Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Comp115: Databases

Crash Recovery

Instructor: Manos Athanassoulis

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Review: The ACID properties

Atomicity: All actions in the transaction happen, or
none happen.

Consistency: If each transaction is consistent, and the
DB starts consistent, it ends up consistent.

Isolation: Execution of one transaction is isolated from
that of other transactions.

Durability: If a transaction commits, its effects persist.

Question: which ones does the Recovery Manager help
with?

Atomicity & Durability (and also used for
Consistency-related rollbacks)

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Motivation

Atomicity:

— Transactions may abort (“Rollback”).

Durability:

— What if DBMS stops running? (Causes?)

Desired state after system restarts:
— T1 & T3 should be durable.

— T2, T4 & T5 should be aborted
(effects should not be seen).

crash!
T COommit
T2 D » Abort I
T3 Commit I
T4 I
T5 L

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Assumptions

Concurrency control is in effect.
— Strict 2PL, in particular.
Updates are happening “in place”.

— i.e. data is overwritten on (deleted from) the actual page
copies (not private copies).

Can you think of a simple scheme (requiring no logging) to
guarantee Atomicity & Durability?

— What happens during normal execution (what is the
minimum lock granularity)?

— What happens when a transaction commits?
— What happens when a transaction aborts?

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Buffer Management Plays a Key Role

Force policy — make sure that every update is on disk before
commit.

— Provides durability without REDO logging.

— But, can cause poor performance.

No Steal policy — don’t allow buffer-pool frames with uncommited
updates to overwrite committed data on disk.

— Useful for ensuring atomicity without UNDO logging.
— But can cause poor performance.

Of course, there are some nasty details for getting
Force/NoSteal to work...

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Preferred Policy: Steal/No-Force

More complicated but allows for highest performance
NO FORCE (complicates enforcing Durability)

— What if system crashes before a modified page written by
a committed transaction makes it to disk?

— Write as little as possible, in a convenient place, at commit
time, to support REDOing modifications.
STEAL (complicates enforcing Atomicity)
— What if the transaction that performed updates aborts?

— What if system crashes before transaction is finished?

— Must remember the old value of P (to support UNDOing
the write to page P).

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Buffer Management summary

No Steal Steal No Steal Steal
No Force Fastest | No Force NoRléggO lé:;lgg
Force | glowest - . |NoUNDO| UNDO
No REDO |No REDO
Performance Logging/Recovery

Implications Implications

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Basic Idea: Logging

Record REDO and UNDO information, for every
update, in a /og.

— Sequential writes to log (put it on a separate disk).

— Minimal info (diff) written to log, so multiple updates fit in

a single log page.

Log: An ordered list of REDO/UNDO actions
— Log record contains:
<XID, pagelD, offset, length, old data, new data>
— and additional control info (which we’ll see soon).

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Write-Ahead Logging (WAL)

The Write-Ahead Logging Protocol:

1. Must force the log record for an update before the
corresponding data page gets to disk.

2. Must force all log records for a Xact before commit. (e.g.
transaction is not committed until all of its log records
including its “commit” record are on the stable log.)

#1 (with UNDO info) helps guarantee Atomicity.
#2 (with REDO info) helps guarantee Durability.
This allows us to implement Steal/No-Force

Exactly how is logging (and recovery!) done?
— We'll look at the ARIES algorithm from IBM.

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

WAL & the Log ommp @

pagelLSNs

|zl lzz/ 1221172717

RAM

flushedLSN

Each log record has an unique Log Sequence Number (LSN).

— LSNs are always increasing.
Each data page contains a pagelSN.

— The LSN of the most recent log record
for an update to that page.

System keeps track of flushedLSN.
— The max LSN flushed so far.
WAL: For a page i to be written
must flush log at least to the
point where:
pagelSN; < flushedLSN

Log records
flushed to disk

flushedLSN

pageLSN “

“Log tail”
in RAM

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Log Records

LogRecord fields:

LSN
prevLSN

XID
type
/ pagelD
update | length

records 4 OffSEt
only before-image

after-image

prevLSN is the LSN of the previous log
record written by this transaction (so
records of an transaction form a linked
list backwards in time)

Possible log record types:

Update, Commit, Abort

Checkpoint (for log maintenance)

Compensation Log Records (CLRs)
— for UNDO actions

End (end of commit or abort)

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Other Log-Related State

In-memory table:
Transaction Table

— One entry per currently active transactions.

e entry removed when the transaction commits or aborts

— Contains XID, status (running/committing/aborting), and
lastLSN (most recent LSN written by transaction).

Also: Dirty Page Table (will cover later ...)

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

The Big Picture: What’s Stored Where

LOG

LogRecords
prevLSN
XID
type
pagelD
length
offset
before-image
after-image

Data pages
each
with a
pageLSN

master record
LSN of

Most recent
checkpoint

[zl /s /] /)]s

RAM

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Normal Execution of a transaction

Series of reads & writes, followed by commit or

abort.
— We will assume that disk write is atomic.

e |n practice, additional detailsto deal with non-atomic writes.

Strict 2PL.

STEAL, NO-FORCE buffer management, with Write-
Ahead Logging.

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Transaction Commit

Write commit record to log.

All log records up to transaction’s commit

record are flushed to disk.

— Guarantees that flushedLSN > lastLSN.

— Note that log flushes are sequential, synchronous writes to
disk.

— Many log records per log page.

Commit() returns.
Write end record to log.

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Simple Transaction Abort

For now, consider an explicit abort of a Xact.
— No crash involved.

We want to “play back” the log in reverse order, UNDQOing updates.
— Get |lastLSN of Xact from Xact table.
— Can follow chain of log records backward via the prevLSN field.

— Write a “CLR” (compensation log record) for each undone
operation.

— Write an Abort log record before starting to rollback
operations.

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Abort, continued s &
Q i

To perform unpo, must have a lock on data!
— No problem (we’re doing Strict 2PL)!

Before restoring old value of a page, write a CLR:

— You continue logging while you UNDO!!

— CLR has one extra field: undonextLSN

e Pointsto the next LSN to undo (i.e. the prevLSN of the record we’re currently
undoing).

— CLRs never Undone (but they might be Redone when repeating
history: guarantees Atomicity!)

At end of UNDO, write an “end” log record.

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Checkpointing

Conceptually, keep log around for all time. Obviously this has
performance/implementation problems...

Periodically, the DBMS creates a checkpoint, in order to minimize
the time taken to recover in the event of a system crash. Write to
log:

— begin checkpointrecord: Indicates when chkpt began.

— end _checkpointrecord: Contains current transaction table
and dirty page table. Thisis a ‘fuzzy checkpoint’:

e Other Xacts continue to run; so these tables accurate only as of the
time of the begin checkpoint record.

e No attempt to force dirty pages to disk; effectiveness of checkpoint
limited by oldest unwritten change to a dirty page.

— Store LSN of most recent checkpoint record in a safe place
(master record).

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Crash Recovery: Big Picture

Oldest log rec.

of Xact active = . Start from a checkpoint (found
at cras " .

: via master record).
SmallestreclSN : . Three phases. Need to do:
in dirty page I
table after - — Analysis - Figure out which
Analysis ' transactions committed since

checkpoint, which failed.
— REDO all actions.

lastchkpt ~ —- (repeat history)

i l — UNDO effects of failed transactions.
CRASH -

A R U

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Recovery: The Analysis Phase

Re-establish knowledge of state at checkpoint.

— via transaction table and dirty page table stored in the
checkpoint

Scan log forward from checkpoint.
— End record: Remove Xact from Xact table.

— All Other records: Add Xact to Xact table, set lastLSN=LSN,
change Xact status on commit.

— also, for Update records: If page P not in Dirty Page Table, Add
P to DPT, set its recLSN=LSN.

At end of Analysis...

— transaction table says which xacts were active at time of crash.
— DPT says which dirty pages might not have made it to disk

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Phase 2: The REDO Phase

We Repeat History to reconstruct state at crash:
— Reapply all updates (even of aborted transactions!), redo CLRs.

Scan forward from log rec containing smallest recLSN in DPT.
Q: why start here?

For each update log record or CLR with a given LSN, REDO the action
unless:

— Affected page is not in the Dirty Page Table, or
— Affected page is in D.P.T., but has recLSN > LSN, or
— pagelSN (in DB) > LSN. (this last case requires 1/0)
To REDO an action:
— Reapply logged action.
— Set pagelSN to LSN. No additional logging, no forcing!

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Phase 3: The UNDO Phase

ToUndo={lastLSNs of all Xacts in the Xact Table}
Repeat:

— Choose (and remove) largest LSN among ToUndo.

— If this LSN is a CLR and undonextLSN==NULL
Write an End record for this transation.

— If this LSN is a CLR, and undonextLSN = NULL
Add undonextLSN to ToUndo

— Else this LSN is an update. Undo the update, write a CLR,
add prevLSN to ToUndo.

Until ToUndo is empty.

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Example of Recovery

szl 1221/ z2] /221727

RAM

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

LSN

LOG

00
05
10
20
30
40
45
50
60

—-— begin_checkpoint
—-— end_checkpoint

-'- update: T1 writes P5
"‘ update T2 writes P3

—-— T1 abort
— CLR: Undo}] LSN-16

— T1End ”
—— update: T3 writes P1
- update: T2 writes P5

> CRASH

PS4
.
.
.
.
.
.
“
.

.
"
.
s
s
Py
.
.®

.
.
.
*
A d
.
*
A d
.
.
.
.
.
“
*

*
*
*
*
*
*
*
“
*

¢"
-

.

R
.
.

"
*
‘0
*

*
*
*
*
*
"
*

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Example: Crash During Restart!

szl 1221/ z2] /221727

RAM

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

LSN LOG

00,05 —-— begin_checkpoint, end_checkpoint
10 — update: T1 writes P5
20 _ update T2 writes P3
30 -.- T1 abort
40,45 —-— CLR: Undo T1 LSN 10, T1 End
50 — update: T3 writes P1
60 —-— update: T2 writes P5
)(CRASH, RESTART
70 — CLR: Undo T2 LSN 60
80,85 —- CLR: Undo T3 LSN 50, T3 end
X CRASH, RESTART
90, 95 = CLR: Undo T2 LSN 20, T2 end

undonextLSN

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Additional Crash Issues

What happens if system crashes during
Analysis? During REDO?

How do you limit the amount of work in
REDO?

— Flush asynchronously in the background.

How do you limit the amount of work in
UNDO?

— Avoid long-running transactions.

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Summary of Logging/Recovery

Recovery Manager guarantees Atomicity & Durability.

Use WAL to allow sTeEAL/NO-FORCE without sacrificing
correctness.

LSNs identify log records; linked into backwards chains
per transaction (via prevLSN).

pagelLSN allows comparison of data page and log records.

Comp115 [Spring 2017] - http://www.cs.tufts.edu/comp/115/ - Manos Athanassoulis

Summary, continued

Checkpointing: A quick way to limit the amount of
log to scan on recovery.

Recovery works in 3 phases:

Analysis: Forward from checkpoint.
Redo: Forward from oldest recLSN.
Undo: Backward from end to first LSN of oldest Xact alive at crash.

Upon Undo, write CLRs.

Redo “repeats history”: Simplifies the logic!

