## Comp 115: Databases

## **Functional Dependencies**

Instructor: Manos Athanassoulis

http://www.cs.tufts.edu/comp/115/

#### Reminder

Project 0

due on Friday 17<sup>th</sup>

HW1 will come out next week

## Review: Database Design

#### Requirements Analysis

user needs; what must database do?

#### Conceptual Design

high level description (often done w/ ER model)

#### Logical Design

translate ER into DBMS data model

#### Schema Refinement

consistency, normalization

#### Physical Design

indexes, disk layout

## Review: Database Design

#### Requirements Analysis

user needs; what must database do?

#### Conceptual Design

high level description (often done w/ ER model)

#### Logical Design

translate ER into DBMS data model

#### **Schema Refinement**

consistency, normalization

#### Physical Design

indexes, disk layout

## Why schema refinement

what is a bad schema? a schema with redundancy!





redundant storage & insert/update/delete anomalies

how to fix it?



normalize the schema by decomposing normal forms: BCNF, 3NF, ... [next time]

## **Motivating Example**

| SSN         | Name | Salary | Telephone    |
|-------------|------|--------|--------------|
| 987-00-8761 | John | 65K    | 857-555-1234 |
| 987-00-8761 | John | 65K    | 857-555-8800 |
| 123-00-9876 | Anna | 80K    | 617-555-9876 |
| 787-00-4321 | Kurt | 25K    | 617-555-3761 |

primary key? ?\(\) (SSN,Telephone)

problems of the schema?



## **Motivating Example**

| SSN         | Name | Salary | Telephone    |
|-------------|------|--------|--------------|
| 987-00-8761 | John | 65K    | 857-555-1234 |
| 987-00-8761 | John | 65K    | 857-555-8800 |
| 123-00-9876 | Anna | 80K    | 617-555-9876 |
| 787-00-4321 | Kurt | 25K    | 617-555-3761 |

#### **Problems**

Storage
Update
Insert
Delete



## **Motivating Example**

| SSN         | Name | Salary | Telephone    |
|-------------|------|--------|--------------|
| 987-00-8761 | John | 65K    | 857-555-1234 |
| 987-00-8761 | John | 65K    | 857-555-8800 |
| 123-00-9876 | Anna | 80K    | 617-555-9876 |
| 787-00-4321 | Kurt | 25K    | 617-555-3761 |

#### **Problems**

Storage: store Salary multiple times

**Update**: change John's salary?

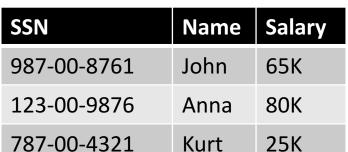
Insert: how to store someone with no phone?

Delete: how to delete Kurt's phone?

## Solution: Decomposition

| SSN         | Name | Salary | Telephone    |
|-------------|------|--------|--------------|
| 987-00-8761 | John | 65K    | 857-555-1234 |
| 987-00-8761 | John | 65K    | 857-555-8800 |
| 123-00-9876 | Anna | 80K    | 617-555-9876 |
| 787-00-4321 | Kurt | 25K    | 617-555-3761 |







| SSN         | Telephone    |
|-------------|--------------|
| 987-00-8761 | 857-555-1234 |
| 987-00-8761 | 857-555-8800 |
| 123-00-9876 | 617-555-9876 |
| 787-00-4321 | 617-555-3761 |

can decomposition cause problems? 🤺



how to find good decompositions?

#### **FUNCTIONAL DEPENDENCIES**

## **Functional Dependencies**

#### **Definition**

Functional Dependencies (FDs): form of constraint "generalized keys"

let X, Y nonempty sets of attributes of relation R let t<sub>1</sub>, t<sub>2</sub> tuples : t<sub>1</sub>.X= t<sub>2</sub>.X, then t<sub>1</sub>.Y= t<sub>2</sub>.Y

" $X \rightarrow Y$ ": "X (functionally) determines Y"

an FD comes from the application (not the data) an FD cannot be inferred (only validated)

## **Functional Dependencies**

| SSN         | Name | Salary | Telephone    |
|-------------|------|--------|--------------|
| 987-00-8761 | John | 65K    | 857-555-1234 |
| 987-00-8761 | John | 65K    | 857-555-8800 |
| 123-00-9876 | Anna | 80K    | 617-555-9876 |
| 787-00-4321 | Kurt | 25K    | 617-555-3761 |

which attribute determines which?



SSN → Telephone
SSN → Name, Salary
SSN, Salary → Name

## FD: Example 3

| studentID | classID | Semester | Instructor |
|-----------|---------|----------|------------|
| 1234      | 15      | 2        | Mark       |
| 0043      | 15      | 1        | John       |
| 4322      | 115     | 6        | Manos      |
| 9876      | 175     | 4        | Remco      |
| 1211      | 177     | 4        | Megan      |

which attribute determines which?

classID, Semester → Insructor

studentID → Semester

studentID, classID → Semester



## Reasoning about FDs

an FD holds for all allowable relations (legal) identified based on semantics of application

given an instance r of R and an FD f:

- (1) we can check whether r violates f
  - (2) we cannot determine if f holds

"K → all attributes of R" then K is a *superkey* for R (does not require K to be *minimal*) remember: in order to be a *candidate key* minimality is required

FDs are a generalization of keys

## Reasoning about FDs (Splitting)

assume A, B  $\rightarrow$  C, D

C, D are <u>independently</u> determined by A,B so, we can split: A, B  $\rightarrow$  C and A, B  $\rightarrow$  D

it does <u>not</u> work vice versa we <u>cannot</u> infer:  $A \rightarrow C$ , D or  $B \rightarrow C$ , D

#### **Trivial FDs**

for every relation

$$A \rightarrow A$$

A, B, 
$$C \rightarrow A$$

these are not informative!

in general an FD  $X \rightarrow A$  is called <u>trivial</u> if  $A \subseteq X$  it always holds!

## Identifying FDs

#### FD comes from the application (domain)

property of app semantics (not of instance) cannot infer from an instance

given a set of tuples (instance r), we can:

- (1) confirm that an FD might be valid
- (2) infer that an FD is **definitely invalid**

but we cannot prove that an FD is valid

## FD: Example 3

| name        | category   | color  | price | department |
|-------------|------------|--------|-------|------------|
| iPhone      | smartphone | black  | 600   | phones     |
| Lenovo Yoga | laptop     | grey   | 800   | computers  |
| unifi       | networking | white  | 150   | computers  |
| unifi       | cables     | white  | 10    | stationary |
| OnePlus     | smartphone | silver | 450   | phones     |

name department



name, category → department we <u>do not</u> know!



## Why use FDs?

the capture (and generalize) key constraints

offer more integrity constraints

help us <u>detect redundancies</u> tell us how to normalize

it is the principled way to solve the redundancy problem

## More on: Reasoning for FD

when a set of FD holds over a relation

more FD can be inferred

**Armstrong's Axioms** 

## **Axiom 1: Reflexivity**

for every subset  $X \subseteq \{A_1, ..., A_n\}$ 

$$A_1, ..., A_n \rightarrow X$$

**Examples** 

$$A, B \rightarrow B$$
  
 $A, B, C \rightarrow B, C$   
 $A, B, C \rightarrow A, B, C$ 

## **Axiom 2: Augmentation**

for any attribute sets X, Y, Z if  $X \rightarrow Y$ , then X,  $Z \rightarrow Y$ , Z

# Examples A → B then A, C → B, C A, B → C then A, B, C → C (here X=A,B and Y=Z=C)

## **Axiom 3: Transitivity**

for any attribute sets X, Y, Z if  $X \rightarrow Y$  and  $Y \rightarrow Z$  then  $X \rightarrow Z$ 

#### **Examples**

 $A \rightarrow B$  and  $B \rightarrow C$  then  $A \rightarrow C$  $A \rightarrow B$ , C and B,  $C \rightarrow D$  then  $A \rightarrow D$ 

## Union and Decomposition

#### rules that follow from AA

Union

if  $X \rightarrow Y$  and  $X \rightarrow Z$  then  $X \rightarrow Y$ , Z

Decomposition

If  $X \rightarrow Y$ , Z then  $X \rightarrow Y$  and  $X \rightarrow Z$ 

## Applying AA

#### Product

|  | name | category | color | price | department |
|--|------|----------|-------|-------|------------|
|--|------|----------|-------|-------|------------|

#### we know:

- name  $\rightarrow$  color
- (2) category  $\rightarrow$  department
- (3) color, category  $\rightarrow$  price

#### can we infer: name, category $\rightarrow$ price $\uparrow \uparrow \uparrow$



- augmentation to (1): (i) (4) name, category  $\rightarrow$  color, category
- transitivity to (4), (3) (ii) name, category  $\rightarrow$  price

## Applying AA

#### Product

|  | name | category | color | price | department |
|--|------|----------|-------|-------|------------|
|--|------|----------|-------|-------|------------|

#### we know:

- name  $\rightarrow$  color
- category → department
- (3) color, category  $\rightarrow$  price

#### can we infer: name, category $\rightarrow$ color $\uparrow \uparrow \uparrow$



- by <u>reflexivity</u>: (i)
  - (5) name, category  $\rightarrow$  name
- transitivity to (5), (1) (ii) name, category  $\rightarrow$  color

#### FD Closure

how can we find all FD?

#### FD Closure

if F is a set of FD, the closure  $F^+$  is the set of all FDs logically implied by F

Using Armstrong Axioms we can find F<sup>+</sup>
sound: any generated FD belongs to F<sup>+</sup>

**complete**: repeated application of AA generates  $F^+$ 

#### **Attribute Closure**

X an attribute set, the closure X<sup>+</sup> is the set of all attributes B:

 $X \rightarrow B$ 

in other words B

attribute closure of X is the set of all attributes that "are determined by X"

## Applying AA

#### Product

| name | category | color | price | department |
|------|----------|-------|-------|------------|
|      |          |       |       |            |

#### we know:

- name  $\rightarrow$  color
- (2) category  $\rightarrow$  department
- (3) color, category  $\rightarrow$  price

## Attribute closure: ?\(\)



- Closure of name (i) {name}<sup>+</sup> = {name, color}
- Closure of name, category (i) {name, category}<sup>+</sup> = {name, color, category, department, price}

```
let X=\{A_1, ..., A_n\}

closure = X

UNTIL closure does not change REPEAT:

IF B_1, ..., B_m \rightarrow C AND

B_1, ..., B_m are all in closure

THEN add C to closure
```

```
Example: R(A,B,C,D,E,F)
         A, B \rightarrow C
         A, D \rightarrow E
         B \rightarrow D
         A, F \rightarrow B
        {A,B}<sup>+</sup> {A,F}<sup>+</sup>
```

```
{A,B}
Example: R(A,B,C,D,E,F)
                                     {A,B,C}
                                     {A,B,C,D}
                                     {A,B,C,D,E}
      A, F \rightarrow B
      {A,B}<sup>+</sup> {A,F}<sup>+</sup>
```

Example: R(A,B,C,D,E,F)  $\{A,B\}$ {A,B,C} {A,B,C,D} {A,B,C,D,E} {**A**,**F**} {A,F,B}  $\{A,B\}^+$ {A,F}+ ? {A,F,B,C} {A,F,B,C,D} {A,F,B,C,D,E}

```
Example: R(A,B,C,D,E,F)
      A, B \rightarrow C
      A, D \rightarrow E
       B \rightarrow D
      A, F \rightarrow B
       {A,B}^+ = {A,B,C,D,E}
       {A,F}^+ = {A,F,B,C,D,E}
```

## Why calculate closure?

for "does  $X \rightarrow Y$  hold" questions check if  $Y \subseteq X^+$ 

to compute the closure  $F^+$  of FDs

(i) for each subset of attributes X, compute  $X^+$ 

(ii) for each subset of attributes  $Y \subseteq X^+$ , output the FD  $X \to Y$ 

## FD and Keys

#### in terms of relational model

<u>superkey</u>: a set of attributes such that:

no two distinct tuples can have same values in all key fields

#### in terms of FD

<u>superkey</u>: a set of attributes  $A_1$ ,  $A_2$ , ...,  $A_n$  such that for <u>any</u> attribute B:  $A_1$ ,  $A_2$ , ...,  $A_n \rightarrow B$ 

<u>key (or candidate key)</u>: requires minimality what if we have multiple candidate keys?



- we specify one to be the **primary key** 

## Computing (Super)Keys

- (1) compute  $X^+$  for all sets of attributes X
- (2) if  $X^+$ =all attributes, then X is a *superkey* why?



- because then "X determines `all attributes`"
- (3) if, also, no subset of X is superkey then X is also a key

## Example

#### **Product**

| name category | color | price |
|---------------|-------|-------|
|---------------|-------|-------|

#### we know:

- (1) name  $\rightarrow$  color
- (2) color, category  $\rightarrow$  price

#### Superkeys:

```
{name, category}, {name, category, price},
{name, category, color}, {name, category, price, color}
```

#### Keys:

{name, category}

## Can we have more than 1 key?



what about the relation **R** (A,B,C) with:

A, B 
$$\rightarrow$$
 C

$$A, C \rightarrow B$$

which are the keys? {A, B} and {A, C} are both minimal

#### Should we use all FDs?

given a set of FDs F we have discussed about F<sup>+</sup>

the useful info is in the minimal cover of F "the smallest subset of FDs S:  $S^+ = F^+$ "

**Formally:** minimal cover S for a set of FDs F:

(1) 
$$S^+ = F^+$$

- (2) RHS of each FD in S is a single attribute
- (3) if we remove any FD from S or remove any attribute from its LHS the closure is not  $F^+$

## **Example of Minimal Cover**

$$R(C, S, J, D, P, Q, V)$$
  
key C (C+={C, S, J, D, P, Q, V})  
 $J, P \rightarrow C$   
 $S, D \rightarrow P$   
 $J \rightarrow S$ 

## This is useful to decide how to solve the problem of redundancy (decomposition)!

#### Minimal cover:

$$C \rightarrow J$$
,  $C \rightarrow D$ ,  $C \rightarrow Q$ ,  $C \rightarrow V$   
 $J$ ,  $P \rightarrow C$   
 $S$ ,  $D \rightarrow P$   
 $J \rightarrow S$ 

More on that next time!!

## Summary

FDs and (Super)Keys

Reasoning with FDs:

- (1) given a set of FDs, infer all implied FDs
- (2) given a set of attributes X, infer all attributes that are functionally determined by X

Next we will look at how to use them to detect that a table is "bad"