
Skipping-oriented 
Partitioning for 
Columnar Layouts

Authors: Liwen Sun, Michael J. Franklin, 
Jiannan Wang, and Eugene Wu

Presentation: Allison Weaver



Overview

● Introduced to Generalized Skipping Oriented Partitioning (GSOP):  
a hybrid data skipping framework that takes into account 
row-based and column-based store tradeoffs with partitioning 
data
○ GSOP generalizes the original SOP framework by removing 

the atomic-tuple constraint



Importance

● As data volumes continue to grow, data skipping mechanisms 
become more critical to improve performance in modern 
analytics databases and the Hadoop ecosystem

● Need a method of data skipping that is optimized for 
column-based stores rather than just row-based stores

● Finds balance between tuple reconstruction and skipping 
effectiveness



Vocab

● Tuple: A single row of a table, which contains a single record for that 
relation 

● Block: tens of thousands of tuples, how data is organized
● Feature: representative filters which can span many columns
● Feature Vector: characterization of tuple
● Feature Conflict: when the best partitioning schemes for different 

features do not overlap, happens often with complex workloads
● Tuple reconstruction: the process of assembling requested column 

values back into tuples during query processing 
● Data cell: each individual column value of a tuple



General Comparison SOP vs. GSOP

● Ex. two features to be extracted: F1: grade == ‘A’ and F2: year > 2011 AND course = ‘DB’
○ F1 – t1,t2 | t3, t4 (separate A’s from rest of rows)
○ F2 – t1,t4 | t2, t3 ( separate year 2011 and separate DB’s)

● SOP produces only monolithic horizontal partitioning schemes, viewing every tuple as an 
atomic unit. This can result in feature conflicts. 

● GSOP solves feature conflicts, but can result in tuple reconstruction.



SOP Framework

Based on two properties:

1. Filter Commonality: a small set of filters  are commonly used by 
many queries (10% of filters used by 90% of queries)
○ Designing data layout based on small number of filters can 

benefit most queries
2. Filter Stability: a tiny fraction of query filters are newly 

introduced over time
○ Designing data layout based on past query filters can 

benefit future queries



Steps of SOP 1. Workload Analysis
○ Extracts features using 

frequent item-set mining
○ Subsumption relations

2. Augmentation
○ Data are scanned for given 

features and results stores 
in augmented feature vector

3. Partitioning
○ Group vector, tuple pairs 

into vector, count pairs
○ Clustering algorithm 

generates partition map
○ Each block gets a union map



Partitioning Spectrum

● Right end: partition each column individually, mitigates feature conflicts, introduces 
overhead for tuple reconstruction  

● Left end: SOP framework, no separation of columns, no tuple reconstruction, a lot of 
feature conflicts

● Ex. SELECT B, D FROM T WHERE B<0 and D=2



GSOP Framework 1. Workload Analysis
○ Global features

2. Augmentation
○ Global feature vector

3. Column Grouping:
○ Divide columns into column 

groups based on objective 
function based on tradeoff

4. Local Feature Selection
○ Select subset of global features
○ Crucial step for skipping 

effectiveness
5. Partitioning

○ Local feature vectors
○ Project global feature vectors 

to keep bits of local features



Column Grouping

Ex.  Consider following workload:  
Q1: SELECT A, C FROM T WHERE A = ’m’ 
Q2: SELECT B, D FROM T WHERE B < 0 
Q3: SELECT B, C FROM T WHERE C like ’y%’

● AC, BC, BD equal weight of being grouped
● Need to account for filters
● T1, t3 both satisfy Q1 and Q3
● T2, t4 do NOT satisfy Q1 or Q3
● Prefer to group AC



Column Grouping Equations

Skipping Effectiveness: 

Tuple Reconstruction Overhead:

Objective Function:



Efficient Cost Estimation

● Difficult to obtain the number of rows that a query needs to scan 
after skipping in a Gi

● Exact computation is extremely expensive, propose more efficient 
estimation
○ Huge cost bottleneck from applying partitioning to Gi, 

clustering problem
● Use selectivity of query q as an estimation of the r value

○ Not accurate if query has a highly selective predicate 
● Need to account for block-based skipping mechanism

○ exploit a simple property of partitioning process-- preference 
to put rows with exactly same local feature vectors into the 
same block



Local Feature Selection

● Identifying Candidate Local Features:
○ CandSet(G) = Uq∈W^G F^q
○ F^q = features that subsume query q
○ W^G = set of queries that need to access data in column group G

● Feature Weighting and Selection:
○ Weight for local feature decided by importance in column group, not 

on all columns
○  weight(G, f) =  | {q | f ∈ F^q and q ∈ W^G}|       (f = given feature)
○ Number of distinctive feature vectors is a good indicator of whether 

the number of features selected is appropriate
■ Too few: add more features, does not affecting skipping of 

existing 
■ Too many: existing features are very conflicting



Query Processing 1. Reading Data Blocks:
○ Check query against 

global features 
○ Extract columns and pass 

to column catalog
○ Go through data blocks 

with union vectors
○ Read A from G1  and B, D 

from G2
2. Tuple reconstruction:

○ Tuple-ids stored as 
column within each block

○ Sort columns based on ids
○ Only return tuple t1, 

because t3 and t4 do not 
satisfy the full query



Results of Query Performance (Big Data)

● Figure a: vary parameter k (number of columns accessed)
○ As k increases, cost of GSOP-single increases, GSOP becomes SOP (70% accessed)

● Figure b: vary parameter t (number of column templates)
○ GSOP outperforms GSOP-single and SOP, especially at low t

● Figure c: vary parameter z (skewness of filter usage)
○ Greater z, less feature conflict, SOP can eventually outperform

● Figure d: vary parameter s (query selectivity)
○ Increase s results in higher execution cost for all 3, GSOP outperforms, single is worst



Results of Query Performance (TPC-H)

● Fig 7a: measure average 
number of actual data cells and 
tuple ids read by a test query

● Fig 7b: we show the end to end 
query response time.

● Fig 8a: forming smaller number 
of column groups results in less 
reads of tuple ids for GSOP 
while reading slightly more data

● Fig 8b:  proposed column 
grouping techniques can 
balance the trade-off in GSOP 
better than GSOP-hy and 
GSOP-hc (35% better)



Objective Function Evaluation (TPC-H)

● Figure a: Efficiency comparison based  on running time for different estimation approaches
○ Full computation is extremely time consuming compared to the estimations (a full day)
○ Sel. est. and Block est. take approximately the same amount of time (44 mins)

● Figure b: Quality comparison of different approaches based on workload cost
○ Sel. Est. involves most workload cost
○ Block est. only slightly more costly that full compt, thus the best choice



Loading Cost (TPC-H)

● Figure a: denormalized
○ GSOP spends most time in 

Phase 1
○ SOP has cheapest phase 2

● Figure b: normalized
○ Extra step of partial 

denormalization for GSOP
○ GSOP takes 2.6 times  

longer than the baseline
● Regardless, GSOP outperforms 

the other approaches
○ Worth the initial cost?



Query Performance (SDSS)

● Average query response times 
of 600 test queries against a 
baseline approach 

● GSOP-hy and GSOP-hc are 
highly unreliable (do not take 
into account feature conflict or 
horizontal skipping)

● GSOP outperforms baseline by 
4.7 times and outperforms SOP 
by 2.7 times



Evaluation

PROS:

● Good explanation of 
background & SOP framework

● Solid proof of better 
performance against multiple 
existing frameworks

CONS:

● Simplistic explanation of cost for 
trade-off -- does not explore 
impact of compression techniques

● Include more figures rather than 
refer to the same ones

● Need more experimentation 
comparing running time costs to 
overall performance 
improvements



Possible Next Steps

● Look into a dynamic layout for complex workloads that 
constantly change

● Can we change the layout of data to optimize the ideal case 
where tuple overhead is 0 and skipping is effective?

● Explore better ways to handle normalized data-- some way to 
avoid the step of partial denormalization?


