Comp 115: Databases

Functional Dependencies

Instructor: Manos Athanassoulis

http://www.cs.tufts.edu/comp/115/

Reminder

Project O
due on Friday 17t

HW1 will come out next week

Review: Database Design

Requirements Analysis
user needs; what must database do?

Conceptual Design
high level description (often done w/ ER model)
Logical Design
translate ER into DBMS data model
Schema Refinement
consistency, normalization
Physical Design
indexes, disk layout

Review: Database Design

Requirements Analysis
user needs; what must database do?

Conceptual Design
high level description (often done w/ ER model)
Logical Design
translate ER into DBMS data model
Schema Refinement
consistency, normalization
Physical Design
indexes, disk layout

Why schema refinement

what is a bad schema? i |

P\

a schema with redundancy! e ©

why? 2\

redundant storage & insert/update/delete anomalies

. .
how to fix it? 2\
normalize the schema by decomposing
normal forms: BCNF, 3NF, ... [next time]

Motivating Example
I!

987-00-8761 John 857-555-1234
987-00-8761 John 65K 857-555-8800
123-00-9876 Anna 80K 617-555-9876
787-00-4321 Kurt 25K 617-555-3761

orimary key? 7\
(SSN,Telephone)

problems of the schema? ?ﬂ‘; |

Motivating Example
I!

987-00-8761 John 857-555-1234
987-00-8761 John 65K 857-555-8800
123-00-9876 Anna 80K 617-555-9876
787-00-4321 Kurt 25K 617-555-3761
Problems

Storage

Update)

Insert |

Delete

Motivating Example

e S N ™ S,
987-00-8761 John 857-555-1234
987-00-8761 John 65K 857-555-8800
123-00-9876 Anna 80K 617-555-9876
787-00-4321 Kurt 25K 617-555-3761
Problems

Storage: store Salary multiple times

Update: change John’s salary?

Insert: how to store someone with no phone?
Delete: how to delete Kurt’s phone?

Solution: Decomposition
_m

987-00-8761 John 857-555-1234
987-00-8761 John 65K 857-555-8800
123-00-9876 Anna 80K 617-555-9876
787-00-4321 Kurt 617-555-3761

\ SN | Telephone
72k

987-00-8761 857-555-1234

e w
ElTNET 987-00-8761 857-555-8300

987-00-8761 John 65K 123-00-9876 617-555-9876
123-00-9876 Anna 80K 787-00-4321 617-555-3761
787-00-4321 Kurt 25K can decomposition cause problems? '

how to find good decompositions?

FUNCTIONAL DEPENDENCIES

Functional Dependencies

Definition
Functional Dependencies (FDs) : form of constraint
“generalized keys”

let X,Y nonempty sets of attributes of relation R
let t,, t, tuples: t;.X=1t,.X, then t;.Y=1,.Y

“X = Y”:”X (functionally) determines Y”

an FD comes from the application (not the data)
an FD cannot be inferred (only validated)

11

Functional Dependencies
I!

987-00-8761 John 857-555-1234
987-00-8761 John 65K 857-555-8800
123-00-9876 Anna 80K 617-555-9876
787-00-4321 Kurt 25K 617-555-3761

which attribute determines which? 41

SSN—*Teteprone-
SSN — Name, Salary

SSN, Salary — Name

FD: Example 3
mm—mm

1234 2 Mark
0043 15 1 John
4322 115 6 Manos
9876 175 4 Remco
1211 177 4 Megan

which attribute determines which? =%

classID, Semester — Insructor
studentib—-Sermester
studentlID, classID — Semester

13

Reasoning about FDs

an FD holds for all allowable relations (/egal)
identified based on semantics of application

given an instance r of Rand an FD f:
(1) we can check whether r violates f
(2) we cannot determine if f holds

“K — all attributes of R” then K is a superkey for R

(does not require K to be minimal)
remember: in order to be a candidate key minimality is required

FDs are a generalization of keys

14

Reasoning about FDs (Splitting)

assume A, B—>C, D

C, D are independently determined by A,B
so, we can split: A,B—>CandA,B—> D

it does not work vice versa
we cannotinfer: A—>C,DorB—C,D

15

Trivial FDs

for every relation
A— A
A B, C—oA
these are not informative!

in general an FD X — A is called trivial it A& X
it always holds!

16

ldentifying FDs

FD comes from the application (domain)

property of app semantics (not of instance)
cannot infer from an instance

given a set of tuples (instance r), we can:
(1) confirm that an FD might be valid
(2) infer that an FD is definitely invalid
but we cannot prove that an FD is valid

17

FD: Example 3
D P N S T

iPhone smartphone black phones
Lenovo Yoga laptop grey 800 computers
unifi networking white 150 computers
unifi cables white 10 stationary
OnePlus smartphone silver 450 phones

—marme—department '

name, category — department 7\1 |
we do not know!

Why use FDs?

the capture (and generalize) key constraints
offer more integrity constraints

help us detect redundancies
tell us how to normalize

it is the principled way to solve the redundancy
problem

19

More on: Reasoning for FD

when a set of FD holds over a relation

more FD can be inferred

Armstrong’s Axioms

20

Axiom 1: Reflexivity

for every subset X &{A,, ..., A, }

A, . A —X

n
Examples
A, B—B
A B, C—B,C
A B C—AB,C

21

Axiom 2: Augmentation

for any attribute sets X, Y, Z
ifX =Y, thenX,Z—Y,Z

Examples
A = BthenA,C—B,C

A, B—CthenA B, C—C
(here X=A,B and Y=7=C)

22

Axiom 3: Transitivity

for any attribute sets X, Y, Z
ifX >YandY *>ZthenX *Z

Examples
A—BandB — Cthen A = C
A—B CandB,C —>DthenA—D

23

Union and Decomposition

rules that follow from AA

Union
ifX—>Yand X—> Zthen X—>Y,Z

Decomposition
fX—>Y,Zthen X—>Y and X—>Z

24

Applying AA

Product
name | category | color | price | department__
we know:

(1) name — color
(2) category — department
(3) color, category — price

can we infer: name, category —> price ?{l
(i) augmentation to (1): B
(4) name, category — color, category
(ii) transitivity to (4), (3)
name, category — price

25

Applying AA

Product
name | category | color | price | department__
we know:

(1) name — color
(2) category — department
(3) color, category — price

can we infer: name, category — color 9V
(i) by reflexivity: -
(5) name, category — name
(ii) transitivity to (5), (1)
name, category — color

26

FD Closure

how can we find all FD?

FD Closure
if Fis a set of FD, the closure F* is the set
of all FDs logically implied by F

Using Armstrong Axioms we can find F*
sound: any generated FD belongs to F*
complete: repeated application of AA generates F*

27

Attribute Closure

X an attribute set, the closure X* is
the set of all attributes B :
X—>B

in other words B

attribute closure of X is the set of all attributes
that “are determined by X”

28

Applying AA

Product
name | category | color | price | department__
we know:

(1) name — color
(2) category — department
(3) color, category — price

Attribute closure: 2\

(i) Closure of name
{name}* = {name, color}
(i) Closure of name, category
{name, category}* = {name, color, category, department, price}

29

Calculating Closure

let X={A,, ..., A}
closure = X
UNTIL closure does not change REPEAT:
IFB,, ..., B, —> C AND
B, ..., B, areall in closure
THEN add C to closure

30

Calculating Closure

Example: R(A,B,C,D,E,F)
A B—C
A D—E
B—>D
A F—B

(AB}
(AFy 70

31

Calculating Closure
Example: R(A,B,C,D,E,F) {A,B}

A B—>C {A,B,C}
A D—>F {A,B,C,D}
B >P— {A,B,C,D,E}
A F—>B
{A,B}

)
(AFy 70

32

Calculating Closure
Example: R(A,B,C,D,E,F) {A,B}

A B—>C {A,B,C}
M {AIBICID}
_B—>P— {A,B,C,D,E}
_AF=TB
{AF}
{AIB} 7ﬂ\ ' {A/F;B}
{A/F}+ — {AI F; B;C}
{AIFIBICID}

{A,F,B,C,D,E}

33

Calculating Closure

Example: R(A,B,C,D,E,F)
A B—C
A D—E
B—>D
A F—B

{A,B}*=1{A,B,C,D,E}
A FI" =1{A,F,B,C,D,E}

34

Why calculate closure?

for “does X — Y hold” questions
check if Y& X*

to compute the closure F* of FDs
(i) for each subset of attributes X, compute X*
(ii) for each subset of attributes Y & X*, outputthe FDX —> Y

35

FD and Keys

in terms of relational model

superkey: a set of attributes such that:

no two distinct tuples can have same values in all key fields

in terms of FD

superkey: a set of attributes A,, A,, ..., A, such that
for any attribute B: A, A,, ..., A, —> B

key (or candidate key): requires minimality

what if we have multiple candidate keys? a5 |
- we specify one to be the primary key ©

36

Computing (Super)Keys

(1) compute X* for all sets of attributes X

(2) if X*=all attributes, then X'is a superkey .
?\

why? 7\
- because then “X determines “all attributes™

(3) if, also, no subset of X is superkey
then X is also a key

37

Example

Product

name lcatagory Jcolor prke

we know:

(1) name — color
(2) color, category — price

Superkeys:
{name, category}, {name, category, price},
{name, category, color}, {name, category, price, color}

Keys: y
{name, category} ?\

38

Can we have more than 1 key?

17
?\
what about the relation R (A,B,C) with: * *
A B—C

A, C—o>B

which are the keys?
{A, B} and {A, C} are both minimal

39

Should we use all FDs?

given a set of FDs F we have discussed about F*

the useful info is in the minimal cover of F
“the smallest subset of FDs S: §*= F*“

Formally: minimal cover S for a set of FDs F:
(1) S*=F
(2) RHS of each FD in S is a single attribute

(3) if we remove any FD from S or remove any
attribute from its LHS the closure is not F*

40

Example of Minimal Cover

R(Cl 5/ -j/ D/ P/ Q/ V)
key C (C*={C, S, J, D, P, Q, V})

J,P—>C

This is useful to decide how to
S,D—>P

solve the problem of
J—>5S redundancy (decomposition)!

Minimal cover:
cC—»J,C->D C—>Q C>YV
P> C
S,D—>P
J]—>S

More on that next time!!

41

Summary

FDs and (Super)Keys

Reasoning with FDs:
(1) given a set of FDs, infer all implied FDs
(2) given a set of attributes X, infer all attributes
that are functionally determined by X

Next we will look at how to use them to detect
that a table is “bad”

42

