Skipping-oriented
Partitioning for
Columnar Layouts

Authors: Liwen Sun, Michael J. Franklin,
Jiannan Wang, and Eugene Wu

Presentation: Allison Weaver

\ Overview

e Introduced to Generalized Skipping Oriented Partitioning (GSOP):
a hybrid data skipping framework that takes into account
row-based and column-based store tradeoffs with partitioning

data
o GSOP generalizes the original SOP framework by removing

the atomic-tuple constraint

Importance

As data volumes continue to grow, data skipping mechanisms
become more critical to improve performance in modern
analytics databases and the Hadoop ecosystem

Need a method of data skipping that is optimized for
column-based stores rather than just row-based stores

Finds balance between tuple reconstruction and skipping
effectiveness

Vocab

e Tuple: A single row of a table, which contains a single record for that

relation

Block: tens of thousands of tuples, how data is organized

Feature: representative filters which can span many columns

Feature Vector: characterization of tuple

Feature Conflict: when the best partitioning schemes for different

features do not overlap, happens often with complex workloads

e Tuple reconstruction: the process of assembling requested column
values back into tuples during query processing

e Data cell: each individual column value of a tuple

General Comparison SOP vs. GSOP

year grade course year grade course grade year course
2012 A DB 2011 A Al A t 20m Al

2011 Al 2011 B oS A t, 201 0s

A
2011 B 0S
C DB

2012 A DB B t, 2012 DB

2013 2013 C DB C t, 2013 DB

(a) original data (b) a SOP scheme (c) a GSOP scheme

e Ex.two features to be extracted: F1: grade == ‘A’ and F2: year > 2011 AND course = ‘DB’
o F1-t1t2]|t3,t4 (separate A’s from rest of rows)
o F2-t1,t4|t2,t3(separate year 2011 and separate DB’s)
e SOP produces only monolithic horizontal partitioning schemes, viewing every tuple as an
atomic unit. This can result in feature conflicts.
e GSOP solves feature conflicts, but can result in tuple reconstruction.

SOP Framework

Based on two properties:

1. Filter Commonality: a small set of filters are commonly used by
many queries (10% of filters used by 90% of queries)
o Designing data layout based on small number of filters can
benefit most queries
2. Filter Stability: a tiny fraction of query filters are newly
introduced over time
o Designing data layout based on past query filters can
benefit future queries

Steps of SOP

features

A='m’, 2
B<0, 1
C like ‘y%', 1

(vector: tuple)
pairs
(111, t4)
(000, t5)
(101, t3)
(010, t,)

1. Workload Analysis
o Extracts features using
frequent item-set mining
o Subsumption relations
2. Augmentation
— (:'::;m o Data are scanned for given
th m Ay 2 features and results stores
in augmented feature vector
Partitioning
Group vector, tuple pairs
into vector, count pairs
o Clustering algorithm
generates partition map
o Each block gets a union map

23m0y4

block 2
010 (= 000 OR 010) 3.
t, f 0 x 6
fe £ -1 x 2 O

Partitioning Spectrum

Right end: partition each column individually, mitigates feature conflicts, introduces

overhead for tuple reconstruction
Left end: SOP framework, no separation of columns, no tuple reconstruction, a lot of

feature conflicts
e Ex.SELECTB,D FROM TWHERE B<0 and D=2

GSOP Framework

(1)
Workload Analysis
—
@
Augmentation

)

Column Grouping

global feature
set

(vector, tuple)
pairs

| grouping
3 scheme
l (@)
t-» Local Feature
Selection
local
output feature sets

partitioned 5)
data Partitioning

Workload Analysis

o Global features
Augmentation

o Global feature vector
Column Grouping:

o Divide columns into column
groups based on objective
function based on tradeoff

Local Feature Selection

o Select subset of global features

o Crucial step for skipping
effectiveness

Partitioning

o Local feature vectors

o Project global feature vectors
to keep bits of local features

Column Grouping

block 1
111 (= 111 OR 101)
tt m -1y 2

t3m0y4

block 2
010 (= 000 OR 010)
t, f 0 x 6
fo: f =1 0% 2

Ex. Consider following workload:
Q1:SELECTA,CFROMTWHEREA ="m’
Q2:SELECTB,DFROMTWHEREB <0

Q3: SELECT B, CFROM T WHERE C like 'y%’

AC, BC, BD equal weight of being grouped
Need to account for filters

T1,t3 both satisfy Q1 and Q3

T2,t4 do NOT satisfy Q1 or Q3

Prefer to group AC

\ Column Grouping Equations

Skipping Effectiveness: Objective Function:

COST(¢,G) = Y |GiNCY|-r{+ overhead(q,G)

G;eGY

_ COST(W,G) = » ~ COST(q,G)
Tuple Reconstruction Overhead: gEW

> G, ega(ri +sort(r)) if |G| > 1
0 otherwise

overhead(q, G) = {

Efficient Cost Estimation

e Difficult to obtain the number of rows that a query needs to scan
after skipping in a Gi
e Exact computation is extremely expensive, propose more efficient
estimation
o Huge cost bottleneck from applying partitioning to G,
clustering problem
e Use selectivity of query g as an estimation of the r value
o Not accurate if query has a highly selective predicate
e Need to account for block-based skipping mechanism
o exploit asimple property of partitioning process-- preference
to put rows with exactly same local feature vectors into the
same block

| ocal Feature Selection
e Identifying Candidate Local Features:

@)

©)

©)

CandSet(G) = Ugew~s F*q
F~q = features that subsume query g
WG = set of queries that need to access data in column group G

e Feature Weighting and Selection:

O

Weight for local feature decided by importance in column group, not
on all columns

weight(G,f) = |{q|f € F*qandqg € W"G}| (f=given feature)
Number of distinctive feature vectors is a good indicator of whether
the number of features selected is appropriate

m [oofew: add more features, does not affecting skipping of

existing
m [oo many: existing features are very conflicting

Query Processing 1. Reading Data Blocks:
o Check query against

global features
o Extract columns and pass

global features to column catalog
selectA, D from T F1:A='m’

where A ='m’ F2:B<0 + (i) (@) GO through data bIOCkS
andB<0 F3: C like “%y'

e with union vectors
columns o Read AfromG1 andB,D
o o from G2
2. Tuplereconstruction:
o Tuple-ids stored as
column grouping catalog column within each block
o Sort columns based on ids
Only return tuple t1,
because t3 and t4 do not
satisfy the full query

Results of Query Performance (Big Data)

20 : ar 4 : :
[GSOP-single =+ 35 & 35 GSOF-single el /b GSOP-single ==
15 SOP =6 SOP M SOP =0 -
GSOP = 25 : 25 GSOP =¥~
‘ - GSOP-single == 15 : ; 3 f
sop —6— - : 2 :

05 [t GSOP == -

R
OP)
o
E
'—
o
w
2
[o]
a
d
3
o
[
[}
S
o

(a) Varying #Cols (b) Varying # Column Templates (c) Varying Filter Skewness (d) Varying Selectivity

e Figure a: vary parameter k (number of columns accessed)
o Askincreases, cost of GSOP-single increases, GSOP becomes SOP (70% accessed)
e Figure b: vary parameter t (number of column templates)
o GSOP outperforms GSOP-single and SOP, especially at low t
e Figure c: vary parameter z (skewness of filter usage)
o Greater z, less feature conflict, SOP can eventually outperform
e Figure d: vary parameter s (query selectivity)
o Increase s results in higher execution cost for all 3, GSOP outperforms, single is worst

Results of Query Performance (TPC-H)

=] e Fig7a: measure average

number of actual data cells and
tuple ids read by a test query

o e Fig7b:weshow theendtoend

(@) # Cells Read BiBoery Regponss Tins query response time.

Figure 7: Query performance (TPC-H) e Fig8a: forming smaller number

of column groups results in less

reads of tuple ids for GSOP

1]

% s

=T Actual Data) o 5 .
< 2f VISR T N - while reading slightly more data
R L Fie 8b: d col
5 0t L B ° ig 8b: proposed column
0f 08 £ 00 = .
®osf § o O B R grouping techniques can
‘ . X KXY KX i
" GSOPhc GSOP-hy GSOF " GSOPhc GSOP-hy GSOP balance the trade-off in GSOP
(a) # Cells Read (b) Query Response Time
T better than GSOP-hy and

Figure 8: Query performance (TPC-H).

GSOP-hc (35% better)

Objective Function Evaluation (TPC-H)

Running Time =2 Workload Cost B

c
e
o
c
S
(e
v
r
o
2
e
O

S W SSE—

(a) Efficiency Comparision (b) Quality Comparison

e Figure a: Efficiency comparison based on running time for different estimation approaches
o Full computation is extremely time consuming compared to the estimations (a full day)
o Sel. est. and Block est. take approximately the same amount of time (44 mins)

e Figure b: Quality comparison of different approaches based on workload cost
o Sel. Est. involves most workload cost
o Block est. only slightly more costly that full compt, thus the best choice

2000 7 [Phase | E=

ll

(@) denormahzed input

Loading Cost (TPC-H)

(b) normalized input

Figure a: denormalized
o GSOP spends most time in
Phase 1
o SOP has cheapest phase 2
Figure b: normalized
o Extrastep of partial
denormalization for GSOP
o GSOP takes 2.6 times
longer than the baseline
Regardless, GSOP outperforms
the other approaches
o Worth theinitial cost?

Query Performance (SDSS)

Query Response Time EE8

Average query response times
of 600 test queries against a
baseline approach

GSOP-hy and GSOP-hc are
highly unreliable (do not take
into account feature conflict or
horizontal skipping)

GSOP outperforms baseline by
4.7 times and outperforms SOP
by 2.7 times

Evaluation

PROS:

e Good explanation of
background & SOP framework

e Solid proof of better
performance against multiple
existing frameworks

CONS:

Simplistic explanation of cost for
trade-off -- does not explore
impact of compression techniques
Include more figures rather than
refer to the same ones

Need more experimentation
comparing running time costs to
overall performance
improvements

Possible Next Steps

e Lookintoadynamic layout for complex workloads that
constantly change

e Canwe change the layout of data to optimize the ideal case
where tuple overhead is O and skipping is effective?

e Explore better ways to handle normalized data-- some way to
avoid the step of partial denormalization?

