit and to retry when fails
� Insert updates to the tail of the log and link to previous record

� Delete: same as LSM tree, tombstone using a header bit and require
log garbage collection

� Read: check if address is more than current head
� If yes: like before
� Otherwise: issue async to request to retrieve the record

� each user operation is associated with context
� each thread-local has a pending queue of contexts of

completed async requests that refresh periodically

HybridLog

� Advantages

� Higher level of cache for more frequently accessed records

� I: Access path for keys of different hash buckets don’t collide

� L: Updating parts of a larger value is efficient

� I & L: Most updates don’t need to modify the FASTER hash index

� Structure

� Read-only offset

� Update: similar as log, except for now we employ Read-Copy-Update

� Safe read-only offset

� Problem: both followed epoch correctly yet the RO offset changed, so incorrect

result -> two copies of L now

� Tracks the read-only offset seen by all the threads. The values is between

minimum value of read-only offset seen by any active FASTER thread and

maximum read-only offset

� Only one could succeed

� Fuzzy region: region between safe read-only and read-only offset

� Different updates

� CRDT: conflict-free replicated data types

� Each computed as independent partial values that can later be merged

� Recovery and Consistency

� states: none, only r1, or r1 and r2

HybridLog

Experiments

Experiments

Reviews

� Appreciate:
� connect the research with code implementation
� analyzed state-of-the-art approaches thoroughly

� Would appreciate:
� what happens if the queries have high percentage on read-only or other variants?
� what happens if we could apply more sockets?

