Log-Structured-Merge Trees

Comp115 guest lecture
Niv Dayan
23 February, 2017

s emee~pg_ g, 0000 IR wsrimue rorapeLe
%&Aﬁa@ CCCCCCCCCCCCCCCCCCCC
";E;“' AT HARVARD UNIVERSITY
N

wwa r INSTITUTE FOR APPLIED
_' 'é,‘;%;gv‘ COMPUTATIONAL SCIENCE
5

Useful when?

/| Massive dataset

/| Rapid updates/insertions

/| Fast lookups

——> LSM-trees are for you.

wwa r H S INSTITUTE FOR APPLIED
_' &exy COMPUTATIONAL SCIENCE

7
4& ‘V

Invented in
1996

1980 1990 2000 2010
Time

wwa r INSTITUTE FOR APPLIED
_' @Ky COMPUTATIONAL SCIENCE

Patrick O'Neil
UMass Boston

o —

Invented in
1996

1980 1990 2000 2010
Time

INSTITUTE FOR APPLIED

'é;;‘%' COMPUTATIONAL SCIENCE
5

=

levelpB

DynamoDB

Patrick O'Neil

UMass Boston ’
. -+ RocksDB

Invented in A CHE Tf‘ /):
1996

cassandra HBASE

aCCcurmuLo

1980 1990 2000 2010
Time

INSTITUTE FOR APPLIED

'é;;‘%' COMPUTATIONAL SCIENCE
5

Why now? @

levelpB

DynamoDB

Patrick O'Neil

UMass Boston ’
. -+ RocksDB

Invented in A CHE Tf‘ /):
1996

cassandra HBASE

aCCcurmuLo

1980 1990 2000 2010
Time

wwa r INSTITUTE FOR APPLIED
_' 'é;;t{; COMPUTATIONAL SCIENCE
&

Outline
1. Storage devices
2. Indexing problem & basic solutions
3. Basic LSM-trees
4. Leveled LSM-trees
5. Tiered LSM-trees
6. Bloom filters

INSTITUTE FOR APPLIED

COMPUTATIONAL SCIENCE

Storage devices

INSTITUTE FOR APPLIED

COMPUTATIONAL SCIENCE

expensive, fast

cheap, slow

wwa r INSTITUTE FOR APPLIED
L Gy COMPUTATIONAL SCIENCE

The Memory Hierarchy

expensive, fast

cheap, slow

wwa r INSTITUTE FOR APPLIED
L Gy COMPUTATIONAL SCIENCE

The Memory Hierarchy

Metadata & frequently expensive, fast

accessed data

All data cheap, slow

INSTITUTE FOR APPLIED
COMPUTATIONAL SCIENCE

~100 ns

~10 ms

~5-6 order of magnitude difference

INSTITUTE FOR APPLIED
COMPUTATIONAL SCIENCE

~5-6 order of magnitude difference

INSTITUTE FOR APPLIED

COMPUTATIONAL SCIENCE

Why is disk slow?

INSTITUTE FOR APPLIED

COMPUTATIONAL SCIENCE

Why is disk slow?

| Disk head

wwa r INSTITUTE FOR APPLIED
_' 'é;;ﬁg‘ COMPUTATIONAL SCIENCE
2

Why is disk slow?

| Disk head

Random access is slow —> move disk head

Sequential access is faster ~ —> let disk spin

IACS
svon INSTITUTE FOR APPLIED
0

o0y COMPUTATIONAL SCIENCE

7
4‘ ‘V

i 64 byte chunks Fine access granularity
/ Words
<\\\
' 4 kilobyte chunks Coarse access granularity

; Blocks

IACS
svon INSTITUTE FOR APPLIED
0

o0y COMPUTATIONAL SCIENCE

7
4‘ ‘V

i 64 byte chunks Fine access granularity
/ Words
<\\\
' 4 kilobyte chunks Coarse access granularity

; Blocks

wwa r HS ' INSTITUTE FOR APPLIED
VA 47
_| & ‘,v COMPUTATIONAL SCIENCE

Outline

Storage devices

Indexing problem & basic solutions
Basic LSM-trees

Leveled LSM-trees

Tiered LSM-trees

o oA L ok

Bloom filters

wwa r HS ' INSTITUTE FOR APPLIED
VA 47
_| & ‘,v COMPUTATIONAL SCIENCE

Outline

Storage devices

Indexing problem & basic solutions
Basic LSM-trees

Leveled LSM-trees

Tiered LSM-trees

o kA W e

Bloom filters

INSTITUTE FOR APPLIED

COMPUTATIONAL SCIENCE

Indexing Problem &
Basic Solutions

Indexing Problem

names C——> phone numbers

INSTITUTE FOR APPLIED
VAN

@57 COMPUTATIONAL SCIENCE
i

names C——> phone numbers

Structure on disk?

Lookup cost?

Insertion cost?

L ' INSTITUTE FOR APPLIED
",,‘{,v COMPUTATIONAL SCIENCE

Results Catalogue

Compare and contrast data structures.
What to use when?

Sorted array
Log
B-tree
Basic LSM-tree
Leveled LSM-tree
Tiered LSM-tree

L ' INSTITUTE FOR APPLIED
",,‘{,v COMPUTATIONAL SCIENCE

Results Catalogue

Compare and contrast data structures.
What to use when?

Sorted array
Log
B-tree
Basic LSM-tree
Leveled LSM-tree
Tiered LSM-tree

Modeling Performance

« ~1ns
64 byte Words ~100 ns
4 kilobyte Blocks ~10 ms

B r H S
-|

INSTITUTE FOR APPLIED

@57 COMPUTATIONAL SCIENCE
2

Modeling Performance

64 byte Words

4 kilobyte Blocks

~1ns

~100 ns

~10 ms Measure bottleneck:

Number of block reads/writes (I/0)

mmo I-" H S

INSTITUTE FOR APPLIED

& COMPUTATIONAL SCIENCE

Sorted Array

Y4

James

= m
mm—

Anne Yulia
Arnold Corrie Zack
Barbara Doug Zelda

R

Sorted Array

N entries

B entries fit into a disk block
Array spans N/B disk blocks

f

\
f

James

e m
mm—

Anne Yulia
Arnold Corrie Zack
Barbara Doug Zelda

IACS
v INSTITUTE FOR APPLIED

"::’:; COMPUTATIONAL SCIENCE

R

Sorted Array

N entries

Lookup method & cost?

B entries fit into a disk block
Array spans N/B disk blocks

f

\
f

James

- m
mm—

Anne Yulia
Arnold Corrie Zack
Barbara Doug Zelda

IACS
v INSTITUTE FOR APPLIED

"::’:; COMPUTATIONAL SCIENCE

Sorted Array

N entries

IACS
v INSTITUTE FOR APPLIED

'é;,'ﬁ{; COMPUTATIONAL SCIENCE

Lookup method & cost?

B entries fit into a disk block Binary search:
Array spans N/B disk blocks

f

\
f

James
Sara
m
mm— Block N/B
Anne Yulia
Arnold Corrie Zack
Barbara Doug Zelda

0 (log; (%)) 1/os

R

Sorted Array

IACS
v INSTITUTE FOR APPLIED

"::’:; COMPUTATIONAL SCIENCE

0 (log2 (%)) |/Os

N entries Lookup method & cost?
B entries fit into a disk block Binary search:
Array spans N/B disk blocks Insertion cost?
G cuffer
< James
e m
_
g mm—
< Anne Yulia
Arnold Corrie Zack
_ Barbara Doug Zelda

R

Sorted Array

N entries
B entries fit into a disk block
Array spans N/B disk blocks

IACS
v INSTITUTE FOR APPLIED

"::’:; COMPUTATIONAL SCIENCE

Lookup method & cost?
O (logz (%)) 1/Os

Binary search:

Insertion cost?

. 1 N
Push entries: O (— : —) 1/Os
o aE
< James
i m
N\
4 mm—
< Anne Yulia
Arnold Corrie Zack
_ Barbara Doug Zelda

wwa INSTITUTE FOR APPLIED
'éé;'; COMPUTATIONAL SCIENCE
&

Results Catalogue

Sorted array O(log,(N/B)) O(N/B?)
Log
B-tree
Basic LSM-tree
Leveled LSM-tree
Tiered LSM-tree

wwa INSTITUTE FOR APPLIED
'éé;'; COMPUTATIONAL SCIENCE
&

Results Catalogue

Sorted array O(log,(N/B)) O(N/B?)
Log
B-tree
Basic LSM-tree
Leveled LSM-tree
Tiered LSM-tree

R

Log

(append-only array)

N7

James

e Array size |_Pointer _
1
Block1 | Block2 | .| BlockN/B

Doug Yulia Anne
Zelda Zack Bob
Arnold Barbara Corrie

INSTITUTE FOR APPLIED
@Ky COMPUTATIONAL SCIENCE
&

INSTITUTE FOR APPLIED
@Ky COMPUTATIONAL SCIENCE
5

Log (append-only array)

N entries

B entries fit into a disk block

Array spans N/B disk blocks

f

\
f

James

il Array size |_Pointer _
1
Block1 | Block2 | .| BlockN/B

Doug Yulia Anne
Zelda Zack Bob
Arnold Barbara Corrie

R

Log (append-only array)

N entries

INSTITUTE FOR APPLIED
@Ky COMPUTATIONAL SCIENCE
5

Lookup method & cost?

B entries fit into a disk block

Array spans N/B disk blocks

f

\
f

James

il Array size |_Pointer _
1
Block1 | Block2 | .| BlockN/B

Doug Yulia Anne
Zelda Zack Bob
Arnold Barbara Corrie

som g INSTITUTE FOR APPLIED
%‘%‘ COMPUTATIONAL SCIENCE
5

Log (append-only array)

N entries Lookup method & cost?

B entries fit into a disk block Scan: 0 (N)
B
Array spans N/B disk blocks

G it

James

< — Array size |_Pointer _
N 1
BB cocki | Bock2 | . BlocknN/B

< Doug Yulia Anne
Zelda Zack Bob

_ Arnold Barbara Corrie

IACS |NSTITUTE FOR APPLIED

SV

Bmm .
9%%%%‘ COMPUTATIONAL SCIENCE
&0

Log (append-only array)

Lookup method & cost?

N entries

B entries fit into a disk block Scan: 0 (ﬂ)
B

Array spans N/B disk blocks Insertion cost?

G it

James

< il Array size |_Pointer _
N 1
BB cocki | Bock2 | . BlocknN/B

< Doug Yulia Anne
Zelda Zack Bob

_ Arnold Barbara Corrie

IACS |NSTITUTE FOR APPLIED

szm o
DERED

9%%%%‘ COMPUTATIONAL SCIENCE
&0

Log (append-only array)

N entries Lookup method & cost?
B entries fit into a disk block Scan: 0 (ﬂ)
B
Array spans N/B disk blocks Insertion cost?
Append: O (%)

G it

James

< e Array size |_Pointer

. }
@ ciocci | Biock2 | .. [BlockN/B_
< Doug Yulia Anne
Zelda Zack Bob

_ Arnold Barbara Corrie

wwa INSTITUTE FOR APPLIED
'ééﬁ{; COMPUTATIONAL SCIENCE
5%

Results Catalogue

Sorted array O(log,(N/B)) O(N/B?)
Log O(N/B) O(1/B)
B-tree

Basic LSM-tree
Leveled LSM-tree
Tiered LSM-tree

wwa INSTITUTE FOR APPLIED
'ééﬁ{; COMPUTATIONAL SCIENCE
5%

Results Catalogue

Sorted array O(log,(N/B)) O(N/B?)
Log O(N/B) O(1/B)
B-tree

Basic LSM-tree
Leveled LSM-tree
Tiered LSM-tree

<

Anne
Arnold

Anne
e l
Anne Bob Corrie
| N\
Bob Corrie

Barbara Doug

Yulia

Yulia
Zack

a7y INSTITUTE FOR APPLIED
&ty COMPUTATIONAL SCIENCE

B r H S
-|

INSTITUTE FOR APPLIED

B-tree

Lookup method & cost?

<

Anne
Arnold

Anne
e l
Anne Bob Corrie
l N\
Bob Corrie
Barbara Doug

Yulia

Yulia
Zack

K7 COMPUTATIONAL SCIENCE

7
4& ‘V

wwa r INSTITUTE FOR APPLIED
_| ";}t{;‘ COMPUTATIONAL SCIENCE

B-tree

Lookup method & cost?

Anne h
“ } N\
Anne Bob Corrie Yulia
% l \ \ > Depth:
Anne Bob Corrie Yulia O(logB(N/B))
Arnold Barbara Doug Zack

wwa r INSTITUTE FOR APPLIED
_| ",‘};’,7 COMPUTATIONAL SCIENCE

B-tree

Lookup method & cost?
Tree search: O (logB (%))

Anne h
“ ! N\
Anne Bob Corrie Yulia
/] N\ N\ > Depth:
Anne Bob Corrie Yulia O(logB(N/B))
Arnold Barbara Doug Zack

INSTITUTE FOR APPLIED
VAN

@57 COMPUTATIONAL SCIENCE
i

Lookup method & cost? Insertion method & cost?
Tree search: O (logB (%))

Anne h
“ ! N\
Anne Bob Corrie Yulia
/] N\ N\ > Depth:
Anne Bob Corrie Yulia O(logB(N/B))
Arnold Barbara Doug Zack

wwa r INSTITUTE FOR APPLIED
_' 'é;;:g‘ COMPUTATIONAL SCIENCE
5

B-tree
Lookup method & cost? Insertion method & cost?
Tree search: O (logB (g)) Tree search & append: O (logB (%))
Anne)
' | N\
Anne Bob Corrie Yulia
% | \ \ > Depth:
Anne Bob Corrie Yulia O(logB(N/B))
Arnold Barbara Doug Zack

wwa INSTITUTE FOR APPLIED
'ééﬁ{; COMPUTATIONAL SCIENCE
5%

Results Catalogue

Sorted array O(log,(N/B)) O(N/B?)
Log O(N/B) O(1/B)
B-tree O(logz(N/B)) O(logz(N/B))

Basic LSM-tree
Leveled LSM-tree
Tiered LSM-tree

v INSTITUTE FOR APPLIED

AV
@Ky COMPUTATIONAL SCIENCE
ML A

B-trees

“It could be said that the world’s information
is at our fingertips because of B-trees”

Goetz Graefe Microsoft, HP Fellow, now
Google ACM Software System Award

wwa r INSTITUTE FOR APPLIED
_' 'é;;t{; COMPUTATIONAL SCIENCE
&

B-trees are no longer sufficient

Cheaper to store data = 10
Q
n
Workloads more insert-intensive 0 10’
We need better insert-performance. £ 1
M
O 1
- 10
O
oF
o 10
=
A

.
1980 1985 1990 1995 2000 2005 2010 2015
Year

INSTITUTE FOR APPLIED

Results Catalogue

Goal to combine

Sorted array
Log
B-tree
Basic LSM-tree
Leveled LSM-tree
Tiered LSM-tree

@57 COMPUTATIONAL SCIENCE
5%

sub-constant insertion cost
logarithmic lookup cost

O(log,(N/B)) O(N/B?)
O(N/B) O(1/8B)
O(logg(N/B)) O(logg(N/B))

INSTITUTE FOR APPLIED

COMPUTATIONAL SCIENCE

Basic LSM-trees

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Basic LSM-tree

Level

Buffer < 0
-
1

Sorted 2
<

arrays 3

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Basic LSM-tree

Design principle #1: optimize for insertions by buffering

Level

Buffer < 0
-
1

Sorted 2
<

arrays 3

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Basic LSM-tree

Design principle #1: optimize for insertions by buffering
Inserts
Level 1
Buffer < o
r
1
Sorted b 2
arrays 3

INSTITUTE FOR APPLIED

B8 COMPUTATIONAL SCIENCE

2 saTAN
&

Basic LSM-tree

Design principle #1: optimize for insertions by buffering
Inserts
Level 1
Buffer < 0 sort & flush buffer
:)
1
Sorted b 2
arrays 3

INSTITUTE FOR APPLIED

B8 COMPUTATIONAL SCIENCE

2 saTAN
iy

Basic LSM-tree

Design principle #1: optimize for insertions by buffering
Inserts
Level 1

sort & flush buffer

Buffer < 0)\A
-

1
Sorted b 2
arrays 3

wwa nHS ' INSTITUTE FOR APPLIED
VA 47
| - & ‘,v COMPUTATIONAL SCIENCE

Basic LSM-tree

Design principle #1: optimize for insertions by buffering
Design principle #2: optimize for lookups by sort-merging arrays
Inserts
Level 1
Buffer < 0 sort & flush buffer
f ™
1
Sorted b 2
arrays 3

wwa nHS ' INSTITUTE FOR APPLIED
VA 47
| - & ‘,v COMPUTATIONAL SCIENCE

Basic LSM-tree

Design principle #1: optimize for insertions by buffering
Design principle #2: optimize for lookups by sort-merging arrays
Inserts
Level 1

Buffer < 0 sort & flush buffer

>
1 (.........
Sorted 2 . —

arrays < ; Sort-merge

wwa nHS ' INSTITUTE FOR APPLIED
VA 47
| - & ‘,v COMPUTATIONAL SCIENCE

Basic LSM-tree

Design principle #1: optimize for insertions by buffering
Design principle #2: optimize for lookups by sort-merging arrays
Inserts
Level 1

Buffer < 0 sort & flush buffer

)
1 () SR o (25| o
Sorted < 2 R
arrays] Sort-merge &
Eliminate duplicates

wwa nHS ' INSTITUTE FOR APPLIED
VA 47
| - & ‘,v COMPUTATIONAL SCIENCE

Basic LSM-tree

Design principle #1: optimize for insertions by buffering
Design principle #2: optimize for lookups by sort-merging arrays
Inserts
Level 1

Buffer < 0 sort & flush buffer

>
1 (X1 o (25| o
Sorted 2 o X e s,

2
arrays < Sort-merge &
3 Eliminate duplicates

B r H S
-|

'AC INSTITUTE FOR APPLIED

Basic LSM-tree

Design principle #1:

Design principle #2:

Level

Buffer < 0

r
1

Sorted 2
<

arrays 3

(A"{V
&) COMPUTATIONAL SCIENCE

optimize for insertions by buffering

optimize for lookups by sort-merging arrays

Inserts

!

sort & flush buffer

(7@,

Sort-merge &
Eliminate duplicates &
Discard original arrays

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Basic LSM-tree — Example

Level

Buffer < 0
-
1

Sorted 2
<

arrays 3

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Basic LSM-tree — Example

inserts
Level 1

Buffer <O 4 6 9
-
1

Sorted 2
<

arrays 3

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Basic LSM-tree — Example

inserts
Level 1

Buffer < 0 sort & flush buffer
p>

)

1 4 6 9

Sorted 2
<

arrays 3

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Basic LSM-tree — Example

inserts
Level 1
Buffer <O
r
1 4 6 9

Sorted 2
<

arrays 3

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Basic LSM-tree — Example

inserts
Level 1
Buffer <O 3 4 8
r
1 4 6 9

Sorted 2
<

arrays 3

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Basic LSM-tree — Example

inserts
Level 1

Buffer < 0 sort & flush buffer
p>

N

1 4 6 9 3 4 8

Sorted 2
<

arrays 3

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Basic LSM-tree — Example

inserts
Level 1
Buffer <O
r
1 4 6 9 3 4 8

Sorted 2
<

arrays 3

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Basic LSM-tree — Example

inserts
Level 1

Buffer < 0
-

1 (4 6 9 3 4 8
Sorted 2 34689 +—
arrays < ; Sort-merge

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Basic LSM-tree — Example

inserts

Level 1
Buffer <O

r

1 (4, 6 9 3<_4D
Sorted < 2 34,6 89
arrays ; Sort-merge &
Eliminate duplicates

wwa r INSTITUTE FOR APPLIED
_' 'é;;%;gv‘ COMPUTATIONAL SCIENCE
2

Basic LSM-tree — Example

inserts
Level 1
Buffer <O
)
1 (® ® >
Sorted 2 346 89
arrays < ; Sort-merge &
Eliminate duplicates &
Discard original arrays

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Basic LSM-tree — Example

inserts
Level 1
Buffer <O
p-
1
Sorted<2 346 89
arrays 3

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Basic LSM-tree — Example

inserts
Level 1

Buffer <O 2 7 8
-
1

Sorted<2 346 89

arrays 3

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Basic LSM-tree — Example

inserts
Level 1

Buffer < 0 sort & flush buffer
p>

)

1 2 7 8
Sorted < 2 346 89
arrays 3

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Basic LSM-tree — Example

inserts
Level 1
Buffer <O
r
1 2 7 8
Sorted<2 346 89
arrays 3

wwa r INSTITUTE FOR APPLIED
_' &exy COMPUTATIONAL SCIENCE
4"‘)

Basic LSM-tree

Levels have exponentially increasing capacities.

Level Capacity
Buffer < o . 1

r
1 2

Sorted b 2 4
arrays

wwa nHS ' INSTITUTE FOR APPLIED
VA 47
| - & ‘,v COMPUTATIONAL SCIENCE

Basic LSM-tree — Lookup cost

Level Capacity

Buffer < O 1
-
1 2

Sorted 2 4
<

arrays 3

INSTITUTE FOR APPLIED

'é;':tg‘ COMPUTATIONAL SCIENCE
5

Basic LSM-tree — Lookup cost

Lookup method?

Level Capacity

Buffer < O 1
-
1 2

Sorted 2 4
<

arrays 3

wwa r INSTITUTE FOR APPLIED
_' 'é,‘;%;gv‘ COMPUTATIONAL SCIENCE
5

Basic LSM-tree — Lookup cost

Lookup method? Search youngest to oldest. O (logz (g))

Level Capacity
Buffer <O 1
r
1 2
Sorted b 2 4
arrays 3 5

wwa r INSTITUTE FOR APPLIED
_' 'é,‘;%;gv‘ COMPUTATIONAL SCIENCE
5

Basic LSM-tree — Lookup cost

Lookup method? Search youngest to oldest. O (log2 (g))
How?
Level Capacity
Buffer 0O . 1
3
1 2
Sorted b 2 4
arrays 3 .

wwa r INSTITUTE FOR APPLIED
L G COMPUTATIONAL SCIENCE

2 saTAN

Basic LSM-tree — Lookup cost

Lookup method? Search youngest to oldest. O (log2 (g))
How? Binary search. 0 (log2 (g))
Level Capacity
Buffer o 1
4
1 2
Sorted b 2 4
arrays 3 .

wwa r INSTITUTE FOR APPLIED
L G COMPUTATIONAL SCIENCE

2 saTAN

Basic LSM-tree — Lookup cost

Lookup method? Search youngest to oldest. O (log2 (g))
How? Binary search. 0 (log2 (g))
Lookup cost?
Level Capacity
Buffer o 1
4
1 2
Sorted b 2 4
arrays 3 .

INSTITUTE FOR APPLIED

0
O COMPUTATIONAL SCIENCE
&

Basic LSM-tree — Lookup cost

Lookup method? Search youngest to oldest. O (log2 (g))
How? Binary search. 0 (log2 (g))
N 2
Lookup cost? 0 (10g2 (E))
Level Capacity
Buffer o 1
4
1 2
Sorted b 2 4
arrays 3 .

wwa nHS ' INSTITUTE FOR APPLIED
VA 47
| - & ‘,v COMPUTATIONAL SCIENCE

Basic LSM-tree — Insertion cost

Level Capacity

Buffer < O 1
-
1 2

Sorted 2 4
<

arrays 3

wwa nHS ' INSTITUTE FOR APPLIED
VA 47
| - & ‘,v COMPUTATIONAL SCIENCE

Basic LSM-tree — Insertion cost

How many times is each entry copied?

Level Capacity
Buffer <O 1
r
1 2
Sorted b 2 4
arrays 3 5

wwa r INSTITUTE FOR APPLIED
_' 'é,‘;%;gv‘ COMPUTATIONAL SCIENCE
5

Basic LSM-tree — Insertion cost

How many times is each entry copied? O (1082 (%))

Level Capacity

Buffer < O 1
-
1 2

Sorted 2 4
<

arrays 3

wwa r INSTITUTE FOR APPLIED
_' &exy COMPUTATIONAL SCIENCE
4&")

Basic LSM-tree — Insertion cost

How many times is each entry copied? 0 (logz (g))
What is the price of each copy?

Level Capacity
Buffer <O 1
r
1 2
Sorted b 2 4
arrays 3 5

wwa r INSTITUTE FOR APPLIED
L G COMPUTATIONAL SCIENCE

2 saTAN

Basic LSM-tree — Insertion cost

How many times is each entry copied? O (1082 (%))
What is the price of each copy? 0 (%)
Level Capacity
Buffer O 1
$
1 2
arrays 3 3

wwa r INSTITUTE FOR APPLIED
L G COMPUTATIONAL SCIENCE

2 saTAN

Basic LSM-tree — Insertion cost

How many times is each entry copied? O (1082 (%))
What is the price of each copy? O (%)
Total insert cost?
Level Capacity
Buffer O 1
3
i 2
arrays 3 3

wwa r INSTITUTE FOR APPLIED
L G COMPUTATIONAL SCIENCE

2 saTAN

Basic LSM-tree — Insertion cost

How many times is each entry copied? O (1082 (%))
What is the price of each copy? O (%)
Total insert cost? 0 (% log; (%))
Level Capacity
Buffer O 1
3
i 2
arrays 3 3

Bmm INSTITUTE FOR APPLIED
&KY COMPUTATIONAL SCIENCE
45';»

Results Catalogue

Sorted array O(log,(N/B)) O(N/B)
Log O(N/B) O(1/B)
B-tree O(logz(N/B)) O(logz(N/B))
Basic LSM-tree O(log,(N/B)?) O(1/B - log,(N/B))

Leveled LSM-tree
Tiered LSM-tree

INSTITUTE FOR APPLIED

K7 COMPUTATIONAL SCIENCE
45';»

Results Catalogue

Better insert cost and worst lookup cost compared with B-trees

Sorted array O(log,(N/B)) O(N/B)
Log O(N/B) O(1/B)
B-tree O(logz(N/B)) O(logz(N/B))
Basic LSM-tree O(log,(N/B)?) O(1/B - log,(N/B))

Leveled LSM-tree
Tiered LSM-tree

INSTITUTE FOR APPLIED

K7 COMPUTATIONAL SCIENCE
45';»

Results Catalogue

Better insert cost and worst lookup cost compared with B-trees
Can we improve lookup cost?

Sorted array O(log,(N/B)) O(N/B)
Log O(N/B) O(1/B)
B-tree O(logz(N/B)) O(logz(N/B))
Basic LSM-tree O(log,(N/B)?) O(1/B - log,(N/B))

Leveled LSM-tree
Tiered LSM-tree

B r H S
-|

INSTITUTE FOR APPLIED

Declining Main Memory Cost

'é;':tg‘ COMPUTATIONAL SCIENCE
5

10
10

~N oo ©
X
X
X
X
X

(@)
X
X
X
X
X
X

Ut
X

w

e e e el e W
SO OO OO
O AN
X
X

Price per GB ($)

N N =)

e e
OO OO

< Main Memory
- Disk

1980 1985 1990 1995 2000

Year

2005

2010

2015

wwa I- H S INSTITUTE FOR APPLIED
_' %‘%‘ COMPUTATIONAL SCIENCE
5

Declining Main Memory Cost

Store a fence pointer for every block in main memory

Fence
< 1 10 15

pointers / I \

(_Block1 | Block2 | Block3 | ..
1 10 15

IACS
DR INSTITUTE FOR APPLIED

Gty COMPUTATIONAL SCIENCE

Results Catalogue — with fence pointers

Sorted array O(log,(N/B)) O(N/B)
Log O(N/B) O(1/B)
B-tree O(logz(N/B)) O(logz(N/B))
Basic LSM-tree O(log,(N/B)?) O(1/B - log,(N/B))

Leveled LSM-tree
Tiered LSM-tree

IACS
DR INSTITUTE FOR APPLIED

Gty COMPUTATIONAL SCIENCE

Results Catalogue — with fence pointers

Sorted array O(log,(N/B)) O(N/B)
Log O(N/B) O(1/B)
B-tree O(logz(N/B)) O(logz(N/B))
Basic LSM-tree O(log,(N/B)?) O(1/B - log,(N/B))

Leveled LSM-tree
Tiered LSM-tree

IACS
DR INSTITUTE FOR APPLIED

Gty COMPUTATIONAL SCIENCE

Results Catalogue — with fence pointers

Sorted array O(1) O(N/B)
Log O(N/B) O(1/B)
B-tree O(logz(N/B)) O(logz(N/B))
Basic LSM-tree O(log,(N/B)?) O(1/B - log,(N/B))

Leveled LSM-tree
Tiered LSM-tree

IACS
DR INSTITUTE FOR APPLIED

Gty COMPUTATIONAL SCIENCE

Results Catalogue — with fence pointers

Sorted array O(1) O(N/B)
Log O(N/B) O(1/B)
B-tree O(logz(N/B)) O(logz(N/B))
Basic LSM-tree O(log,(N/B)?) O(1/B - log,(N/B))

Leveled LSM-tree
Tiered LSM-tree

IACS
DR INSTITUTE FOR APPLIED

Gty COMPUTATIONAL SCIENCE

Results Catalogue — with fence pointers

Sorted array O(1) O(N/B)
Log O(N/B) O(1/B)
B-tree O(logz(N/B)) O(logz(N/B))
Basic LSM-tree O(log,(N/B)?) O(1/B - log,(N/B))

Leveled LSM-tree
Tiered LSM-tree

IACS
DR INSTITUTE FOR APPLIED

Gty COMPUTATIONAL SCIENCE

Results Catalogue — with fence pointers

Sorted array O(1) O(N/B)
Log O(N/B) O(1/B)
B-tree O(1) O(1)
Basic LSM-tree O(log,(N/B)?) O(1/B - log,(N/B))

Leveled LSM-tree
Tiered LSM-tree

IACS
DR INSTITUTE FOR APPLIED

Gty COMPUTATIONAL SCIENCE

Results Catalogue — with fence pointers

Sorted array O(1) O(N/B)
Log O(N/B) O(1/B)
B-tree O(1) O(1)
Basic LSM-tree O(log,(N/B)?) O(1/B - log,(N/B))

Leveled LSM-tree
Tiered LSM-tree

IACS
DR INSTITUTE FOR APPLIED

Gty COMPUTATIONAL SCIENCE

Results Catalogue — with fence pointers

Sorted array O(1) O(N/B)
Log O(N/B) O(1/B)
B-tree O(1) O(1)
Basic LSM-tree O(log,(N/B)) O(1/B - log,(N/B))

Leveled LSM-tree
Tiered LSM-tree

IACS
'9}:":%75 INSTITUTE FOR APPLIED

'@'ﬁvﬁ’ COMPUTATIONAL SCIENCE
5%

Results Catalogue — with fence pointers

Quick sanity check:

Sorted array
Log
B-tree
Basic LSM-tree
Leveled LSM-tree
Tiered LSM-tree

suppose N =24
and B=210
O(1) O(N/B)
O(N/B) O(1/B)
0(1) O(1)

O(log,(N/B)) O(1/B - log,(N/B))

INSTITUTE FOR APPLIED

NOA
'@2:{; COMPUTATIONAL SCIENCE
&

Results Catalogue — with fence pointers

Quick sanity check: suppose N =24
and B =210
Sorted array 0(1) 0(23?)
Log 0(23?) 0(219)
B-tree O(1) O(1)
Basic LSM-tree O(5) 0(219.5)

Leveled LSM-tree
Tiered LSM-tree

INSTITUTE FOR APPLIED

\|
RRE)
\V2
\V/

Q
:ﬁ%? COMPUTATIONAL SCIENCE
&0

Leveled LSM-tree

@ Lookup cost IUpdate cost

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Leveled LSM-tree

Lookup cost depends on number of levels

Level

Buffer < O
-
1

Sorted 2
<

arrays 3

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Leveled LSM-tree

Lookup cost depends on number of levels
How to reduce it?

Level

Buffer <O
-
1

Sorted b 2

arrays 3

wwa r H S INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Leveled LSM-tree

Lookup cost depends on number of levels

How to reduce it? Increase sizeratio T
Level
Buffer < O
r
1
Sorted b 2
arrays 3

INSTITUTE FOR APPLIED

'é;':tg‘ COMPUTATIONAL SCIENCE
5

Leveled LSM-tree

Lookup cost depends on number of levels

How to reduce it? Increase size ratio T
Level Capacity
Buffer < 0 . TO
(1 T
Sorted b 2 T’
arrays 3 T3

wwa r INSTITUTE FOR APPLIED
_' GXKY COMPUTATIONAL SCIENCE

7
4‘ ‘V

Leveled LSM-tree

Lookup cost depends on number of levels
How to reduce it? Increase size ratio T

E.g. size ratio of 4

Level Capacity
Buffer <O I 1

-

1 4
Sorted b 2 16
arrays 3 64

wwa r INSTITUTE FOR APPLIED
_' GXKY COMPUTATIONAL SCIENCE

7
4‘ ‘V

Leveled LSM-tree

Lookup cost depends on number of levels
How to reduce it? Increase size ratio T
E.g. size ratio of 4

inserts
Level | Capacity
Buffer <O . 1
r
1 4
Sorted b 2 16
arrays 3 64

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Leveled LSM-tree

Lookup cost depends on number of levels
How to reduce it? Increase size ratio T
E.g. size ratio of 4

inserts
Level | Capacity
Buffer <O flush 1
r)
1 e e 4
Sorted b 2 16
arrays 3 64

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Leveled LSM-tree

Lookup cost depends on number of levels
How to reduce it? Increase size ratio T
E.g. size ratio of 4

inserts
Level | Capacity
Buffer <0 \flush&sort-merge 1
r
1 4
Sorted < 2 16
arrays 3 64

wwa r INSTITUTE FOR APPLIED
_' 'é,‘;%;gv‘ COMPUTATIONAL SCIENCE
5

Leveled LSM-tree

Lookup cost depends on number of levels
How to reduce it? Increase size ratio T
E.g. size ratio of 4

inserts
Level | Capacity
Buffer <O \f{lush&sort-merge 1
r
Sorted b 2 16
arrays 3 64

wwa r INSTITUTE FOR APPLIED
_' 'é,‘;%;gv‘ COMPUTATIONAL SCIENCE
5

Leveled LSM-tree

Lookup cost depends on number of levels
How to reduce it? Increase size ratio T
E.g. size ratio of 4

inserts
Level | Capacity
Buffer <0 flush & sort-merge 1
r
Sorted < 2 16
arrays 3 64

wwa r INSTITUTE FOR APPLIED
_' &exy COMPUTATIONAL SCIENCE

7
4& ‘V

Leveled LSM-tree

Lookup cost depends on number of levels
How to reduce it? Increase size ratio T

E.g. size ratio of 4

inserts
Level 1 Capacity
Buffer <O . 1
rl 4
R O R S D I B)move
Sorted 4 2 °
arrays 3 o4

wwa r INSTITUTE FOR APPLIED
_' GXKY COMPUTATIONAL SCIENCE

7
4‘ ‘V

Leveled LSM-tree

Lookup cost depends on number of levels
How to reduce it? Increase size ratio T
E.g. size ratio of 4

inserts
Level | Capacity
Buffer <O . 1
r
1 4
Sorted < 2 cer ses ees cer ees ees cer ees ees cee ses ses 16
arrays 3 64

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Leveled LSM-tree

inserts
Level | Capacity

Buffer < O 1
-
1 4

<
arrays 3 64

wwa r INSTITUTE FOR APPLIED
_' &exy COMPUTATIONAL SCIENCE
4"‘)

Leveled LSM-tree

Lookup cost?

inserts
Level | Capacity

Buffer < O 1
(1 4

arrays < 3 64

wwa r INSTITUTE FOR APPLIED
_| ",,‘{,v COMPUTATIONAL SCIENCE

Leveled LSM-tree

Lookup cost?

(1o (%)

inserts
Level | Capacity
Buffer < O 1
r
1 4

<
arrays 3 64

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Leveled LSM-tree

Lookup cost? Insertion cost?

0 (logr (3))

inserts
Level | Capacity

Buffer < O 1
-
1 4

<
arrays 3 64

wwa nHS 'A INSTITUTE FOR APPLIED
VA 47
| - % ‘,v COMPUTATIONAL SCIENCE

Leveled LSM-tree

Lookup cost? Insertion cost?
N T N
0 (logr (3)) 0 (5 logr (3))
Inserts
Level 1 Capacity
Buffer < o 1
r
1 4
arrays 3 64

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Leveled LSM-tree

Lookup cost? Insertion cost?

0 (logr (3)) 0 (- 1ogr (5))

wwa r INSTITUTE FOR APPLIED
_' 'é,‘;%;gv‘ COMPUTATIONAL SCIENCE
5

Leveled LSM-tree

Lookup cost? Insertion cost?
0 (logr (3)) 0 (5+1ogr (5))

What happens as we increase the size ratio T?

INSTITUTE FOR APPLIED

'é;':tg‘ COMPUTATIONAL SCIENCE
5

Leveled LSM-tree
@ Lookup cost? Insertion cost? I

0 (logr (3)) 0 (5 loer (5)

What happens as we increase the size ratio T?

INSTITUTE FOR APPLIED

'é;':tg‘ COMPUTATIONAL SCIENCE
5

Leveled LSM-tree
@ Lookup cost? Insertion cost? I

0 (logr (3)) 0 (5 loer (5)

What happens as we increase the size ratio T?

What happens when size ratio T is set to be N/B?

INSTITUTE FOR APPLIED

'é;':tg‘ COMPUTATIONAL SCIENCE
5

Leveled LSM-tree
@ Lookup cost? Insertion cost? I

0 (logr (3)) 0 (5 loer (5)

What happens as we increase the size ratio T?
What happens when size ratio T is set to be N/B?

Lookup cost becomes: Insert cost becomes:
0(1) O(N/B?)

INSTITUTE FOR APPLIED

'é;':tg‘ COMPUTATIONAL SCIENCE
5

Leveled LSM-tree
@ Lookup cost? Insertion cost? I

0 (logr (3)) 0 (5 loer (5)

What happens as we increase the size ratio T?
What happens when size ratio T is set to be N/B?

Lookup cost becomes: Insert cost becomes:
0(1) O(N/B?)

The LSM-tree becomes a sorted array!

wwa r INSTITUTE FOR APPLIED
_' &exy COMPUTATIONAL SCIENCE

7
4& ‘V

Basic
LSM-tree

Lookup cost

Sorted
array

Insertion cost

IACS
DR INSTITUTE FOR APPLIED

Gty COMPUTATIONAL SCIENCE

Results Catalogue — with fence pointers

Sorted array O(1) O(N/B)
Log O(N/B) O(1/B)
B-tree O(1) O(1)
Basic LSM-tree O(log,(N/B)) O(1/B - log,(N/B))
Leveled LSM-tree O(log;(N/B)) O(T/B - log;(N/B))

Tiered LSM-tree

INSTITUTE FOR APPLIED

COMPUTATIONAL SCIENCE

Tiered LSM-tree

INSTITUTE FOR APPLIED

VAA(
w’%?'%' COMPUTATIONAL SCIENCE
&

\&

Tiered LSM-tree

I Lookup cost @ Insertion cost

INSTITUTE FOR APPLIED

'é;':tg‘ COMPUTATIONAL SCIENCE
5

Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.

Level Capacity
Buffer < 0 . TO

(1 E
Sorted b 2 T°
arrays 3 T3

wwa r H S INSTITUTE FOR APPLIED
_' GXKY COMPUTATIONAL SCIENCE

7
4‘ ‘V

Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.
Do not merge within a level.

Level Capacity
Buffer < 0 I TO

(1 E
Sorted < 2 T
arrays 3 13

wwa r H S INSTITUTE FOR APPLIED
_' GXKY COMPUTATIONAL SCIENCE

7
4‘ ‘V

Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.
Do not merge within a level.
E.g. size ratio of 4

Level Capacity
Buffer <O I 1
-
1 4
Sorted < 2 16
arrays 3 64

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.
Do not merge within a level.
E.g. size ratio of 4

inserts
Level 1 Capacity
Buffer <O 1
-
1 4
Sorted < 2 16
arrays 3 64

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.
Do not merge within a level.
E.g. size ratio of 4

inserts
Level 1 Capacity
Buffer <O flush 1
r)
1 e e 4
Sorted < 2 16
arrays 3 64

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.
Do not merge within a level.
E.g. size ratio of 4

inserts
Level | Capacity
Buffer <O \fIUSh 1
r
1 = e e 4
Sorted b 2 16
arrays 3 64

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.
Do not merge within a level.
E.g. size ratio of 4

inserts
Level | Capacity
Buffer <O flush 1
r
1 = e BN . 4
Sorted b 2 16
arrays 3 64

wwa r INSTITUTE FOR APPLIED
_' 'é,‘;%;gv‘ COMPUTATIONAL SCIENCE
5

Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.
Do not merge within a level.
E.g. size ratio of 4

inserts
Level | Capacity
Buffer <O flush R 1
r
1 = P P P . . 4
Sorted b 2 16
arrays 3 64

wwa r H S INSTITUTE FOR APPLIED
_' 'é,‘;%;gv‘ COMPUTATIONAL SCIENCE
5

Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.
Do not merge within a level.
E.g. size ratio of 4

inserts
Level | Capacity
Buffer <O . 1
r
1 = |SH S [R B . > 4
Sorted < 2 R I I T I - R B R N 16
arrays 3 sort-merge 64

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.
Do not merge within a level.
E.g. size ratio of 4

inserts
Level | Capacity
Buffer <O 1
r
1 4
arrays 3 64

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Tiered LSM-tree

Lookup cost?

inserts
Level | Capacity

Buffer < O 1
-
1 4

<
arrays 3 64

wwa r INSTITUTE FOR APPLIED
_| ",,‘{,v COMPUTATIONAL SCIENCE

Tiered LSM-tree

Lookup cost?

(1 1oz (2)

inserts
Level | Capacity
Buffer < O 1
r
1 4

<
arrays 3 64

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Tiered LSM-tree

Lookup cost? Insertion cost?

0 (- 1ogr 3))

inserts
Level | Capacity

Buffer < O 1
-
1 4

<
arrays 3 64

wwa nHS 'A INSTITUTE FOR APPLIED
VA 47
| - % ‘,v COMPUTATIONAL SCIENCE

Tiered LSM-tree

Lookup cost? Insertion cost?
(7 logr (5)) 0 (- logr (3))
8T \ 5 5 08T (3
inserts
Level 1 Capacity
Buffer <O 1
r
1 4
arrays 3 64

wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Tiered LSM-tree

Lookup cost? Insertion cost?

0 (- 1ogr 3)) 05+ Togr (5))

wwa r INSTITUTE FOR APPLIED
_' &exy COMPUTATIONAL SCIENCE
4"‘)

Tiered LSM-tree

Lookup cost? Insertion cost?

0 (- 1ogr 3)) 05+ Togr (5))

What happens as we increase the size ratio T?

INSTITUTE FOR APPLIED

K7 COMPUTATIONAL SCIENCE
4"‘)

Tiered LSM-tree

Lookup cost? Insertion cost?

0 (- 1ogr 3)) 0(5-1oer (5)) &

What happens as we increase the size ratio T?

INSTITUTE FOR APPLIED

'é;':tg‘ COMPUTATIONAL SCIENCE
5

Tiered LSM-tree

Lookup cost? Insertion cost?

0 (- 1ogr 3)) 0(5-1oer (5)) &

What happens as we increase the size ratio T?

What happens when size ratio T is set to be N/B?

INSTITUTE FOR APPLIED

'é;':tg‘ COMPUTATIONAL SCIENCE
5

Tiered LSM-tree

Lookup cost? Insertion cost?

0 (- 1ogr 3)) 0(5-1oer (5)) &

What happens as we increase the size ratio T?
What happens when size ratio T is set to be N/B?

Lookup cost becomes: Insert cost becomes:
O(N/B) O(1/B)

INSTITUTE FOR APPLIED

'é;':tg‘ COMPUTATIONAL SCIENCE
5

Tiered LSM-tree

Lookup cost? Insertion cost?

0 (- 1ogr 3)) 0(5-1oer (5)) &

What happens as we increase the size ratio T?
What happens when size ratio T is set to be N/B?

Lookup cost becomes: Insert cost becomes:
O(N/B) O(1/B)

The tiered LSM-tree becomes a log!

wwa r INSTITUTE FOR APPLIED
_' &exy COMPUTATIONAL SCIENCE

7
4& ‘V

Log

Basic
LSM-tree

Sorted
array

Lookup cost

Insertion cost

IACS
DR INSTITUTE FOR APPLIED

Gty COMPUTATIONAL SCIENCE

Results Catalogue — with fence pointers

Sorted array O(1) O(N/B)
Log O(N/B) O(1/B)
B-tree O(1) O(1)
Basic LSM-tree O(log,(N/B)) O(1/B - log,(N/B))
Leveled LSM-tree O(log;(N/B)) O(T/B - log;(N/B))

Tiered LSM-tree O(T - log;(N/B)) O(1/B - log;(N/B))

INSTITUTE FOR APPLIED

COMPUTATIONAL SCIENCE

Bloom filters

B r H S
-|

INSTITUTE FOR APPLIED

Declining Main Memory Cost

'é;':tg‘ COMPUTATIONAL SCIENCE
5

10
10

~N oo ©
X
X
X
X
X

(@)
X
X
X
X
X
X

Ut
X

w

e e e el e W
SO OO OO
O AN
X
X

Price per GB ($)

N N =)

e e
OO OO

< Main Memory
- Disk

1980 1985 1990 1995 2000

Year

2005

2010

2015

INSTITUTE FOR APPLIED

'é;':tg‘ COMPUTATIONAL SCIENCE
5

Bloom Filters

Answers set-membership queries

Smaller than array, and stored in main memory
Purpose: avoid accessing disk if entry is not in array
Subtlety: may return false positives.

INSTITUTE FOR APPLIED

'é;':tg‘ COMPUTATIONAL SCIENCE
5

Bloom Filters

Answers set-membership queries

Smaller than array, and stored in main memory
Purpose: avoid accessing disk if entry is not in array
Subtlety: may return false positives.

Lookup for X

1

INSTITUTE FOR APPLIED

'é;':tg‘ COMPUTATIONAL SCIENCE
5

Bloom Filters

Answers set-membership queries
Smaller than array, and stored in main memory
Purpose: avoid accessing disk if entry is not in array
Subtlety: may return false positives.

Lookup for X

| v/

Bloom filter

INSTITUTE FOR APPLIED

'é;':tg‘ COMPUTATIONAL SCIENCE
5

Bloom Filters

Answers set-membership queries
Smaller than array, and stored in main memory
Purpose: avoid accessing disk if entry is not in array
Subtlety: may return false positives.

Lookup for X

filters < Access on disk

INSTITUTE FOR APPLIED

'é;':tg‘ COMPUTATIONAL SCIENCE
5

Bloom Filters

Answers set-membership queries

Smaller than array, and stored in main memory
Purpose: avoid accessing disk if entry is not in array
Subtlety: may return false positives.

Lookup for Y

1

INSTITUTE FOR APPLIED

'é;':tg‘ COMPUTATIONAL SCIENCE
5

Bloom Filters

Answers set-membership queries
Smaller than array, and stored in main memory
Purpose: avoid accessing disk if entry is not in array
Subtlety: may return false positives.

Lookup for Y

| X

Bloom filter

INSTITUTE FOR APPLIED

'é;':tg‘ COMPUTATIONAL SCIENCE
5

Bloom Filters

Answers set-membership queries
Smaller than array, and stored in main memory
Purpose: avoid accessing disk if entry is not in array
Subtlety: may return false positives.

Lookup for Y

INSTITUTE FOR APPLIED

'é;':tg‘ COMPUTATIONAL SCIENCE
5

Bloom Filters

Answers set-membership queries

Smaller than array, and stored in main memory
Purpose: avoid accessing disk if entry is not in array
Subtlety: may return false positives.

Lookup for Z

1

INSTITUTE FOR APPLIED

ﬂ"'v
@) COMPUTATIONAL SCIENCE

Bloom Filters

Answers set-membership queries
Smaller than array, and stored in main memory
Purpose: avoid accessing disk if entry is not in array

Subtlety: may return false positives.
Lookup for/

INSTITUTE FOR APPLIED

'é;':tg‘ COMPUTATIONAL SCIENCE
5

Bloom Filters

Answers set-membership queries

Smaller than array, and stored in main memory
Purpose: avoid accessing disk if entry is not in array
Subtlety: may return false positives.

Lookup for Z

1

filters < Access on disk

wwa r INSTITUTE FOR APPLIED
_' &exy COMPUTATIONAL SCIENCE

7
4& ‘V

Bloom Filters

The more main memory, the less false positives : cheaper lookups

oo ©

< Main Memory
- Disk

(SN |
X
X
X
X
X
X

X

X

X

X

X

i
X
X
X
X

w

X
X
X
X

e e
OOOO@OOOO
X

[\)

Price per GB ($)

— ==
oo oo

R IO Rt S)

1980 1985 1990 1995 2000 2005 2010 2015
Year

wwa r INSTITUTE FOR APPLIED
_' 'é;;t{; COMPUTATIONAL SCIENCE
&

Bloom Filters

The more main memory, the less false positives : cheaper lookups

Lookup cost

Insertion cost

wwa r INSTITUTE FOR APPLIED
_' 'é;;%;gv COMPUTATIONAL SCIENCE
s

Bloom Filters

The more main memory, the less false positives : cheaper lookups

} Monkey: Optimal Navigable Key-Value Store
Niv Dayan, Manos Athanassoulis, Stratos ldreos
SIGMOD 2017

Lookup cost

Insertion cost

INSTITUTE FOR APPLIED

K204 COMPUTATIONAL SCIENCE

Conclusions

Write-optimized

wwa r INSTITUTE FOR APPLIED
_' &exy COMPUTATIONAL SCIENCE
4&")

Conclusions

Write-optimized

Highly tunable

wwa r INSTITUTE FOR APPLIED
_' &exy COMPUTATIONAL SCIENCE
4&")

Conclusions

Write-optimized
Highly tunable

Backbone of many modern systems

wwa r INSTITUTE FOR APPLIED
_' &Y COMPUTATIONAL SCIENCE

/5 7N
'@';9

Conclusions

Write-optimized
Highly tunable

Backbone of many modern systems

Trade-off between lookup and insert cost (tiering/leveling, size ratio)

wwa r INSTITUTE FOR APPLIED
_' &Y COMPUTATIONAL SCIENCE

2 saTAN
&

Conclusions

Write-optimized
Highly tunable
Backbone of many modern systems

Trade-off between lookup and insert cost (tiering/leveling, size ratio)

Trade main memory for lookup cost (fence pointers, Bloom filters)

wwa r INSTITUTE FOR APPLIED
_' &Y COMPUTATIONAL SCIENCE

2 saTAN
&

Conclusions

Write-optimized
Highly tunable
Backbone of many modern systems

Trade-off between lookup and insert cost (tiering/leveling, size ratio)

Trade main memory for lookup cost (fence pointers, Bloom filters)

Thank you!

