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Abstract. Data systems with adaptive storage can autonomously change
their behavior by altering how data is stored and accessed. Such systems
have been studied primarily for the case of adaptive indexing to auto-
matically create the right indexes at the right granularity. More recently
work on adaptive loading and adaptive data layouts brought even more
flexibility. We survey this work and describe the need for even deeper
adaptivity that goes beyond adjusting knobs in a single architecture;
instead it can adapt the fundamental architecture of a data system to
drastically alter its behavior.
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1 Adaptive Data Systems

Data systems design is a massive collection of small decisions that collectively
make the architecture of a data system [19, 1, 8]. Typically data systems come
with several tuning knobs that allow adjusting the system for different workloads
and even for different hardware. As data systems have grown more complex over
the years, the same is true for their tuning knobs. As a result, this task is
offloaded to human experts, database administrators, that understand very well
both the internals of the data system at hand and the specifics of the target
application and environment.

One of the most important tuning knobs that dramatically affects perfor-
mance is the selection of secondary and primary indexes that should be materi-
alized to support a given application. This choice has attracted a lot of attention
over the years given its drastic effect on performance and the complexity of mak-
ing the right decisions. The main solution that helped scale such tuning choices
is the introduction of auto-tuning tools. These tools automate the discovery of
good candidate indexes and propose a possible configuration to the database
administrator. In turn, the administrator may approve or edit the final tuning
options [11]. Such tools rely primarily on what-if analysis and interaction with
the optimizer to obtain estimated query costs should a candidate index set be
materialized. There has been significant progress over the years including work
that periodically reconsiders the tuning choices [9, 10].
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A big part of why the choice of indexes is such a critical factor is that it
truly affects the architecture of a data system as it changes how data is stored
and accessed. With the continuing trend of CPUs improving at a faster pace
than memory, having the right data layout is one of the biggest deciding factors
in performance of data systems as it allows us to minimize data movement.
Having the correct index, i.e., the one that contains just enough relevant data
(attributes) and in the best layout for the given query, means that all appropriate
queries will use this optimal storage layout to access data while otherwise they
would use a plain scan or a less appropriate index resulting in the need to move
around many more data (pages).

While the work on auto-tuning tools has provided significant advances, it has
limitations when it comes to varying workloads and data exploration scenarios
[26]. In such cases, the workload cannot always be predicted up front. This means
that auto-tuning tools cannot rely on a known workload to perform what-if
analysis. Similarly, if the workload is changing unpredictably and often, a tool
that only periodically triggers auto-tuning cannot always capture such changes.

Another disadvantage of this process is that it relies on expensive actions
that materialize complete indexes. This is not a design problem of auto-tuning
tools; it is rather an inherent feature of how indexing is performed, i.e., fully
generating a candidate index. With bigger data sets, though, index generation
actions can take a significant amount of time (e.g., it can be in the order of
several hours). By the time indexing is done, the workload might have already
changed and any indexing action is now irrelevant. If anything, it can even be
a bottleneck because now the system must maintain unneeded indexes during
updates.

Finally, another fundamental bottleneck with the indexing process is the
involvement of a human in the loop. Auto-tuning tools helped minimize this
involvement and scale the process but the fact that a human database adminis-
trator is still needed means that the cost of ownership of a data system is high
and it slows down the process.

Adaptive indexing, adaptive partitioning, and adaptive layouts came to ad-
dress the above issues by promising data systems that can automatically gener-
ate the right indexes and layouts without a human in the loop and without the
requirement to know the workload up front, quickly adapting to the workload
changes with small incremental actions [22, 25, 24, 30, 37, 17, 31, 15, 27, 13, 20,
32, 23, 28, 14, 33, 35, 6, 34, 36, 38, 3, 21, 5, 4, 2, 29, 7]. The main innovation
in these works comes from the fundamental feature of integrating physical data
reorganization actions to query processing and triggering lightweight reorgani-
zation purely based on query requests.

In this paper, we briefly survey recent advances on adaptive storage work
in modern data systems, highlight common principles, open problems and chal-
lenges. We term this line of work as shallow adaptivity in data systems, i.e.,
work that while it changes crucial knobs in the data system architecture it does
not fundamentally affect the system’s primary design. We then motivate the
need for a new class of systems that can (automatically) perform changes at
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a deeper architectural level which results in system instances that would typi-
cally be considered different systems (not just differently tuned instances of the
same system). We term this direction as deep adaptivity and we highlight some
examples of capabilities that such deep adaptive systems should have.

There have been numerous other efforts in the general area of adaptivity.
Most prominently work on adaptive query processing allows systems to change
their query processing strategy by adapting to data and query properties [12, 18].
While this is one more extremely important direction with equally exciting past
work and future opportunities (including possible synergy between all above
directions), in this paper we focus solely on adaptive storage work that primarily
changes the way data is stored and uses this as a way to modify the system
behavior and properties.

2 Shallow Adaptivity

In this section, we briefly survey work on adaptive storage. We first highlight
common principles and motivation. Towards the end, we discuss several open
research challenges.

Principle 1: Lazy Tuning. The primary principle behind adaptive storage
works is that critical tuning decisions that typically happen as part of the tuning
and initialization phase of a data system, can happen during query processing
time instead. The motivation for this step is twofold. First, it allows users and
applications to minimize data to query time. That is, minimize the time taken
for all steps required to set-up the system and ingest data from the moment
that data becomes available to the moment one can issue a query. Typical steps
in modern systems, include loading data into the system, choosing indexes and
materialized views, and setting up several knobs. The second reason why this is
a good idea is that it enables us to delay tuning decisions that may otherwise
lock the system into a suboptimal state. Instead, if we take tuning decisions after
we have seen the actual workload, tuning decisions can better match the desired
state.

Principle 2: Continuous Layout Adaptation. Expanding from above,
the second principle of adaptive storage works is that every request from the
outside world (e.g, a read or write query), is treated as advice on how to store
the data. This property means that the system can adapt its access patterns
exactly to what the workload needs and as the workload evolves. In this way,
even if the properties of the workload are not known up front, or even if they
change over time, adaptive storage can capture such changes and react by phys-
ically reorganizing the data towards what would be the optimal for the running
workload.

Principle 3: On-the-Fly Adaptation. Third, adaptation actions happen
as part of query processing. This property is important to minimize the cost
of adaptation. Adaptive storage relies on physical data reorganization which
implies read and write actions to transform data between different formats. Per-
forming the adaptation actions during query processing, means that adaptation
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algorithms can piggy back on I/O actions that would happen anyway for the ac-
tive queries. Most typically, we may read data just once to answer a query and
to perform adaptation on the relevant data. In all advanced adaptive storage
works query processing and physical reorganization happen as part of the same
algorithm and as part of the same pass over the data. This is key to achieve
good performance.

Principle 4: Incremental Adaptation. Fourth, adaptation actions are
lightweight actions that incrementally improve the state of the system. This is
important to maintain low overhead for active queries that run in parallel with
adaptation actions. This results in systems that are always in a transient state
in terms of their storage layout. The exact state, and thus the exact data layout,
at a given time depends on the types of queries the system has processed in the
(recent) past. Small incremental actions have the added benefit of allowing to
balance (read/write) trade-offs at a fine granularity.

Adaptive Storage. Work on adaptive storage for modern systems began
with the idea of adaptive indexing in column-stores with dense and contiguous
columns [22]. The idea is that instead of having to fully sort columns to cre-
ate a good index, database cracking incrementally and continuously partitions
columns using query predicates as pivots. This happens during query process-
ing and effectively cracking builds a new select operator that handles both a
read request and physical reorganization at the same time. As more queries are
processed, columns are further partitioned; every read query needs to touch at
most two pieces of a column and given that for the same column, pieces become
smaller and smaller as we get more queries, performance quickly improves. Effec-
tively the result is similar to what we would get from a fully sorted column and a
binary search access path, i.e., the result of every select operator is a contiguous
area in the partitioned column.

Later work on cracking pushed this idea deeper in the db kernel to be able to
handle more complex queries and to mitigate any side-effects of physical reorga-
nization. For example, work on sideways cracking showed how to process queries
over more than one attributes (columns) by adaptively propagating physical re-
organization across columns [24]. Work on cracking updates shows how to update
such columns while maintaining the side-effects of past adaptive actions by lazy
merging of updates [23]. Work on partial cracking demonstrates that the storage
overhead of auxiliary indexes can be managed by both vertical and horizontal
partitioning based on the workload [24]. Subsequently, work on transactional
processing revealed that while indeed adaptive storage turns read queries into
write queries (due to on-line adaptation), the fact that adaptive storage only af-
fects data structure and not contents provides significant flexibility to mitigate
transactional concerns [14, 13]. In addition, to work around the fact that certain
query sequences may provide bad partitioning schedules for columns, stochastic
cracking introduced the idea that queries should indeed be treated as advice on
how to store the data but they should be complemented by random reorgani-
zation actions that help balance off any bad patterns [17]. Other algorithmic
efforts have focused on understanding the trade-off of how much reorganization
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effort should go into every query and how this affects the pace of adaptation
[25, 36]. Finally work on utilizing multi-core enables adaptation and full utiliza-
tion of modern hardware by taking advantage of the inherent partitioned nature
[31, 36, 6]. More recent proposals also utilize idle CPU cycles in multi-core envi-
ronments to keep improving the state of the system in no peak workload periods
[30].

Other than work on columnar systems, adaptive storage has also been stud-
ied for more traditional B-tree settings which triggered the work for balancing
initialization costs with adaptation pace (more important when data needs to
be persistent to disk) [16] as well as for more operation such as joins [28] and
lightweight indexes [32].

Furthermore, work on distributed environments has utilized adaptive storage
locally in each node to gain local improvements in the performance of each
node [34] or even across nodes for complex operations by carefully selecting and
adapting where data resides [29].

In addition, adaptive storage has been studied for the case of hybrid storage
systems that provide a balance between row-stores and column-stores. Static
solutions to this problem decide upfront which hybrid layout should be mate-
rialized based on the expected workload. This is exactly the same as the index
tuning problem. Adaptive storage in this case can decide the right layout on-
the-fly based on the access patterns required by the queries [5, 7]. A new design
point here is that in order to utilize the different data layouts such as an adaptive
system also needs to generate code that matches the right layout. This allows to
minimize both cache misses and instruction misses and branches in the code [5].

Adaptive storage is not only about physically reorganizing existing data; it is
also about how we ingest data to form the desired layout. Adaptive approaches
in this direction choose to wait until queries arrive to decide which data to bring
into the system and in what form [21, 2, 4]. This removes even more overhead
from the initialization phase of a data system as now we can skip the data
loading step completely. The additional design point here is that touching raw
data repeatedly as more queries arrive can be expensive and so adaptive works
in this area are primarily concerned with minimizing this cost, e.g., by creating
indexes on top of raw files.

Other than the relational model, adaptive storage has also been studied in
time-series scenarios for nearest neighbor queries [37, 38]. While the concepts
remain the same there are some interesting differences with time-series. More
importantly given that there is no strict global order across time-series there is
no notion of performing small adaptation actions that refine an index. Instead,
what the adaptive storage works do in this case is that they incrementally build
the index by lazily indexing time-series as queries arrive. The adaptive time-series
index builds initially a basic tree index but without populating it with any time
series (using only high level representations) and then it actually inserts time-
series in the index only when a relevant query arrives. This amortizes the cost of
building the index across numerous queries in the same way as adaptive storage
works do in the relational model.
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Benchmarking. Benchmarking adaptive storage work requires a different
approach than in traditional works. Here, the performance of the system evolves
as we process more queries. Thus, each adaptive storage approach has to be eval-
uated over a window of time and expose properties about how the performance
changes over time [15]. There are three main metrics: 1) How much slower is the
very first query of adaptive storage compared to the default performance of a
system (e.g., the standard one assuming no optimization has been applied via
tunning)? 2) How fast the adaptive storage becomes faster than the standard
approach (e.g., what is the crossover point)? 3) Does adaptive storage become
as good as the optimal approach that we would get after tunning and how fast
does this happen?

Open Topics. Overall there has been significant progress in adaptive storage
both in terms of individual techniques and in terms of developing the concepts
and principles. There are numerous open topics. Some of the most prominent
open challenges include using machine learning to make tuning decisions when it
is not easy to create a precise model that describes the effect of certain choices. A
typical example in this direction is the choice of which column or sets of columns
to optimize in a column-store. Another important open topic is studying the
trade-offs of persistence vs. query response time and updates. This creates a
triangle of choices that are mutually exclusive, i.e., any action taken to optimize
one of them, hurts one or both of the other two. Finally, another important
direction is merging adaptive indexing with traditional auto-tuning tools such
that we can utilize both known workload knowledge if available and adapt to
tight time budgets and workload changes. For example, while existing auto-
tuning tools work only when there is enough workload knowledge and idle time
to go through the tuning phases, an approach that merges both auto-tunning
and adaptive indexing properties has the potential to be able to utilize 1) any
workload knowledge even if it is not complete and 2) any idle time even if it is
not enough to create all indexes we know we should create.

3 Deep Adaptivity

While the premise of the above work, termed as shallow adaptivity, is promising,
it still has a fundamental limitation. It only works within a given architecture
design. That is, it takes critical tuning steps that primarily have to do with
data layout and devises adaptive/lazy approaches to adjust the layout to the
workload. However, the options supported are within the design space of the
original architecture. For example, in the case of generating the right indexes
for a column-store system, adaptive storage decides which indexes to generate,
when and how fine-grained the indexes should be. At all states, though, the
fundamental architecture of the system does not change; it is still a column-
store and behaves well only for the set of properties for which we can tune a
column-store.

We term as deep adaptivity, a future class of data systems that would be able
to cross architecture designs, i.e., designs that are typically considered funda-
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mentally different systems today. A fundamentally different architecture is one
that has significant design differences which typically stems from focusing to
specific workloads, functionalities and hardware.

There are numerous reasons why such a path would lead to desirable systems.
The primary one is similar to the need for adaptivity but at an even higher level.
With ever more complex and diverse workloads today, industry and sciences need
support from different kinds of systems which in turn increases the complexity
of managing and tuning these systems as well as the cost of ownership. Having a
single system that can change its behavior drastically would decrease costs and
make access to data generally easier to manage instead of needing a new tailored
system for every different scenario we need to support within a business. One of
the most typical examples is the ability to support drastically different or even
varying read/write ratios.

Perhaps even more importantly, a system that can change its shape drasti-
cally can better adapt to evolving hardware. As it stands today, new hardware
appears faster than the pace at which software can follow. Having systems that
are inherently flexible to adapt their design in more fundamental ways than the
knobs exposed today would allow for easier adaptation.

As an example of possible deep design changes, consider changes that are
fundamentally shifting the shape of underlying access methods in data systems.
Given that access methods define the read/write performance of systems such
a step does affect the overall performance. However, introducing new access
methods or drastically changing existing ones in most systems that are older
than a few years quickly becomes increasingly hard and is only worthwhile if
we are close 100% sure about the final performance impact (which is a huge
problem by itself). This restricts innovation and system adaptation to change.
In this way, even the ability to manually adapt and test the design of systems
in a low-overhead way would be a significant step even if it does not happen
completely automatically.

Deep adaptivity requires several steps such as high level languages to express
design (and change), methods to quickly test the impact of possible changes,
allowing for semi-automatic human in the loop design, and most importantly
fully mapping the possible design space. Similarly to shallow adaptivity, deep
adaptivity needs to be evaluated against new metrics that capture the ability to
change and adapt quickly.

4 Summary

This paper briefly surveys past work on adaptive storage and introduces the
need to go beyond shallow adaptivity, to enable deeper architectural changes
either automatically or semi-automatically. Having the ability to easily change
the shape of a data system in a drastic way means that we can easily test possible
alternative designs and quickly adapt to new application features or hardware, a
process that typically may take several months or even years for mature systems
with accumulated complexity.
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