Log-Structured-Merge Trees

Comp115 guest lecture
Niv Dayan
23 February, 2017

Useful when?

- ✓ Massive dataset
- Rapid updates/insertions
- Fast lookups

LSM-trees are for you.

Patrick O'Neil UMass Boston

Invented in 1996

1980 1990 2000 2010 **Time**

Patrick O'Neil UMass Boston

Invented in 1996

Why now?

Invented in 1996

1980 1990 2000 2010

Outline

- 1. Storage devices
- 2. Indexing problem & basic solutions
- 3. Basic LSM-trees
- 4. Leveled LSM-trees
- 5. Tiered LSM-trees
- 6. Bloom filters

Storage devices

The Memory Hierarchy

The Memory Hierarchy

≈5-6 order of magnitude difference

≈5-6 order of magnitude difference

Why is disk slow?

Why is disk slow?

Why is disk slow?

Random access is slow

Sequential access is faster

 \Rightarrow

move disk head

let disk spin

64 byte chunks Words

Fine access granularity

4 kilobyte chunks Blocks **Coarse access granularity**

64 byte chunks Words

Fine access granularity

4 kilobyte chunks **Blocks**

Coarse access granularity

Outline

- 1. Storage devices
- 2. Indexing problem & basic solutions
- 3. Basic LSM-trees
- 4. Leveled LSM-trees
- 5. Tiered LSM-trees
- 6. Bloom filters

Outline

- 1. Storage devices
- 2. Indexing problem & basic solutions
- 3. Basic LSM-trees
- 4. Leveled LSM-trees
- 5. Tiered LSM-trees
- 6. Bloom filters

Indexing Problem & Basic Solutions

Indexing Problem

names phone numbers

Indexing Problem

names phone numbers

Structure on disk?

Lookup cost?

Insertion cost?

Results Catalogue

Compare and contrast data structures.

What to use when?

Data Structure	Lookup cost	Insertion cost
Sorted array		
Log		
B-tree		
Basic LSM-tree		
Leveled LSM-tree		
Tiered LSM-tree		

Results Catalogue

Compare and contrast data structures.

What to use when?

Data Structure	Lookup cost	Insertion cost
Sorted array		
Log		
B-tree		
Basic LSM-tree		
Leveled LSM-tree		
Tiered LSM-tree		

Modeling Performance

Modeling Performance

Measure bottleneck:

Number of block reads/writes (I/O)

N entries

B entries fit into a disk block

Array spans **N/B** disk blocks

N entries

B entries fit into a disk block

Array spans **N/B** disk blocks

Lookup method & cost?

N entries

B entries fit into a disk block

Array spans **N/B** disk blocks

Lookup method & cost?

Binary search:

 $O\left(\log_2\left(\frac{N}{B}\right)\right)$ I/Os

N entries

B entries fit into a disk block

Array spans **N/B** disk blocks

Lookup method & cost?

Pointer

Block N/B

Yulia

Zack

Zelda

Binary search:

 $O\left(\log_2\left(\frac{N}{B}\right)\right)$ I/Os

Insertion cost?

N entries

B entries fit into a disk block

Array spans **N/B** disk blocks

Lookup method & cost?

Binary search: $O\left(\log_2\left(\frac{N}{B}\right)\right)$ I/O

Insertion cost?

Push entries: $O\left(\frac{1}{B} \cdot \frac{N}{B}\right)$ I/Os

Array size	Pointer
	1

Results Catalogue

	Lookup cost	Insertion cost
Sorted array	$O(\log_2(N/B))$	$O(N/B^2)$
Log		
B-tree		
Basic LSM-tree		
Leveled LSM-tree		
Tiered LSM-tree		

Results Catalogue

	Lookup cost	Insertion cost
Sorted array	$O(\log_2(N/B))$	$O(N/B^2)$
Log		
B-tree		
Basic LSM-tree		
Leveled LSM-tree		
Tiered LSM-tree		

Log (append-only array)

N entries

B entries fit into a disk block

Array spans **N/B** disk blocks

N entries

B entries fit into a disk block

Array spans **N/B** disk blocks

Lookup method & cost?

Pointer

Block N/B

Anne

Bob

Corrie

N entries

B entries fit into a disk block

Array spans **N/B** disk blocks

Lookup method & cost?

Scan:

 $O\left(\frac{N}{B}\right)$

N entries

B entries fit into a disk block

Array spans **N/B** disk blocks

Lookup method & cost?

Pointer

Scan:

 $O\left(\frac{N}{B}\right)$

Insertion cost?

Buffer
James
Sara

Block 1	Block 2	•••	Block N/B
Doug	Yulia		Anne
Zelda	Zack		Bob
Arnold	Barbara		Corrie

N entries

B entries fit into a disk block

Array spans **N/B** disk blocks

Lookup method & cost?

Scan: $O\left(\frac{N}{B}\right)$

Insertion cost?

Append: $O\left(\frac{1}{B}\right)$

Array size	Pointer
	1

	Block 1	Block 2	•••	Block N/B
	Doug	Yulia		Anne
	Zelda	Zack		Bob
	Arnold	Barbara		Corrie

Results Catalogue

	Lookup cost	Insertion cost
Sorted array	$O(\log_2(N/B))$	$O(N/B^2)$
Log	O(N/B)	O(1/B)
B-tree		
Basic LSM-tree		
Leveled LSM-tree		
Tiered LSM-tree		

Results Catalogue

	Lookup cost	Insertion cost
Sorted array	$O(\log_2(N/B))$	$O(N/B^2)$
Log	O(N/B)	O(1/B)
B-tree		
Basic LSM-tree		
Leveled LSM-tree		
Tiered LSM-tree		

Lookup method & cost?

Lookup method & cost?

Lookup method & cost?

Tree search:
$$O\left(\log_B\left(\frac{N}{B}\right)\right)$$

Lookup method & cost?

Tree search: $O\left(\log_B\left(\frac{N}{B}\right)\right)$

Insertion method & cost?

Lookup method & cost?

Tree search: $O\left(\log_B\left(\frac{N}{B}\right)\right)$

Insertion method & cost?

Tree search & append: $O\left(\log_B\left(\frac{N}{B}\right)\right)$

Results Catalogue

	Lookup cost	Insertion cost
Sorted array	$O(\log_2(N/B))$	$O(N/B^2)$
Log	O(N/B)	O(1/B)
B-tree	$O(\log_B(N/B))$	$O(\log_B(N/B))$
Basic LSM-tree		
Leveled LSM-tree		
Tiered LSM-tree		

"It could be said that the world's information is at our fingertips because of B-trees"

Goetz Graefe Microsoft, HP Fellow, now Google ACM Software System Award

B-trees are no longer sufficient

Cheaper to store data
Workloads more insert-intensive
We need better insert-performance.

Results Catalogue

Goal to combine

sub-constant insertion cost logarithmic lookup cost

	Lookup cost	Insertion cost
Sorted array	$O(\log_2(N/B))$	$O(N/B^2)$
Log	O(N/B)	O(1/B)
B-tree	O(log _B (N/B))	$O(\log_B(N/B))$
Basic LSM-tree		
Leveled LSM-tree		
Tiered LSM-tree		

Design principle #1:

Design principle #1:

Design principle #1:

Design principle #1:

Design principle #1:

optimize for insertions by buffering

Design principle #2:

Design principle #1:

optimize for insertions by buffering

Design principle #2:

Design principle #1:

optimize for insertions by buffering

Design principle #2:

Design principle #1:

optimize for insertions by buffering

Design principle #2:

Design principle #1:

optimize for insertions by buffering

Design principle #2:

Basic LSM-tree

Levels have exponentially increasing capacities.

Lookup method?

Lookup method?

Search youngest to oldest.

$$O\left(\log_2\left(\frac{N}{B}\right)\right)$$

Lookup method?

Search youngest to oldest.

$$O\left(\log_2\left(\frac{N}{B}\right)\right)$$

How?

Lookup method?

How?

Search youngest to oldest.

Binary search.

$$O\left(\log_2\left(\frac{N}{B}\right)\right)$$

$$O\left(\log_2\left(\frac{N}{B}\right)\right)$$

Lookup method?

How?

Lookup cost?

Search youngest to oldest.

Binary search.

$$O\left(\log_2\left(\frac{N}{B}\right)\right)$$

 $O\left(\log_2\left(\frac{N}{B}\right)\right)$

Lookup method?

How?

Lookup cost?

Search youngest to oldest.

Binary search.

$$O\left(\log_2\left(\frac{N}{B}\right)\right)$$

$$O\left(\log_2\left(\frac{N}{B}\right)\right)$$

$$O\left(\log_2\left(\frac{N}{B}\right)^2\right)$$

Buffer

Sorted

Level

3

Capacity

arrays

How many times is each entry copied?

How many times is each entry copied?

$$O\left(\log_2\left(\frac{N}{B}\right)\right)$$

How many times is each entry copied?

What is the price of each copy?

$$O\left(\log_2\left(\frac{N}{B}\right)\right)$$

How many times is each entry copied?

What is the price of each copy?

$$O\left(\log_2\left(\frac{N}{B}\right)\right)$$

$$O\left(\frac{1}{B}\right)$$

How many times is each entry copied?

 $O\left(\log_2\left(\frac{N}{B}\right)\right)$

What is the price of each copy?

 $O\left(\frac{1}{B}\right)$

Total insert cost?

How many times is each entry copied?

What is the price of each copy?

Total insert cost?

$O(\log_2)$	$(\frac{N}{2})$
$O(\log_2)$	(\overline{B})
$O\left(\frac{1}{2}\right)$, , ,

$$O\left(\frac{1}{R} \cdot \log_2\left(\frac{N}{R}\right)\right)$$

Results Catalogue

	Lookup cost	Insertion cost
Sorted array	$O(\log_2(N/B))$	O(N/B)
Log	O(N/B)	O(1/B)
B-tree	$O(\log_B(N/B))$	$O(\log_B(N/B))$
Basic LSM-tree	$O(\log_2(N/B)^2)$	$O(1/B \cdot \log_2(N/B))$
Leveled LSM-tree		
Tiered LSM-tree		

Results Catalogue

Better insert cost and worst lookup cost compared with B-trees

	Lookup cost	Insertion cost
Sorted array	$O(\log_2(N/B))$	O(N/B)
Log	O(N/B)	O(1/B)
B-tree	$O(\log_B(N/B))$	$O(\log_B(N/B))$
Basic LSM-tree	$O(\log_2(N/B)^2)$	$O(1/B \cdot \log_2(N/B))$
Leveled LSM-tree		
Tiered LSM-tree		

Results Catalogue

Better insert cost and worst lookup cost compared with B-trees Can we improve lookup cost?

	Lookup cost	Insertion cost
Sorted array	$O(\log_2(N/B))$	O(N/B)
Log	O(N/B)	O(1/B)
B-tree	$O(\log_B(N/B))$	$O(\log_B(N/B))$
Basic LSM-tree	$O(\log_2(N/B)^2)$	$O(1/B \cdot \log_2(N/B))$
Leveled LSM-tree		
Tiered LSM-tree		

Declining Main Memory Cost

Declining Main Memory Cost

Store a fence pointer for every block in main memory

Block 1	Block 2	Block 3	•••
1	10	15	•••
3	11	16	•••
6	13	18	

	Lookup cost	Insertion cost
Sorted array	$O(\log_2(N/B))$	O(N/B)
Log	O(N/B)	O(1/B)
B-tree	$O(\log_B(N/B))$	$O(\log_B(N/B))$
Basic LSM-tree	$O(\log_2(N/B)^2)$	$O(1/B \cdot \log_2(N/B))$
Leveled LSM-tree		
Tiered LSM-tree		

	Lookup cost	Insertion cost
Sorted array	$O(\log_2(N/B))$	O(N/B)
Log	O(N/B)	O(1/B)
B-tree	$O(\log_B(N/B))$	$O(\log_B(N/B))$
Basic LSM-tree	$O(\log_2(N/B)^2)$	$O(1/B \cdot \log_2(N/B))$
Leveled LSM-tree		
Tiered LSM-tree		

	Lookup cost	Insertion cost
Sorted array	O(1)	O(N/B)
Log	O(N/B)	O(1/B)
B-tree	$O(\log_B(N/B))$	$O(\log_B(N/B))$
Basic LSM-tree	$O(\log_2(N/B)^2)$	$O(1/B \cdot \log_2(N/B))$
Leveled LSM-tree		
Tiered LSM-tree		

	Lookup cost	Insertion cost
Sorted array	O(1)	O(N/B)
Log	O(N/B)	O(1/B)
B-tree	$O(\log_B(N/B))$	$O(\log_B(N/B))$
Basic LSM-tree	$O(\log_2(N/B)^2)$	$O(1/B \cdot \log_2(N/B))$
Leveled LSM-tree		
Tiered LSM-tree		

	Lookup cost	Insertion cost
Sorted array	O(1)	O(N/B)
Log	O(N/B)	O(1/B)
B-tree	$O(\log_B(N/B))$	$O(\log_B(N/B))$
Basic LSM-tree	$O(\log_2(N/B)^2)$	$O(1/B \cdot \log_2(N/B))$
Leveled LSM-tree		
Tiered LSM-tree		

	Lookup cost	Insertion cost
Sorted array	O(1)	O(N/B)
Log	O(N/B)	O(1/B)
B-tree	O(1)	O(1)
Basic LSM-tree	$O(\log_2(N/B)^2)$	$O(1/B \cdot \log_2(N/B))$
Leveled LSM-tree		
Tiered LSM-tree		

	Lookup cost	Insertion cost
Sorted array	O(1)	O(N/B)
Log	O(N/B)	O(1/B)
B-tree	O(1)	O(1)
Basic LSM-tree	$O(\log_2(N/B)^2)$	$O(1/B \cdot \log_2(N/B))$
Leveled LSM-tree		
Tiered LSM-tree		

	Lookup cost	Insertion cost
Sorted array	O(1)	O(N/B)
Log	O(N/B)	O(1/B)
B-tree	O(1)	O(1)
Basic LSM-tree	$O(\log_2(N/B))$	$O(1/B \cdot \log_2(N/B))$
Leveled LSM-tree		
Tiered LSM-tree		

Quick sanity check:

suppose

 $N = 2^{42}$

and

 $B = 2^{10}$

	Lookup cost	Insertion cost
Sorted array	O(1)	O(N/B)
Log	O(N/B)	O(1/B)
B-tree	O(1)	O(1)
Basic LSM-tree	$O(\log_2(N/B))$	$O(1/B \cdot \log_2(N/B))$
Leveled LSM-tree		
Tiered LSM-tree		

Quick sanity check:

suppose

 $N = 2^{42}$

and

 $B = 2^{10}$

	Lookup cost	Insertion cost
Sorted array	O(1)	O(2 ³²)
Log	O(2 ³²)	O(2 ⁻¹⁰)
B-tree	O(1)	O(1)
Basic LSM-tree	O(5)	O(2 ⁻¹⁰ · 5)
Leveled LSM-tree		
Tiered LSM-tree		

Lookup cost depends on number of levels

Lookup cost depends on number of levels How to reduce it?

Lookup cost depends on number of levels How to reduce it?

Lookup cost depends on number of levels How to reduce it?

E.g. size ratio of 4

Lookup cost depends on number of levels How to reduce it?

Lookup cost depends on number of levels How to reduce it?

E.g. size ratio of 4

Lookup cost depends on number of levels How to reduce it?

E.g. size ratio of 4

Lookup cost depends on number of levels How to reduce it?

E.g. size ratio of 4

Lookup cost depends on number of levels How to reduce it?

E.g. size ratio of 4

Lookup cost depends on number of levels How to reduce it?

E.g. size ratio of 4

Lookup cost depends on number of levels How to reduce it?

E.g. size ratio of 4

Lookup cost depends on number of levels How to reduce it?

E.g. size ratio of 4

Lookup cost?

Lookup cost?

$$O\left(\log_T\left(\frac{N}{B}\right)\right)$$

Lookup cost?

$$O\left(\log_T\left(\frac{N}{B}\right)\right)$$

Insertion cost?

Lookup cost?

$$O\left(\log_T\left(\frac{N}{B}\right)\right)$$

Insertion cost?

$$O\left(\frac{T}{B} \cdot \log_T\left(\frac{N}{B}\right)\right)$$

Lookup cost?

$$O\left(\log_T\left(\frac{N}{B}\right)\right)$$

Insertion cost?

$$O\left(\frac{T}{B} \cdot \log_T\left(\frac{N}{B}\right)\right)$$

Lookup cost?

$$O\left(\log_T\left(\frac{N}{B}\right)\right)$$

Insertion cost?

$$O\left(\frac{T}{B} \cdot \log_T\left(\frac{N}{B}\right)\right)$$

What happens as we increase the size ratio T?

Lookup cost?

$$O\left(\log_T\left(\frac{N}{B}\right)\right)$$

Insertion cost?

Insertion cost?
$$O\left(\frac{T}{B} \cdot \log_T\left(\frac{N}{B}\right)\right)$$

What happens as we increase the size ratio T?

Lookup cost?

$$O\left(\log_T\left(\frac{N}{B}\right)\right)$$

Insertion cost?

O
$$\left(\frac{T}{B} \cdot \log_T\left(\frac{N}{B}\right)\right)$$

What happens as we increase the size ratio T?

What happens when size ratio T is set to be N/B?

Lookup cost?

$$O\left(\log_T\left(\frac{N}{B}\right)\right)$$

Insertion cost?

$$O\left(\frac{T}{B} \cdot \log_T\left(\frac{N}{B}\right)\right)$$

What happens as we increase the size ratio T?

What happens when size ratio T is set to be N/B?

Lookup cost becomes:

Insert cost becomes:

$$O(N/B^2)$$

Lookup cost?
$$O\left(\log_T\left(\frac{N}{B}\right)\right)$$

Insertion cost?

O
$$\left(\frac{T}{B} \cdot \log_T\left(\frac{N}{B}\right)\right)$$

What happens as we increase the size ratio T?

What happens when size ratio T is set to be N/B?

Lookup cost becomes:

Insert cost becomes:

$$O(N/B^2)$$

The LSM-tree becomes a sorted array!

Insertion cost

Results Catalogue – with fence pointers

	Lookup cost	Insertion cost
Sorted array	O(1)	O(N/B)
Log	O(N/B)	O(1/B)
B-tree	O(1)	O(1)
Basic LSM-tree	$O(\log_2(N/B))$	$O(1/B \cdot \log_2(N/B))$
Leveled LSM-tree	$O(\log_T(N/B))$	$O(T/B \cdot log_T(N/B))$
Tiered LSM-tree		

Reduce the number of levels by increasing the size ratio.

Reduce the number of levels by increasing the size ratio. Do not merge within a level.

Reduce the number of levels by increasing the size ratio.

Do not merge within a level.

Reduce the number of levels by increasing the size ratio.

Do not merge within a level.

Reduce the number of levels by increasing the size ratio.

Do not merge within a level.

Reduce the number of levels by increasing the size ratio.

Do not merge within a level.

Reduce the number of levels by increasing the size ratio.

Do not merge within a level.

Reduce the number of levels by increasing the size ratio.

Do not merge within a level.

Reduce the number of levels by increasing the size ratio.

Do not merge within a level.

E.g. size ratio of 4

Reduce the number of levels by increasing the size ratio.

Do not merge within a level.

E.g. size ratio of 4

Lookup cost?

Lookup cost?

$$O\left(T \cdot \log_T\left(\frac{N}{B}\right)\right)$$

Lookup cost?

$$O\left(T \cdot \log_T\left(\frac{N}{B}\right)\right)$$

Insertion cost?

Lookup cost?

$$O\left(T \cdot \log_T\left(\frac{N}{B}\right)\right)$$

Insertion cost?

$$O\left(\frac{1}{B} \cdot \log_T\left(\frac{N}{B}\right)\right)$$

Capacity

16

64

Lookup cost?

$$O\left(T \cdot \log_T\left(\frac{N}{B}\right)\right)$$

Insertion cost?

$$O\left(\frac{1}{B} \cdot \log_T\left(\frac{N}{B}\right)\right)$$

Lookup cost?

$$O\left(T \cdot \log_T\left(\frac{N}{B}\right)\right)$$

Insertion cost?

$$O\left(\frac{1}{B} \cdot \log_T\left(\frac{N}{B}\right)\right)$$

What happens as we increase the size ratio T?

Lookup cost?
$$0\left(T \cdot \log_T\left(\frac{N}{B}\right)\right)$$

Insertion cost?

$$O\left(\frac{1}{B} \cdot \log_T\left(\frac{N}{B}\right)\right)$$

What happens as we increase the size ratio T?

Lookup cost?
$$0\left(T \cdot \log_T\left(\frac{N}{B}\right)\right)$$

Insertion cost?

$$O\left(\frac{1}{B} \cdot \log_T\left(\frac{N}{B}\right)\right)$$

What happens as we increase the size ratio T?

What happens when size ratio T is set to be N/B?

Lookup cost?
$$0\left(T \cdot \log_T\left(\frac{N}{B}\right)\right)$$

Insertion cost?

$$O\left(\frac{1}{B} \cdot \log_T\left(\frac{N}{B}\right)\right)$$

What happens as we increase the size ratio T?

What happens when size ratio T is set to be N/B?

Lookup cost becomes:

Insert cost becomes:

Lookup cost?
$$0\left(T \cdot \log_T\left(\frac{N}{B}\right)\right)$$

Insertion cost?

$$O\left(\frac{1}{B} \cdot \log_T\left(\frac{N}{B}\right)\right)$$

What happens as we increase the size ratio T?

What happens when size ratio T is set to be N/B?

Lookup cost becomes:

Insert cost becomes:

The tiered LSM-tree becomes a log!

Insertion cost

Results Catalogue – with fence pointers

	Lookup cost	Insertion cost
Sorted array	O(1)	O(N/B)
Log	O(N/B)	O(1/B)
B-tree	O(1)	O(1)
Basic LSM-tree	$O(\log_2(N/B))$	$O(1/B \cdot \log_2(N/B))$
Leveled LSM-tree	$O(\log_T(N/B))$	$O(T/B \cdot log_T(N/B))$
Tiered LSM-tree	$O(T \cdot log_T(N/B))$	$O(1/B \cdot \log_{T}(N/B))$

Declining Main Memory Cost

Answers set-membership queries

Smaller than array, and stored in main memory

Purpose: avoid accessing disk if entry is not in array

Subtlety: may return false positives.

filters

Bloom filter

Answers set-membership queries
Smaller than array, and stored in main memory
Purpose: avoid accessing disk if entry is not in array

Subtlety: may return false positives.

Answers set-membership queries Smaller than array, and stored in main memory Purpose: avoid accessing disk if entry is not in array

Subtlety: may return false positives.

filters

Answers set-membership queries

Smaller than array, and stored in main memory

Purpose: avoid accessing disk if entry is not in array

Subtlety: may return false positives.

Answers set-membership queries
Smaller than array, and stored in main memory
Purpose: avoid accessing disk if entry is not in array

Subtlety: may return false positives.

Answers set-membership queries
Smaller than array, and stored in main memory
Purpose: avoid accessing disk if entry is not in array
Subtlety: may return false positives.

filters <

Answers set-membership queries

Smaller than array, and stored in main memory

Purpose: avoid accessing disk if entry is not in array

Subtlety: may return false positives.

Lookup for Y

filters

Bloom filter

Answers set-membership queries
Smaller than array, and stored in main memory
Purpose: avoid accessing disk if entry is not in array
Subtlety: may return false positives.

filters
Lookup for Z

Bloom filter

Answers set-membership queries
Smaller than array, and stored in main memory
Purpose: avoid accessing disk if entry is not in array
Subtlety: may return false positives.

filters

Answers set-membership queries

Smaller than array, and stored in main memory

Purpose: avoid accessing disk if entry is not in array

Subtlety: may return false positives.

The more main memory, the less false positives

cheaper lookups

The more main memory, the less false positives _____ cheaper lookups

Insertion cost

The more main memory, the less false positives _____ cheaper lookups

Insertion cost

Write-optimized

Write-optimized

Highly tunable

Write-optimized

Highly tunable

Backbone of many modern systems

Write-optimized

Highly tunable

Backbone of many modern systems

Trade-off between lookup and insert cost (tiering/leveling, size ratio)

Write-optimized

Highly tunable

Backbone of many modern systems

Trade-off between lookup and insert cost (tiering/leveling, size ratio)

Trade main memory for lookup cost (fence pointers, Bloom filters)

Write-optimized

Highly tunable

Backbone of many modern systems

Trade-off between lookup and insert cost (tiering/leveling, size ratio)

Trade main memory for lookup cost (fence pointers, Bloom filters)

Thank you!