Comp115 Spring 2017, HW2 Answer Key

Problem 1 - 20%

Suppose that we have the following three tuples in a legal instance of a relation schema S with four attributes WXYZ (listed in order): (1, 2, 3, 4), (5, 2, 3, 4), (6, 4, 3, 5)

- 1. Which of the following dependencies can you infer does **not** hold over the schema S? State your reasoning.
 - (a) $W \to Y$

We **cannot** infer that it does **not** hold over the schema S. $1 \rightarrow 3$, $5 \rightarrow 3$ and $6 \rightarrow 3$ do not violate.

(b) $XZ \to W$

We **can** infer that it does **not** hold over the schema S. $(2,4) \rightarrow 1$ and $(2, 4) \rightarrow 5$ violate it. The left hand side cannot point to different values.

(c) $Y \to Z$

We **can** infer that it does **not** hold over the schema S. $3 \rightarrow 4$ and $3 \rightarrow 5$ violate it. The left hand side cannot point to different values.

(d) $WX \to Z$

We **cannot** infer that it does **not** hold over the schema S. $(1, 2) \rightarrow 4$, $(5, 2) \rightarrow 4$ and $(6, 4) \rightarrow 5$ do not violate.

2. Can you identify any dependencies that **do** hold over S?

We cannot identify dependencies that hold over S only with any amount of data. You can always add more data that could invalidate your functional dependencies.

Problem 2 - 30%

Suppose you are given a relation R with four attributes WXYZ. For each of the following sets of FDs, assuming those are the only dependencies that hold for R, do the following:

- (a) Identify the candidate key(s) for R
- (b) Identify the best normal form that R satisfies (1NF, 2NF, 3NF, or BCNF)
- (c) If R is not in BCNF, decompose it into a set of BCNF relations that preserve the dependencies
- 1. $WX \rightarrow Y, WX \rightarrow Z, XY \rightarrow WX$
 - (a) Candidate keys: WX, XY
 - (b) It is in BCNF because WX and XY are superkeys for all.
 - (c) No need for decomposition.
- 2. $X \rightarrow YZ, Y \rightarrow W, W \rightarrow X$
 - (a) Candidate keys: W, X, Y

- (b) It is in BCNF because W, X and W are superkeys for all.
- (c) No need for decomposition.
- 3. $XY \rightarrow WX, XY \rightarrow YZ, Z \rightarrow X$
 - (a) Candidate keys: XY
 - (b) It is in 3NF. For the 3rd relation $(Z \to X)$, Z is not a super key, so R cannot be in BCNF. However, X is part of the key XY, so R is in 3NF.
 - (c) XYZ, XYW, ZX
- 4. $WX \rightarrow YZ, Y \rightarrow W$
 - (a) Candidate keys: WX, YX
 - (b) It is in 3NF. For the 2nd relation $(Y \to W)$, Y is not a superkey, so R cannot be in BCNF. However, W and Y are both part of keys WX, so R is in 3NF.
 - (c) YW, XYZ Dependencies lost
- 5. $YZ \rightarrow X, X \rightarrow W, W \rightarrow Y$
 - (a) Candidate keys: YZ, XZ
 - (b) It is in 2NF.
 - (c) XWY, ZX Dependencies lost

Problem 3 - 50%

Consider the attribute set $\mathbf{R} = ABCDEGH$ and the FD set

 $\mathbf{F} = \{ AC \to E , AE \to C, BE \to D, CG \to A, G \to E, D \to G \}$

- 1. For each of the attribute sets above, do the following:
 - (a) Compute which dependencies hold over the set.
 - (b) Identify the candidate key(s).
 - (c) Decompose it into a collection of BCNF relations if it is not in BCNF.
 - (i) ACE
 - (a) R1 = ACE, the FDs are : $AC \rightarrow E$, $AE \rightarrow C$
 - (b) Candidate keys : AC, AE
 - (c) This is already in BCNF.
 - (ii) ABCDE
 - (a) R2 = ABCDE, the FDs are : $AC \rightarrow E$, $AE \rightarrow C$, $BE \rightarrow D$
 - (b) Candidate keys : ABC, ABE
 - (c) This is not in BCNF. Decompose it as : ACE, BED

- (iii) ABC
 - (a) R3 = ABC. No dependencies are preserved.
 - (b) Candidate key: ABC
 - (c) It is in BCNF.
- (iv) ACDEG
 - (a) R4 = ACDEG, the FDs are : AC \rightarrow E, AE \rightarrow C, D \rightarrow G, G \rightarrow E, CG \rightarrow A
 - (b) Candidate keys : AD, CD
 - (c) ACE, AED, DG
- 2. Which of the following decompositions of R = ABCDEGH with the same set dependencies F, is (i) dependency-preserving? (ii) lossless-join?
 - (a) { ACE, BCED, ACDG }
 - i. Yes, it is dependency preserving each set in the decomposition contains only complete functional dependencies.
 - ii. No, the intersections of the decompositions is not a superkey.
 - (b) $\{AC, CG, ABCD, ED\}$
 - i. No, there are no dependencies preserved
 - ii. No, the intersections of the decompositions is not a superkey