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Useful when?

/| Massive dataset

/| Rapid updates/insertions

/| Fast lookups

——> LSM-trees are for you.
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Outline
1. Storage devices
2. Indexing problem & basic solutions
3. Basic LSM-trees
4. Leveled LSM-trees
5. Tiered LSM-trees
6. Bloom filters
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The Memory Hierarchy

expensive, fast

cheap, slow
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The Memory Hierarchy

Metadata & frequently expensive, fast

accessed data

All data cheap, slow
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~100 ns

~10 ms

~5-6 order of magnitude difference
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| Disk head
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Why is disk slow?

| Disk head

Random access is slow —> move disk head

Sequential access is faster ~ —> let disk spin
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i 64 byte chunks Fine access granularity
/ Words
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' 4 kilobyte chunks Coarse access granularity

; Blocks
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Outline

Storage devices

Indexing problem & basic solutions
Basic LSM-trees

Leveled LSM-trees

Tiered LSM-trees
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Outline

Storage devices

Indexing problem & basic solutions
Basic LSM-trees

Leveled LSM-trees

Tiered LSM-trees
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Indexing Problem

names C——> phone numbers
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names C——> phone numbers

Structure on disk?

Lookup cost?

Insertion cost?
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Results Catalogue

Compare and contrast data structures.
What to use when?

Sorted array
Log
B-tree
Basic LSM-tree
Leveled LSM-tree
Tiered LSM-tree
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Results Catalogue

Compare and contrast data structures.
What to use when?

Sorted array
Log
B-tree
Basic LSM-tree
Leveled LSM-tree
Tiered LSM-tree



Modeling Performance

« ~1ns
64 byte Words ~100 ns
4 kilobyte Blocks ~10 ms
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Modeling Performance

64 byte Words

4 kilobyte Blocks

~1ns

~100 ns

~10 ms Measure bottleneck:

Number of block reads/writes (I/0)
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Sorted Array

N entries

B entries fit into a disk block
Array spans N/B disk blocks
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Sorted Array

N entries

Lookup method & cost?

B entries fit into a disk block
Array spans N/B disk blocks
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Sorted Array

N entries
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Lookup method & cost?

B entries fit into a disk block Binary search:
Array spans N/B disk blocks
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Sorted Array
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0 (log2 (%)) |/Os

N entries Lookup method & cost?
B entries fit into a disk block Binary search:
Array spans N/B disk blocks Insertion cost?
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Sorted Array

N entries
B entries fit into a disk block
Array spans N/B disk blocks
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Lookup method & cost?
O (logz (%)) 1/Os

Binary search:

Insertion cost?

. 1 N
Push entries: O (— : —) 1/Os
o aE
< James
i m
N\
4 mm—
< Anne Yulia
Arnold Corrie Zack
\_ Barbara Doug Zelda
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Results Catalogue

Sorted array O(log,(N/B)) O(N/B?)
Log
B-tree
Basic LSM-tree
Leveled LSM-tree
Tiered LSM-tree
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Results Catalogue

Sorted array O(log,(N/B)) O(N/B?)
Log
B-tree
Basic LSM-tree
Leveled LSM-tree
Tiered LSM-tree
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(append-only array)
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Log (append-only array)

N entries

B entries fit into a disk block

Array spans N/B disk blocks
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N entries
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Lookup method & cost?

B entries fit into a disk block

Array spans N/B disk blocks
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Log (append-only array)

N entries Lookup method & cost?

B entries fit into a disk block Scan: 0 (N)
B
Array spans N/B disk blocks

G it

James

< — Array size |_Pointer _
N 1
BB cocki | Bock2 | . BlocknN/B

< Doug Yulia Anne
Zelda Zack Bob

\_ Arnold Barbara Corrie
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Log (append-only array)

Lookup method & cost?

N entries

B entries fit into a disk block Scan: 0 (ﬂ)
B

Array spans N/B disk blocks Insertion cost?

G it

James

< il Array size |_Pointer _
N 1
BB cocki | Bock2 | . BlocknN/B

< Doug Yulia Anne
Zelda Zack Bob

\_ Arnold Barbara Corrie
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Log (append-only array)

N entries Lookup method & cost?
B entries fit into a disk block Scan: 0 (ﬂ)
B
Array spans N/B disk blocks Insertion cost?
Append: O (%)

G it

James

< e Array size |_Pointer
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< Doug Yulia Anne
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Sorted array O(log,(N/B)) O(N/B?)
Log O(N/B) O(1/B)
B-tree

Basic LSM-tree
Leveled LSM-tree
Tiered LSM-tree



wwa INSTITUTE FOR APPLIED
'ééﬁ{; COMPUTATIONAL SCIENCE
5%

Results Catalogue

Sorted array O(log,(N/B)) O(N/B?)
Log O(N/B) O(1/B)
B-tree

Basic LSM-tree
Leveled LSM-tree
Tiered LSM-tree
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Lookup method & cost?
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B-tree

Lookup method & cost?
Tree search: O (logB (%))

Anne h
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Lookup method & cost? Insertion method & cost?
Tree search: O (logB (%))

Anne h
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Anne Bob Corrie Yulia
/ ] N\ N\ > Depth:
Anne Bob Corrie Yulia O(logB(N/B))
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B-tree
Lookup method & cost? Insertion method & cost?
Tree search: O (logB (g)) Tree search & append: O (logB (%))
Anne )
' | N\
Anne Bob Corrie Yulia
% | \ \ > Depth:
Anne Bob Corrie Yulia O(logB(N/B))
Arnold Barbara Doug Zack
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Results Catalogue

Sorted array O(log,(N/B)) O(N/B?)
Log O(N/B) O(1/B)
B-tree O(logz(N/B)) O(logz(N/B))

Basic LSM-tree
Leveled LSM-tree
Tiered LSM-tree
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B-trees

“It could be said that the world’s information
is at our fingertips because of B-trees”

Goetz Graefe Microsoft, HP Fellow, now
Google ACM Software System Award
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B-trees are no longer sufficient

Cheaper to store data = 10
Q
n
Workloads more insert-intensive 0 10’
We need better insert-performance. £ 1
M
O 1
- 10
O
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o 10
=
A

.
1980 1985 1990 1995 2000 2005 2010 2015
Year



INSTITUTE FOR APPLIED

Results Catalogue

Goal to combine

Sorted array
Log
B-tree
Basic LSM-tree
Leveled LSM-tree
Tiered LSM-tree
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sub-constant insertion cost
logarithmic lookup cost

O(log,(N/B)) O(N/B?)
O(N/B) O(1/8B)
O(logg(N/B)) O(logg(N/B))
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Basic LSM-tree

Level

Buffer < 0
-
1

Sorted 2
<

arrays 3




wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Basic LSM-tree

Design principle #1: optimize for insertions by buffering

Level

Buffer < 0
-
1

Sorted 2
<

arrays 3
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Basic LSM-tree

Design principle #1: optimize for insertions by buffering
Inserts
Level 1
Buffer < o
r
1
Sorted b 2
arrays 3
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Basic LSM-tree

Design principle #1: optimize for insertions by buffering
Inserts
Level 1
Buffer < 0 sort & flush buffer
: )
1
Sorted b 2
arrays 3
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Basic LSM-tree

Design principle #1: optimize for insertions by buffering
Inserts
Level 1

sort & flush buffer

Buffer < 0 )\A
-

1
Sorted b 2
arrays 3
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Basic LSM-tree

Design principle #1: optimize for insertions by buffering
Design principle #2: optimize for lookups by sort-merging arrays
Inserts
Level 1
Buffer < 0 sort & flush buffer
f ™
1
Sorted b 2
arrays 3
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Basic LSM-tree

Design principle #1: optimize for insertions by buffering
Design principle #2: optimize for lookups by sort-merging arrays
Inserts
Level 1

Buffer < 0 sort & flush buffer

>
1 ( .........
Sorted 2 . —

arrays < ; Sort-merge
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Basic LSM-tree

Design principle #1: optimize for insertions by buffering
Design principle #2: optimize for lookups by sort-merging arrays
Inserts
Level 1

Buffer < 0 sort & flush buffer

)
1 ( ) SR o (25| o
Sorted < 2 R
arrays ] Sort-merge &
Eliminate duplicates
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Basic LSM-tree

Design principle #1: optimize for insertions by buffering
Design principle #2: optimize for lookups by sort-merging arrays
Inserts
Level 1

Buffer < 0 sort & flush buffer

>
1 ( X1 ...... o (25| o
Sorted 2 o X e s,

2
arrays < Sort-merge &
3 Eliminate duplicates
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Basic LSM-tree

Design principle #1:

Design principle #2:

Level

Buffer < 0

r
1

Sorted 2
<

arrays 3

(A"{V
&) COMPUTATIONAL SCIENCE

optimize for insertions by buffering

optimize for lookups by sort-merging arrays

Inserts

!

sort & flush buffer

(7@,

Sort-merge &
Eliminate duplicates &
Discard original arrays
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Basic LSM-tree — Example

Level

Buffer < 0
-
1

Sorted 2
<

arrays 3
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Basic LSM-tree — Example

inserts
Level 1

Buffer <O 4 6 9
-
1

Sorted 2
<

arrays 3
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Basic LSM-tree — Example

inserts
Level 1

Buffer < 0 sort & flush buffer
p>

)

1 4 6 9

Sorted 2
<

arrays 3
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Basic LSM-tree — Example

inserts
Level 1
Buffer <O
r
1 4 6 9

Sorted 2
<

arrays 3
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Basic LSM-tree — Example

inserts
Level 1
Buffer <O 3 4 8
r
1 4 6 9

Sorted 2
<

arrays 3
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Basic LSM-tree — Example

inserts
Level 1

Buffer < 0 sort & flush buffer
p>

N

1 4 6 9 3 4 8

Sorted 2
<

arrays 3
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Basic LSM-tree — Example

inserts
Level 1
Buffer <O
r
1 4 6 9 3 4 8

Sorted 2
<

arrays 3
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Basic LSM-tree — Example

inserts
Level 1

Buffer < 0
-

1 ( 4 6 9 3 4 8
Sorted 2 34689 +—
arrays < ; Sort-merge
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Basic LSM-tree — Example

inserts

Level 1
Buffer <O

r

1 ( 4, 6 9 3<_4D
Sorted < 2 34,6 89
arrays ; Sort-merge &
Eliminate duplicates
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Basic LSM-tree — Example

inserts
Level 1
Buffer <O
)
1 ( ® ® >
Sorted 2 346 89
arrays < ; Sort-merge &
Eliminate duplicates &
Discard original arrays
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Basic LSM-tree — Example

inserts
Level 1
Buffer <O
p-
1
Sorted<2 346 89
arrays 3
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Basic LSM-tree — Example

inserts
Level 1

Buffer <O 2 7 8
-
1

Sorted<2 346 89

arrays 3




wwa r INSTITUTE FOR APPLIED
_' 'é;;;'; COMPUTATIONAL SCIENCE
&

Basic LSM-tree — Example

inserts
Level 1

Buffer < 0 sort & flush buffer
p>

)

1 2 7 8
Sorted < 2 346 89
arrays 3
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Basic LSM-tree — Example

inserts
Level 1
Buffer <O
r
1 2 7 8
Sorted<2 346 89
arrays 3
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Basic LSM-tree

Levels have exponentially increasing capacities.

Level Capacity
Buffer < o . 1

r
1 2

Sorted b 2 4
arrays
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Basic LSM-tree — Lookup cost

Level Capacity

Buffer < O 1
-
1 2

Sorted 2 4
<

arrays 3
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Basic LSM-tree — Lookup cost

Lookup method?

Level Capacity

Buffer < O 1
-
1 2

Sorted 2 4
<

arrays 3
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Basic LSM-tree — Lookup cost

Lookup method? Search youngest to oldest. O (logz (g))

Level Capacity
Buffer <O ......... 1
r
1 2
Sorted b 2 4
arrays 3 5
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Basic LSM-tree — Lookup cost

Lookup method? Search youngest to oldest. O (log2 (g))
How?
Level Capacity
Buffer 0O . 1
3
1 2
Sorted b 2 4
arrays 3 .
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Basic LSM-tree — Lookup cost

Lookup method? Search youngest to oldest. O (log2 (g))
How? Binary search. 0 (log2 (g))
Level Capacity
Buffer o 1
4
1 2
Sorted b 2 4
arrays 3 .
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Basic LSM-tree — Lookup cost

Lookup method? Search youngest to oldest. O (log2 (g))
How? Binary search. 0 (log2 (g))
Lookup cost?
Level Capacity
Buffer o 1
4
1 2
Sorted b 2 4
arrays 3 .
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Basic LSM-tree — Lookup cost

Lookup method? Search youngest to oldest. O (log2 (g))
How? Binary search. 0 (log2 (g))
N 2
Lookup cost? 0 (10g2 (E) )
Level Capacity
Buffer o 1
4
1 2
Sorted b 2 4
arrays 3 .




wwa nHS ' INSTITUTE FOR APPLIED
VA 47
| - & ‘,v COMPUTATIONAL SCIENCE

Basic LSM-tree — Insertion cost

Level Capacity

Buffer < O 1
-
1 2

Sorted 2 4
<

arrays 3
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Basic LSM-tree — Insertion cost

How many times is each entry copied?

Level Capacity
Buffer <O ......... 1
r
1 2
Sorted b 2 4
arrays 3 5
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Basic LSM-tree — Insertion cost

How many times is each entry copied? O (1082 (%))

Level Capacity

Buffer < O 1
-
1 2

Sorted 2 4
<

arrays 3
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Basic LSM-tree — Insertion cost

How many times is each entry copied? 0 (logz (g))
What is the price of each copy?

Level Capacity
Buffer <O ......... 1
r
1 2
Sorted b 2 4
arrays 3 5
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Basic LSM-tree — Insertion cost

How many times is each entry copied? O (1082 (%))
What is the price of each copy? 0 (%)
Level Capacity
Buffer O 1
$
1 2
arrays 3 3
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Basic LSM-tree — Insertion cost

How many times is each entry copied? O (1082 (%))
What is the price of each copy? O (%)
Total insert cost?
Level Capacity
Buffer O ......... 1
3
i 2
arrays 3 3
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Basic LSM-tree — Insertion cost

How many times is each entry copied? O (1082 (%))
What is the price of each copy? O (%)
Total insert cost? 0 (% log; (%))
Level Capacity
Buffer O ......... 1
3
i 2
arrays 3 3




Bmm INSTITUTE FOR APPLIED
&KY COMPUTATIONAL SCIENCE
45';»

Results Catalogue

Sorted array O(log,(N/B)) O(N/B)
Log O(N/B) O(1/B)
B-tree O(logz(N/B)) O(logz(N/B))
Basic LSM-tree O(log,(N/B)?) O(1/B - log,(N/B))

Leveled LSM-tree
Tiered LSM-tree
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Results Catalogue

Better insert cost and worst lookup cost compared with B-trees

Sorted array O(log,(N/B)) O(N/B)
Log O(N/B) O(1/B)
B-tree O(logz(N/B)) O(logz(N/B))
Basic LSM-tree O(log,(N/B)?) O(1/B - log,(N/B))

Leveled LSM-tree
Tiered LSM-tree
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Results Catalogue

Better insert cost and worst lookup cost compared with B-trees
Can we improve lookup cost?

Sorted array O(log,(N/B)) O(N/B)
Log O(N/B) O(1/B)
B-tree O(logz(N/B)) O(logz(N/B))
Basic LSM-tree O(log,(N/B)?) O(1/B - log,(N/B))

Leveled LSM-tree
Tiered LSM-tree
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Declining Main Memory Cost

Store a fence pointer for every block in main memory

Fence
< 1 10 15

pointers / I \

( _Block1 | Block2 | Block3 | ..
1 10 15
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Results Catalogue — with fence pointers

Sorted array O(log,(N/B)) O(N/B)
Log O(N/B) O(1/B)
B-tree O(logz(N/B)) O(logz(N/B))
Basic LSM-tree O(log,(N/B)?) O(1/B - log,(N/B))

Leveled LSM-tree
Tiered LSM-tree
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Results Catalogue — with fence pointers

Sorted array O(log,(N/B)) O(N/B)
Log O(N/B) O(1/B)
B-tree O(logz(N/B)) O(logz(N/B))
Basic LSM-tree O(log,(N/B)?) O(1/B - log,(N/B))

Leveled LSM-tree
Tiered LSM-tree
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Results Catalogue — with fence pointers

Sorted array O(1) O(N/B)
Log O(N/B) O(1/B)
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Results Catalogue — with fence pointers

Quick sanity check:

Sorted array
Log
B-tree
Basic LSM-tree
Leveled LSM-tree
Tiered LSM-tree

suppose N =24
and B=210
O(1) O(N/B)
O(N/B) O(1/B)
0(1) O(1)

O(log,(N/B)) O(1/B - log,(N/B))
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Results Catalogue — with fence pointers

Quick sanity check: suppose N =24
and B =210
Sorted array 0(1) 0(23?)
Log 0(23?) 0(219)
B-tree O(1) O(1)
Basic LSM-tree O(5) 0(219.5)

Leveled LSM-tree
Tiered LSM-tree
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Lookup cost depends on number of levels
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Buffer < O
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arrays 3
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How to reduce it?
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Leveled LSM-tree

Lookup cost depends on number of levels
How to reduce it? Increase size ratio T

E.g. size ratio of 4

Level Capacity
Buffer <O I 1

-

1 4
Sorted b 2 16
arrays 3 64
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Lookup cost depends on number of levels
How to reduce it? Increase size ratio T
E.g. size ratio of 4

inserts
Level | Capacity
Buffer <O . 1
r
1 4
Sorted b 2 16
arrays 3 64
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Leveled LSM-tree

Lookup cost depends on number of levels
How to reduce it? Increase size ratio T
E.g. size ratio of 4

inserts
Level | Capacity
Buffer <O ......... flush 1
r )
1 e e 4
Sorted b 2 16
arrays 3 64
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Lookup cost depends on number of levels
How to reduce it? Increase size ratio T
E.g. size ratio of 4

inserts
Level | Capacity
Buffer <0 ......... \flush&sort-merge 1
r
1 4
Sorted < 2 16
arrays 3 64
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Leveled LSM-tree

Lookup cost depends on number of levels
How to reduce it? Increase size ratio T
E.g. size ratio of 4

inserts
Level | Capacity
Buffer <0 ......... flush & sort-merge 1
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Sorted < 2 16
arrays 3 64
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Leveled LSM-tree

Lookup cost depends on number of levels
How to reduce it? Increase size ratio T

E.g. size ratio of 4

inserts
Level 1 Capacity
Buffer <O . 1
rl 4
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Sorted 4 2 °
arrays 3 o4
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Leveled LSM-tree

Lookup cost depends on number of levels
How to reduce it? Increase size ratio T
E.g. size ratio of 4

inserts
Level | Capacity
Buffer <O . 1
r
1 4
Sorted < 2 cer  ses  ees cer ees  ees cer ees ees cee  ses  ses 16
arrays 3 64
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inserts
Level | Capacity

Buffer < O 1
-
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<
arrays 3 64
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inserts
Level | Capacity
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Leveled LSM-tree

Lookup cost? Insertion cost?

0 (logr (3))

inserts
Level | Capacity

Buffer < O 1
-
1 4

<
arrays 3 64
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Leveled LSM-tree

Lookup cost? Insertion cost?
N T N
0 (logr (3)) 0 (5 logr (3))
Inserts
Level 1 Capacity
Buffer < o 1
r
1 4
arrays 3 64
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0 (logr (3)) 0 (5+1ogr (5))

What happens as we increase the size ratio T?
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What happens as we increase the size ratio T?

What happens when size ratio T is set to be N/B?
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Leveled LSM-tree
@ Lookup cost? Insertion cost? I

0 (logr (3)) 0 (5 loer (5)

What happens as we increase the size ratio T?
What happens when size ratio T is set to be N/B?

Lookup cost becomes: Insert cost becomes:
0(1) O(N/B?)
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Leveled LSM-tree
@ Lookup cost? Insertion cost? I

0 (logr (3)) 0 (5 loer (5)

What happens as we increase the size ratio T?
What happens when size ratio T is set to be N/B?

Lookup cost becomes: Insert cost becomes:
0(1) O(N/B?)

The LSM-tree becomes a sorted array!
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Results Catalogue — with fence pointers

Sorted array O(1) O(N/B)
Log O(N/B) O(1/B)
B-tree O(1) O(1)
Basic LSM-tree O(log,(N/B)) O(1/B - log,(N/B))
Leveled LSM-tree O(log;(N/B)) O(T/B - log;(N/B))

Tiered LSM-tree
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Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.

Level Capacity
Buffer < 0 . TO

(1 E
Sorted b 2 T°
arrays 3 T3
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Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.
Do not merge within a level.

Level Capacity
Buffer < 0 I TO

(1 E
Sorted < 2 T
arrays 3 13
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Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.
Do not merge within a level.
E.g. size ratio of 4

Level Capacity
Buffer <O I 1
-
1 4
Sorted < 2 16
arrays 3 64
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Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.
Do not merge within a level.
E.g. size ratio of 4

inserts
Level 1 Capacity
Buffer <O ......... 1
-
1 4
Sorted < 2 16
arrays 3 64
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Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.
Do not merge within a level.
E.g. size ratio of 4

inserts
Level 1 Capacity
Buffer <O ......... flush 1
r )
1 e e 4
Sorted < 2 16
arrays 3 64
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Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.
Do not merge within a level.
E.g. size ratio of 4

inserts
Level | Capacity
Buffer <O ......... \fIUSh 1
r
1 = e e 4
Sorted b 2 16
arrays 3 64
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Reduce the number of levels by increasing the size ratio.
Do not merge within a level.
E.g. size ratio of 4

inserts
Level | Capacity
Buffer <O ......... flush 1
r
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Sorted b 2 16
arrays 3 64
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Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.
Do not merge within a level.
E.g. size ratio of 4

inserts
Level | Capacity
Buffer <O ......... flush R 1
r
1 = P P P . . 4
Sorted b 2 16
arrays 3 64
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Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.
Do not merge within a level.
E.g. size ratio of 4

inserts
Level | Capacity
Buffer <O . 1
r
1 = |SH S [ R B . > 4
Sorted < 2 R I I T I - R B R N 16
arrays 3 sort-merge 64
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Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.
Do not merge within a level.
E.g. size ratio of 4

inserts
Level | Capacity
Buffer <O ......... 1
r
1 4
arrays 3 64
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Tiered LSM-tree

Lookup cost?

inserts
Level | Capacity

Buffer < O 1
-
1 4

<
arrays 3 64
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Tiered LSM-tree

Lookup cost?

(1 1oz (2)

inserts
Level | Capacity
Buffer < O 1
r
1 4

<
arrays 3 64
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Tiered LSM-tree

Lookup cost? Insertion cost?

0 (- 1ogr 3))

inserts
Level | Capacity

Buffer < O 1
-
1 4

<
arrays 3 64
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Tiered LSM-tree

Lookup cost? Insertion cost?
(7 logr (5)) 0 (- logr (3))
8T \ 5 5 08T (3
inserts
Level 1 Capacity
Buffer <O ......... 1
r
1 4
arrays 3 64
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What happens as we increase the size ratio T?
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Lookup cost? Insertion cost?
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What happens as we increase the size ratio T?
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Lookup cost? Insertion cost?

0 (- 1ogr 3)) 0(5-1oer (5)) &

What happens as we increase the size ratio T?

What happens when size ratio T is set to be N/B?



INSTITUTE FOR APPLIED

'é;':tg‘ COMPUTATIONAL SCIENCE
5

Tiered LSM-tree

Lookup cost? Insertion cost?

0 (- 1ogr 3)) 0(5-1oer (5)) &

What happens as we increase the size ratio T?
What happens when size ratio T is set to be N/B?

Lookup cost becomes: Insert cost becomes:
O(N/B) O(1/B)
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Tiered LSM-tree

Lookup cost? Insertion cost?

0 (- 1ogr 3)) 0(5-1oer (5)) &

What happens as we increase the size ratio T?
What happens when size ratio T is set to be N/B?

Lookup cost becomes: Insert cost becomes:
O(N/B) O(1/B)

The tiered LSM-tree becomes a log!
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Results Catalogue — with fence pointers

Sorted array O(1) O(N/B)
Log O(N/B) O(1/B)
B-tree O(1) O(1)
Basic LSM-tree O(log,(N/B)) O(1/B - log,(N/B))
Leveled LSM-tree O(log;(N/B)) O(T/B - log;(N/B))

Tiered LSM-tree O(T - log;(N/B)) O(1/B - log;(N/B))
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Bloom Filters

Answers set-membership queries

Smaller than array, and stored in main memory
Purpose: avoid accessing disk if entry is not in array
Subtlety: may return false positives.
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Purpose: avoid accessing disk if entry is not in array
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Bloom Filters

Answers set-membership queries

Smaller than array, and stored in main memory
Purpose: avoid accessing disk if entry is not in array
Subtlety: may return false positives.

Lookup for Z
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Bloom Filters

The more main memory, the less false positives : cheaper lookups
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The more main memory, the less false positives : cheaper lookups

Lookup cost

Insertion cost
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Bloom Filters

The more main memory, the less false positives : cheaper lookups

} Monkey: Optimal Navigable Key-Value Store
Niv Dayan, Manos Athanassoulis, Stratos ldreos
SIGMOD 2017

Lookup cost

Insertion cost
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Conclusions

Write-optimized
Highly tunable
Backbone of many modern systems

Trade-off between lookup and insert cost (tiering/leveling, size ratio)

Trade main memory for lookup cost (fence pointers, Bloom filters)

Thank you!



