Comp115: Databases The Storage Layer Instructor: Manos Athanassoulis # The Storage Layer #### DBMS layers and storage hierarchy Readings: Chapter 9.1 Disks Flash disks **Buffer Management** # **DBMS Layer-Cake** # **DBMS Layer-Cake** Query Optimization and Execution **Relational Operators** Files and Access Methods **Buffer Management** Disk Space Management Also managed by OS → ### Why not OS? #### Layers of abstraction are good ... but: Unfortunately, OS often gets in the way of DBMS #### DBMS needs to do things "its own way" Specialized prefetching Control over buffer replacement policy LRU not always best (sometimes worst!!) Control over thread/process scheduling "Convoy problem" Arises when OS scheduling conflicts with DBMS locking Control over flushing data to disk WAL protocol requires flushing log entries to disk ### Disks and Files # DBMS stores information on disks. In an electronic world, disks are a mechanical anachronism! #### This has major implications for DBMS design! READ: transfer data from disk to main memory (RAM). WRITE: transfer data from RAM to disk. Both are high-cost operations, relative to in-memory operations, so must be planned carefully! ### Why Not Store It All in Main Memory? #### Costs too high High-end Databases today in the Petabyte range. ~ 60% of the cost of a production system is in the disks. Main memory is volatile. We want data to be saved between runs. (Obviously!) #### But, main-memory database systems do exist! Smaller size, performance optimized Volatility is ok for some applications ### What about Flash? #### Flash chips used for >20 years #### Flash evolved **USB** keys Consumer and enterprise flash disks (SSD) #### Flash in a DBMS Main storage Accelerator/enabler (Specialized cache, logging device) # The Storage Hierarchy # Jim Gray's Storage Latency Analogy: How Far Away is the Data? ### The Storage Layer DBMS layers and storage hierarchy **Disks** Readings: Chapter 9.1, 9.2, HDD paper Flash disks **Buffer Management** ### Disks Secondary storage device of choice. Main advantage over tapes: <u>random access</u> vs. <u>sequential</u>. Data is stored and retrieved in units called *disk* blocks or pages. Unlike RAM, time to retrieve a disk page varies depending upon location on disk. Therefore, relative placement of pages on disk has major impact on DBMS performance! ### Anatomy of a Disk The platters spin (5-15 kRPM). The arm assembly is moved in or out to position a head on a desired track. Tracks under heads make a *cylinder* (imaginary!). Only one head reads/writes at any one time. * Block size is a multiple Arm assembly of sector size (which is fixed). ❖Newer disks have several "zones", with more data on outer tracks. ### Accessing a Disk Page #### Time to access (read/write) a disk block: - seek time (moving arms to position disk head on track) - rotational delay (waiting for block to rotate under head) - transfer time (actually moving data to/from disk surface) ### Seeking in modern disks #### Seek time discontinuity #### Short seeks are dominated by "settle time" - Move to one of many nearby tracks within settle time - D is on the order of tens to hundreds - D gets larger with increase of disk track density ### **Rotational Delay** if the disk rotates with 10 KRPM, and I want to read 2/3 of the track away what is the rotational delay? $$(1/10000)*60 =$$ $10^{-4}*60 = 6*10^{-3} = 6ms$ so, $2/3*6ms = 4ms$ what if I am constantly reading 4KB pages like that? $$4KB/4ms = 1MB/s$$ Block I Want ### Seek time & rotational delay dominate - Seek time varies from about 1 to 20 ms - Rotational delay varies from 0 to 10 ms - Transfer rate is < 1ms per 4KB page Key to lower I/O cost: reduce seek/rotation delays! Also note: For shared disks most time spent waiting in queue for access to arm/controller # **Arranging Pages on Disk** #### "Next" block concept: - blocks on same track, followed by - blocks on same cylinder, followed by - blocks on adjacent cylinder Blocks in a file should be arranged sequentially on disk (by "next"), to minimize seek and rotational delay. #### An important optimization: pre-fetching See R&G page 323 ### Define adjacent blocks Access incurs settle time only Equidistant wrt access time from starting block D: # of adjacent blocks W: degree disk will rotate during settle time Disk block has more than one neighbor ### Rules of thumb... 1. Memory access much faster than disk I/O (~ 1000x) 2. "Sequential" I/O faster than "random" I/O (~ 10x) ### Disk Space Management Lowest layer of DBMS software manages space on disk Higher levels call upon this layer to: - allocate/de-allocate a page - read/write a page Best if a request for a *sequence* of pages is satisfied by pages stored sequentially on disk! Higher levels don't need to know if/how this is done, or how free space is managed. ### Disk Arrays: RAID #### Benefits: - Higher throughput (via data "striping") - Longer MTTF (via redundancy) # The Storage Layer DBMS layers and storage hierarchy Disks #### Flash disks SSD paper **Buffer Management** ### Flash disks Secondary storage or caching layer. Main advantage over disks: <u>random reads</u> equally fast as <u>sequential</u> reads. **BUT: Slow random writes.** Data organized in *pages* (similarly to disks) and pages organized in *flash blocks*. *Like RAM,* time to retrieve a disk page is <u>not</u> related to location on flash disk. ### The internals of flash disks Flash Package Dies Interconnected flash chips No mechanical limitations Maintain the block API – compatible with disks layout Internal parallelism in read/write Complex software driver # Accessing a flash page #### Access time depends on - Device organization (internal parallelism) - Software efficiency (driver) - Bandwidth of flash packages #### Flash Translation Layer (FTL) - Complex device driver (firmware) - Tunes performance and device lifetime ### Flash disks vs HDD #### **HDD** - ✓ Large inexpensive capacity - x Inefficient random reads #### Flash disks - x Small expensive capacity - ✓ Very efficient random reads # The Storage Layer DBMS layers and storage hierarchy Disks Flash disks #### **Buffer Management** Readings: Chapter 9.3, 9.4 #### Recall the BIG Picture # Buffer Management in a DBMS Page Requests from Higher Levels Data must be in RAM for DBMS to operate on it! Buffer Mgr hides the fact that not all data is in RAM (just like hardware cache policies hide the fact that not all data is in the caches) # When a Page is Requested ... Buffer pool information table contains: <frame#, pageid, pin count, dirty> #### If requested page is not in pool: - Choose a frame for replacement (only un-pinned pages are candidates) - If frame is "dirty", write it to disk - Read requested page into chosen frame Pin the page and return its address. ### More on Buffer Management Requestor of page must unpin it, and indicate whether page has been modified: dirty bit is used for this. Page in pool may be requested many times, - a pin count is used. A page is a candidate for replacement iff pin count = 0 ("unpinned") CC & recovery may entail additional I/O when a frame is chosen for replacement. (Write-Ahead Log protocol; more later.) ### **Buffer Replacement Policy** Frame is chosen for replacement by a replacement policy: Least-recently-used (LRU), MRU, Clock, etc. Policy can have big impact on # of I/O's; depends on the access pattern. ### LRU Replacement Policy #### Least Recently Used (LRU) - for each page in buffer pool, keep track of time last unpinned - replace the frame which has the oldest (earliest) time - very common policy: intuitive and simple #### **Problems?** #### **Problem: Sequential flooding** - LRU + repeated sequential scans. - # buffer frames < # pages in file means each page request causes an I/O. <u>MRU</u> much better in this situation (but not in all situations, of course). # Sequential Flooding – Illustration Repeated scan of file ... 1 2 3 4 5 6 7 8 for 2 scans every page access was a miss (had to go to disk) 2*8=16 disk accesses #### MRU: LRU: BUFFER POOL **BUFFER POOL** MRU: 1 2 3 4 BUFFER POOL MRU: LRU: BUFFER POOL **BUFFER POOL** MRU: 1 2 3 6 **BUFFER POOL** MRU: **BUFFER POOL** MRU: LRU: **BUFFER POOL** MRU: 1 2 4 8 **BUFFER POOL** MRU: LRU: BUFFER POOL **BUFFER POOL** MRU: 1 2 6 8 MRU: for the 2nd scan we were able to use 4 pages again, so we had 4 disk accesses: 8+4 = 12 disk accesses # "Clock" Replacement Policy An approximation of LRU. Arrange frames into a cycle, store one "reference bit" per frame When pin count goes to 0, reference bit set on. #### When replacement necessary: #### Summary #### Disks provide cheap, non-volatile storage. Random access, but cost depends on location of page on disk; important to arrange data sequentially to minimize seek and rotation delays. #### Buffer manager brings pages into RAM. - Page stays in RAM until released by requestor. - Written to disk when frame chosen for replacement (which is sometime after requestor releases the page). - Choice of frame to replace based on replacement policy. - Good to pre-fetch several pages at a time.