
QuIT your B+-tree for the Quick Insertion Tree

Aneesh Raman∗
Boston University
aneeshr@bu.edu

Konstantinos Karatsenidis∗
Boston University
karatse@bu.edu

Shaolin Xie†
University of Southern California

shaolinx@usc.edu

Matthaios Olma
MongoDB

matt.olma@mongodb.com

Subhadeep Sarkar
Brandeis University

subhadeep@brandeis.edu

Manos Athanassoulis
Boston University
mathan@bu.edu

ABSTRACT
Search trees, like B+-trees, are often used as index structures
in data systems to improve query performance at the cost of
index construction and maintenance. Production data systems
drastically reduce the index construction cost when the data
arrives fully sorted by employing a fast-path ingestion technique
to their B+-tree that directly appends the incoming entries to
the tail leaf. However, this optimization is only effective if the
incoming data is fully sorted or has very few out-of-order entries.
The state-of-the-art sortedness-aware design (SWARE) employs
an in-memory buffer to capture near-sortedness to reduce the
index construction cost when the data is nearly sorted. This,
however, sacrifices performance during lookups and introduces
additional design complexity.

To address these challenges, we present Quick Insertion Tree
(QuIT), a new sortedness-aware index that improves ingestion
performance with minimal design complexity and no read over-
head. QuIT maintains in memory a pointer to the predicted-
ordered-leaf (𝑝𝑜ℓ𝑒) that provides a sortedness-aware fast-path
optimization, and facilitates faster ingestion. The key benefit
comes from accurately predicting 𝑝𝑜ℓ𝑒 throughout data ingestion.
Further, QuIT achieves high memory utilization by maintaining
tightly packed leaf nodes when the ingested data arrives with
high sortedness. This, in turn, helps improve performance during
range lookups. Overall, QuIT outperforms B+-tree (SWARE) by
up to 3× (2×) for ingestion, while also offering up to 1.32× faster
(than SWARE) point lookup performance and accessing up to 2×
fewer leaf nodes than the B+-tree during range lookups.

1 INTRODUCTION
Database indexes accelerate query processing by offering fast
access to selection predicates. B+-tree indexes [14, 22] are used as
the primary index data structure by several popular data systems
ranging from relational row-stores [35, 36, 38, 39] like Oracle, SQL
Server, PostgreSQL and MySQL to NoSQL systems [15, 23, 34]
like MongoDB due to their ability to allow efficient point and
range queries. The improved query performance, however, comes
at the cost of constructing and maintaining the index as new
data is inserted, updated, or deleted from the database [3]. With
modern applications requiring data systems to also support faster
ingestion in addition to efficient query processing, the indexing
cost becomes prohibitive for workloads with high ingestion rates.

∗The first two authors have equal contribution.
†Author contributed while at Boston University.

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-098-1 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

0

20K (a) NIFTY

time0

2K
(b) SPXUSD

cl
os

in
g_

pr
ic

e

(c)
commitdate

Figure 1: Real-world data can often carry implicit sorted-
ness, for example, in closing prices of stock instruments
like: (a) NIFTY, and (b) SPXUSD. (c) Near-sorted data can
also occur as a result of correlated time attributes, e.g., date
attributes in TPC-H data.

In a B+-tree [14], ingesting a key involves accessing the root
node, traversing the tree to find the appropriate leaf node whose
range can fit the key, and inserting the key into that node in sorted
order. This essentially adds structure to the data by establishing
a sorted order to the data at the leaf level of the index. The tree
traversal, coupled with the required splitting of nodes as the tree
grows, heavily consumes the bulk of the indexing cost. There exist
techniques that accelerate index ingestion when we have access
to the entire dataset a priori (e.g., bulk-loading [1, 17]). However,
for insertions taking place throughout workload execution, bulk
loading is not feasible, and hence, data systems revert to standard
ingestion using expensive top-to-bottom tree traversals.
Leveraging Data Sortedness. Our thesis is that since indexing
adds structure to an otherwise unstructured data collection by cre-
ating a fully sorted version of the data, the indexing effort should be
minimal when the data arrives with some intrinsic order [42]. The
key idea here is identifying the correct location (i.e., leaf node),
to insert a new key without performing expensive tree traversals.
A simple case is when data arrives fully sorted – insertions are
always right-deep and are applied only to the tail (right-most)
leaf node of the index. Here, maintaining a pointer to the tail leaf
suffices to alleviate the indexing effort. In fact, due to its simplic-
ity, this technique is employed in popular commercial systems
(e.g., fast-path optimization in PostgreSQL [38]). However, the
tail-leaf optimization is only effective when data arrives fully
sorted and fails to capture varying degrees of near-sortedness
[41]. A small number of outliers, even as many as the capacity of
a single leaf node, is enough to render the tail-leaf optimization
useless, and the index reverts to expensive traversals.

In practice, several applications generate data that is close-to
being fully sorted (i.e., near-sorted). Naturally occurring examples
include aggregated time-series, log-based server data from data
centers [12], event-based sensor data [19, 45], streaming applica-
tions that see data appear slightly out-of-order due to network
delays, race conditions or intermittent machine failures [13], or
even stock market data, as shown in Figures 1a and 1b. Here, we

0

50 inserts

fully near less
sortedness

0

1
lookups

th
ro

ug
hp

ut
(M

O
ps

/s
)

(a) sortedness awareness

read
cost

design
complexity

memory
utilization

tuning
complexity

25

50

tail SWARE QuIT

better

(b)

Figure 2: (a) QuIT significantly outperforms the existing
baselines for any degree of sortedness; and (b) QuIT offers
high sortedness-awareness with no additional read penalty
while also striking a better balance between design com-
plexity, tuning, and memory utilization.

plot the intra-day closing_price of the Indian Stock Mar-
ket Index (NIFTY) and the Standard and Poor’s 500 (S&P 500)
ticker symbols at one-minute timeframes. Near-sorted data can
also occur as a result of attributes in a table being correlated with
the sort-key [2]. For instance, Figure 1c shows three correlated at-
tributes shipdate, receiptdate and commitdate of the
TPC-H [49] lineitem table along with their tuple ids. When
the table is ordered by the shipdate, data in the two other date
attributes occur as nearly sorted. Further, near-sortedness can
also occur as intermediate results of query-evaluation in data
systems - like joins or previously sorted files that received a small
number of updates [5].

Recent work on sortedness awareness for indexing [42] pro-
poses the SWARE paradigm that aims to exploit partial order
in the incoming data by intelligently buffering entries and op-
portunistically bulk-loading them on the fly (into an underlying
index, e.g., B+-tree) to accelerate index ingestion. The advan-
tages gained by applying the SWARE paradigm to a B+-tree are
illustrated in Figure 2a, which shows the average ingestion cost
when ingesting 500M entries (integer key-value pairs) with vary-
ing data sortedness. We benchmark the B+-tree with tail-leaf
optimization enabled (henceforth referred to as tail or tail-B+-
tree) the SWARE design (equipped with a 40MB buffer), and our
approach. Note that all experiments use the same underlying
B+-tree implementation to ensure a fair comparison.

While SWARE outperforms the tail-B+-tree with near-sorted
data, it falls back to a B+-tree otherwise. The improved ingestion
performance is beneficial for write-heavy workloads, however,
accessing the buffer at query time makes SWARE slower for point
queries. To reduce the read penalty, SWARE uses a more complex
design for the buffer by employing additional data structures
(i.e., Zonemaps [33] and Bloom filters [9]), still having up to
26% slower point queries than B+-tree. This requires additional
tuning, reduces maintainability, and as a result, hinders adoption.
An ideal tree index should offer high sortedness-awareness through
minimal design complexity without hurting query performance.

Simplifying Sortedness-Awareness. In this work, we propose
to exploit any intrinsic sortedness in the ingested data to op-
timize the indexing effort, with the specific goal of incurring
minimal additional complexity in the index design. To that end,
we propose two fast-path insertion optimizations named last-
insertion-leaf (ℓ𝑖ℓ) and predicted-ordered-leaf (𝑝𝑜ℓ𝑒). The key
intuition in both techniques is offering a predictor of in-order
insertions and directing them to the appropriate leaf to avoid
expensive tree traversals.

First, we replace the naïve predictor of fast-path insertions
from the rightmost (tail) leaf to the last-insertion-leaf (ℓ𝑖ℓ). This

change allows near-sorted ingestion streams to quickly “come
back” to the appropriate leaf if we have a small number of un-
ordered entries. While this helps to increase the number of fast-
path insertions, inserting an out-of-order entry results in up to
two missed fast-path inserts - one top-insert (i.e., standard index
ingestion) for the unordered entry and another to switch back to
the correct leaf node for subsequent entries.

Ideally, wewould like to only perform asmany index traversals
as the number of out-of-order entries ingested, and avoid the addi-
tional penalty. This is enabled by our second optimization, which
is more sophisticated than ℓ𝑖ℓ yet has minimal design complexity.
Specifically, we maintain a pointer to the predicted-ordered-leaf
(𝑝𝑜ℓ𝑒), which is initiated to the tail leaf. When we receive out-of-
order entries, we do not eagerly update 𝑝𝑜ℓ𝑒 , rather, only when
the node is split - we decide which of the two resulting nodes
should be identified as 𝑝𝑜ℓ𝑒 based on the ingested data.
Eliminating Overheads. In the worst case, both techniques
easily fall back to regular index ingestion, which is exactly as
efficient as the underlying B+-tree. This way, we avoid a fraction
of tree traversals without incurring any other overhead. The
required metadata is also minimal: one pointer to the fast-path
(ℓ𝑖ℓ or 𝑝𝑜ℓ𝑒), the smallest and largest values that the fast-path
node can accept, and only for 𝑝𝑜ℓ𝑒 , the size and the smallest key
of the previous leaf.
Quick Insertion Tree. We propose Quick Insertion Tree (QuIT),
a lightweight indexing data structure that supports fast data
ingestion using the 𝑝𝑜ℓ𝑒 fast-path optimization. QuIT adapts
to the sortedness of the incoming data to facilitate fast index
appends. In the ingestion experiment shown in Figure 2a, QuIT
outperforms the tail-B+-tree and the SWARE design.

Since 𝑝𝑜ℓ𝑒 is identified as a node receiving ordered entries,
we use an In-order Key estimatoR (IKR) to guide its update policy
(inspired by the inter-quartile range [16]). Using IKR enables
QuIT to employ a variable split factor that better packs in-order
entries in the 𝑝𝑜ℓ𝑒-node, in addition to redistributing entries be-
tween under-utilized leaf nodes. This helps the index to improve
both space utilization when ingesting near-sorted data and read
performance during range lookups. Further, lookups in QuIT
are similar to B+-tree, hence, QuIT’s benefits come with no read
penalty.

Figure 2b shows a qualitative comparison between tail-B+-tree,
SWARE, and QuIT based on sortedness-awareness (ingestion
benefits), read cost, complexity, tuning, and memory utilization.
Overall, QuIT outperforms both the tail-leaf optimization found
in production systems and the SWARE paradigm for sortedness
awareness without incurring any additional read penalty. QuIT
achieves this with little to no tuning, minimal design complexity,
and improved memory utilization. Further, QuIT allows for multi-
threaded execution with some additional care for the metadata
used. QuIT’s lightweight design also allows for easy adoption
into production data systems.
Contributions. Our work offers the following contributions:
• We propose two simple, yet powerful fast-path optimizations
for B+-trees: ℓ𝑖ℓ that reuses the last-insertion-leaf to avoid
full tree traversals, and 𝑝𝑜ℓ𝑒 that exploits near-sortedness to
predict which leaf should receive the next in-order entry (§3).
• We present an In-order Key Estimator (§4.1) that updates 𝑝𝑜ℓ𝑒
(§4.2). IKR also allows for variable-split ratio and redistribution
in leaf nodes to ensure higher space utilization (§4.3).
• We integrate the above techniques with minimal metadata and
tuning (§4.4) and support for concurrent execution (§4.5) into

1 2 4 3 5 7 6 8 9 10(a)

1 2 3 300 5 700 6 8 9 10(b)

1 8 3 6 5 4 7 2 10 9(c)

out-of-order entries

outliers

out-of-order entries: K = 5

maximum displacement: L = 6

Figure 3: Examples of (a) out-of-order entries and (b) out-
liers in a data collection. (c) The 𝐾−𝐿-sortedness metric
captures the number of out-of-order entries as 𝐾 and the
maximum displacement of out-of-order entries as 𝐿.

the Quick Insertion Tree (or QuIT), a general-purpose index
that supports sortedness-aware fast ingestion.
• We extensively evaluate QuIT and its core components (§5).
We show that QuIT significantly outperforms a state-of-the-art
B+-tree (with tail-leaf optimization) by up to 2.3× and SWARE
by up to 2× during near-sorted data ingestion. QuIT is also
1.32× faster than SWARE during point lookups and improves
its memory footprint by up to 49% when compared to B+-tree.
• Finally, we demonstrate that QuIT scales well with data size
and with concurrent execution, and make our artifacts avail-
able for exploration and reproducibility1.

2 BACKGROUND AND MOTIVATION
In this section, we provide the necessary background to data sort-
edness and the associated index construction and maintenance
cost. We discuss the existing techniques that attempt to exploit
sortedness as a resource, and why they fall short.
Quantifying Data Sortedness. Data sortedness captures the
difference between the arrival order and indexed order of data
over the indexed attribute. Several metrics have been proposed
in the literature that aim to quantify the sortedness of a stream
of data [5, 11, 27, 32]. One way to quantify data sortedness is to
count the number of entries that are out of order in a dataset [32].
By this quantification, a fully sorted data collection has no out-
of-order entries, whereas a scrambled data collection has all or
nearly all of its entries out of order. A nearly-sorted data collec-
tion has only a few out-of-order entries in an otherwise sorted
data collection. In general, out-of-order entries are identified as
those that are smaller than their preceding key in amonotonically
increasing data stream, as shown in Figure 3a, or vice versa. Fur-
ther, entries that deviate considerably from the overall expected
value in a near-sorted data stream and that may (or may not) be
in order with respect to their preceding entry are categorized
as outliers. For example, in Figure 3b, although the entries 300
and 700 are in order with their respective preceding keys, they
are considered outliers as they deviate significantly in magnitude
with neighboring entries. Note that outliers are easy to identify
when the data set is available in its entirety, however, identifying
them accurately in an incoming data stream is challenging.
The K−L-Sortedness Metric. The 𝐾−𝐿-sortedness metric [41]
inspired by Ben-Moshe et. al. [5] more comprehensively quanti-
fies data sortedness by accounting for both the out-of-order entries
and the distance by which they are out of order. The number of

1https://github.com/BU-DiSC/quick-insertion-tree

B+-tree

Opportunistically bulk load

min max min max new insert
X

global Bloom filter

per-page Bloom filters

(a) (b)

Figure 4: Internals of the SWARE paradigm: (a) SWARE
employs an intelligent buffering scheme that opportunisti-
cally bulk loads pre-sorted data pages into the underlying
index; however, (b) in addition to appending entries in the
buffer, SWARE scans the zonemaps to update its metadata
and also indexes the appended entry through two layers
of Bloom Filters.

out-of-order entries is denoted by 𝐾 , and the maximum displace-
ment of an unordered entry from its in-order position is denoted
by 𝐿. An example of a nearly sorted data collection based on
𝐾−𝐿-sortedness is shown in Figure 3c where 𝐾=5 entries are out
of place and the out-of-place entries are displaced by at most of
𝐿=6 index positions.
Sortedness-Aware Indexes. Raman et al. [42] proposed the
SWARE indexing paradigm that captures the sortedness of a
data stream using an in-memory buffer and opportunistically
bulk load (on-the-fly) incoming data to the underlying tree index
(e.g., B+-tree), as shown in Figure 4a. The benefits gained by
buffering entries during ingestion come at the expense of query
performance, as every query now has to first search the buffer.
SWARE partially addresses this overhead by employing auxiliary
data structures like Zonemaps [33] and Bloom filters [9] (BFs),
in addition to a query-driven partial-sorting technique that is
inspired by Cracking [24, 25]. Yet, point queries are up to 26%
slower than the baseline - this cost becomes prohibitive when
the fraction of reads in the workload increases.

More importantly, adding Zonemaps and Bloom filters to the
design implies that insertions to the index are no longer sim-
ple appends to the buffer, as shown in Figure 4b. Every insert
first checks if it is arriving in-order to the preceding key, and if
otherwise, performs a linear scan of the Zonemaps to identify
overlapping pages within the buffer. Additionally, the inserted
key is also indexed through a couple of layers of Bloom filters [9]
that require re-calibration during every buffer flush. The buffer
and the metadata (including the auxiliary data structures) also
increase the memory footprint (e.g., for indexing 1 TB of data,
the memory requirement can be more than 10 GB). Thus, in addi-
tion to imposing a penalty during lookups, SWARE also requires
careful tuning to ensure that the benefits of buffering outweigh
tree traversals to guarantee overall performance improvement.
Tail-Leaf Insertion. Tail-leaf insertion in B+-trees is a simple
fast-path optimization that benefits from incremental in-order
ingestion to the index. The tail-leaf fast-path essentiallymaintains
one additional pointer to the rightmost leaf (tail) of the index
along with its smallest allowed value. Any newly ingested key
that is greater or equal to that value is directly inserted into the
tail-leaf that is naturally cached, rather than traversing the tree.
While this fast-path optimization is rarely useful when data does
not arrive in sorted order, surprisingly, it also fails to accelerate
index ingestion even when data arrives near-sorted. As soon
as the number of outliers inserted exceeds one node worth of
data, the tail-leaf only contains outliers, resulting in a “stale”
fast-path. This results in future insertions (even for near-sorted

https://github.com/BU-DiSC/quick-insertion-tree

0 0.01 0.05 0.1 0.5 1 3 5 10

% out-of-order entries (K)

0

50

100

%
fa

st
-i

n
se

rt
s

tail-B+-tree

Figure 5: The tail-leaf optimization is effective only for
an extremely high degree of sortedness and leads to no
fast-inserts when 1% or of the entries are out of order.

(a) (b)

(c)

(e)

insert a

a

if a in lil range

insert b if b not in
lil range

b

insert c

c < split_key

lil old lilupdated lil

(d) c ≥ split_key

newly split
nodeif

c i
n lil

 ra
nge

lil

c

c

lil

lil

Figure 6: Fast-path ingestion using ℓ𝑖ℓ : (a) a newly inserted
key is added to ℓ𝑖ℓ if within ℓ𝑖ℓ-range; (b) a top-insert up-
dates ℓ𝑖ℓ pointer to the leaf node where we insert the key;
(c) when an insert to ℓ𝑖ℓ causes a split, (d) ℓ𝑖ℓ is updated if
𝑐 ≥ 𝑠𝑝𝑙𝑖𝑡_𝑘𝑒𝑦; otherwise (e) ℓ𝑖ℓ stays as is.

data) reverting to traditional incremental ingestion to the index
(referred to as top-inserts) and missing the opportunity to utilize
the fast-path (referred to as fast-inserts).
Tail-leaf is Only Helpful for Extremely High Sortedness.
Figure 5 shows the fraction of fast-inserts when ingesting 5M in-
tegers into a tail-B+-tree, as we vary data sortedness. Specifically,
we vary the fraction of out-of-order entries, which are positioned
uniformly and randomly in the workload. As expected, the tail-
leaf optimization is effective for sorted data (i.e., 0% out-of-order
entries) or extremely near-sorted data (i.e., very few out-of-order
entries). Thus, while we get negligible top-inserts for 0.01% out-
of-order entries, the tail-leaf optimization’s efficiency drops to
only 23% (11%) fast-inserts for 0.05% (0.1%) out-of-order entries,
and, ultimately, to less than 1% fast-inserts for 1% out-of-order
entries and beyond. This renders the tail-leaf optimization im-
practical for most near-sorted workloads as fast-path ingestion
is very rarely used.

3 SORTEDNESS-AWARE FAST PATHS
We now propose last-insertion-leaf (ℓ𝑖ℓ), a renewed fast-path
optimization technique for B+-trees that offers superior ingestion
performance for near-sorted workloads, and lay the groundwork
for predicted-ordered-leaf (𝑝𝑜ℓ𝑒), QuIT’s key ingredient.
Tracing the Leaf of the Last Insertion.Contrary to the tail-leaf
optimization, we maintain a pointer to the last-insertion-leaf or
ℓ𝑖ℓ for short. At any point during a workload execution, ℓ𝑖ℓ points
to the leaf node to which the most recent entry was inserted. A
subsequent insert may be added to the ℓ𝑖ℓ-node if it falls within its
range as shown in Figure 6a. Otherwise, we revert to a top-insert
followed by an update to the ℓ𝑖ℓ-pointer (Fig. 6b). The ℓ𝑖ℓ-pointer
is also updated if a newly inserted entry results in splitting the

0 0.01 0.05 0.1 0.5 1 3
% out-of-order entries (K)

0

20

40

60

80

100

%
fa

st
in

se
rt

s

(a) tail-B+-tree `i`-B+-tree

0 20 40 60 80 100
% out-of-order entries (K)

0

25

50

75

100

%
fa

st
-i

n
se

rt
s

(b) tail `i` Ideal

Figure 7: (a) The last-insertion-leaf optimization signif-
icantly outperforms tail-leaf insertions in B+-trees for
highly sorted data. (b) Simulation of the expected frac-
tion of top-inserts using ℓ𝑖ℓ while varying data sortedness.

ℓ𝑖ℓ-node (Fig. 6c). In this case, we update the ℓ𝑖ℓ-pointer if the
inserted key is placed into the newly created node from the split
(Fig. 6d), or keep it unchanged otherwise (Fig. 6e).
Modeling ℓ𝑖ℓ Benefits.We quantify the expected efficiency of
ℓ𝑖ℓ by estimating the fraction of data that would be fast-inserted
into the tree as a function of the out-of-order entries. Ideally,
a sortedness-aware index should fast-insert all in-order entries
and perform top-inserts only for entries that are out of order.
However, ℓ𝑖ℓ performs a top-insert both when (a) an out-of-order
entry follows an in-order entry (outlier or not) and (b) an in-
order entry follows an outlier. Conversely, ℓ𝑖ℓ would only succeed
when we have two in-order entries in a row. We calculate the
probability of two consecutive entries being in order as follows.
We assume that we insert 𝑛 entries into a B+-tree and that a
fraction, 𝑘 , of those entries are out of order. Then, the number
of in-order entries, 𝑦, is: 𝑦 = 𝑛 · (1 − 𝑘), and the probability of
a fast-insert (which happens when two consecutive entries are
in-order), 𝐹𝐼 , is given as:

𝐹𝐼 =
𝑦

𝑛
· 𝑦 − 1
𝑛 − 1 ≈

for large 𝑛

(𝑦
𝑛

)2
= (1 − 𝑘)2 (1)

Evaluating ℓ𝑖ℓ . While the tail-leaf optimization results in virtu-
ally no fast-inserts even with only 1% out-of-order entries, Eq. (1)
shows that ℓ𝑖ℓ should manage to achieve 98% fast-inserts in the
same workload, which is corroborated experimentally. Figure 7a
shows the fraction of fast-inserts (on the y-axis) when ingesting
5𝑀 entries (integer K-V pairs) as we vary the fraction of out-of-
order entries 𝑘 in the x-axis. Firstly, for fully sorted data both
the tail and ℓ𝑖ℓ optimizations invoke their respective fast-path
insertion routines and avoid expensive top-inserts altogether. We
observe that ℓ𝑖ℓ is indeed able to perform 98% fast-inserts for
a workload with 𝑘 = 1%, 90% fast-inserts for a workload with
𝑘 = 5% while also performing around almost no fast-inserts for
𝑘 = 100%. The very few fast-inserts for the latter are due to con-
secutive out-of-order entries targeting the same node with a very
low probability, which is slightly higher when the tree is small.

The superior benefits of ℓ𝑖ℓ against the tail-leaf optimization
is because the latter works well only when an incoming entry
can be correctly positioned in the tail leaf, the probability of
which is very low. On the other hand, we observe a gradual
decrease of fast-inserts performed in ℓ𝑖ℓ as we decrease data
sortedness. While ℓ𝑖ℓ initially points to the tail leaf, it updates
to the last insertion leaf as soon as we encounter an entry that
is top-inserted elsewhere. This allows all subsequent in-order
entries to be ingested through the fast path to the new ℓ𝑖ℓ or
revert to the “correct” leaf node if ℓ𝑖ℓ is filled with outliers.
Headroom of Improving ℓ𝑖ℓ . While ℓ𝑖ℓ’s design offers the op-
portunity to perform better than the state-of-the-art tail-leaf opti-
mization, there is still a lot of room for improvement. To quantify

p q r
pole_prev pole pole_next

p q r
pole_prev pole pole_next

p q r
pole_prev pole pole_next

updated pole

if r ≤ x if r > x

(a)

(b) (c)

Figure 8: Updating 𝑝𝑜ℓ𝑒: (a) post splitting 𝑝𝑜ℓ𝑒, we use the
smallest key (𝑟) in the newly split node (𝑝𝑜ℓ𝑒_next) and
compare to an estimation (𝑥) from the IKR; (b) if 𝑟 ≤ 𝑥 , we
update 𝑝𝑜ℓ𝑒; otherwise, (c) if 𝑟 > 𝑥 we leave 𝑝𝑜ℓ𝑒 as is.

the headroom of improvement, we compare the expected number
of fast-inserts performed by ℓ𝑖ℓ with the theoretical ideal design
of a sortedness-aware fast-path optimization. We use Eq. (1) to
estimate the number of fast-inserts as a fraction of the workload,
while the ideal is all in-order entries. Figure 7b, shows that while
ℓ𝑖ℓ (solid black line) is expected to clearly outperform tail-leaf in-
sertion (in dashed black line) – from the experiment in Figure 7a,
the number of fast-inserts quickly drops as the number of out-
of-order entries increases. Instead, for an ideal sortedness-aware
index (green line with a triangle marker), the fraction of fast
inserts are expected to be linearly proportional to the in-order
entries. The area between the solid black and green lines presents
the headroom for improvement.

Focusing on the missed opportunity, ℓ𝑖ℓ performs two top-
inserts per out-of-order entry: (i) one for an out-of-order entry,
and (ii) one for the in-order after ℓ𝑖ℓ is updated to the wrong leaf.

Optimal sortedness-awareness should incur, at most, one
top-insert per out-of-order entry.

Thus, we expect that the number of top-inserts (that can be 3-4×
more expensive than fast inserts depending on the height of the
tree) will be halved by such an ideal design, substantially reduc-
ing the overall cost of near-sorted data ingestion. Finally, when
inserting near-sorted data we can improve the space utilization of
the index by better packing leaf nodes with in-order entries and
using a variable split ratio [42]. On the other hand, for tail-leaf
optimization and ℓ𝑖ℓ , the higher the data sortedness the lower
the space utilization, since every node split will leave a half-full
node that will never receive any future insert.

Next, we propose a new design that bridges the aforemen-
tioned performance headroom with a more robust fast-path opti-
mization, while also offering better space utilization.

4 QUICK INSERTION TREE
WepresentQuick Insertion Tree (QuIT), an indexing data structure
that is sortedness-aware by design and offers superior ingestion
performance along with better space utilization when ingesting
near-sorted data. At its foundation, QuIT is similar to B+-tree
– its root and internal nodes contain a list of keys and pointers,
while the leaf nodes contain the data entries. However, QuIT
employs a sortedness-aware fast-path optimization that benefits
ingestion workloads that have at least some degree of intrinsic
data sortedness. If the data is completely scrambled, QuIT ef-
fectively behaves like B+-tree for writes. The key advantage of
QuIT over other sortedness-aware counterparts [42] is the lack of
any additional read penalty when compared to a B+-tree. It also
has minimal design complexity and requires little to no tuning.
Through the rest of this section, we present the architecture of
the Quick Insertion Tree.

4.1 A Robust Fast-Path Optimization
Predicting the Ordered Leaf. In Section 3 (Fig. 7b), we pointed
out that an ideal sortedness-aware index would perform expen-
sive top-inserts only for entries that are out of order, while all
other entries should be ingested using the fast path. The funda-
mental limitation of ℓ𝑖ℓ is that it naïvely switches the fast-path
access pointer (i.e., the ℓ𝑖ℓ-pointer) based on the most recent
insert, even if the entry ingested is out of order. We address this
by replacing ℓ𝑖ℓ with a new leaf node pointer to the predicted-
ordered-leaf (𝑝𝑜ℓ𝑒) node, that tracks the leaf that is most likely to
accept the future in-order entries. Similarly to ℓ𝑖ℓ , out-of-order
entries are top-inserted. However, unlike ℓ𝑖ℓ , the pointer to 𝑝𝑜ℓ𝑒
may be updated only when 𝑝𝑜ℓ𝑒 splits. The newly created node
from the split will be identified as 𝑝𝑜ℓ𝑒 if its smallest key is not
an outlier, while 𝑝𝑜ℓ𝑒 remains unchanged otherwise. A natural
approach for updating 𝑝𝑜ℓ𝑒 can involve maintaining a running
average of the deltas between all existing keys in the index and
comparing it against the average of deltas in 𝑝𝑜ℓ𝑒 . However,
through initial experiments (omitted for brevity), we observed
that such a policy makes it increasingly difficult for the index to
capture evolving degrees of sortedness, resulting in performance
degradation. Thus, we build a simpler yet more adaptive outlier
predictor called In-order Key estimatoR (IKR) as discussed below
to guide the update policy of 𝑝𝑜ℓ𝑒 .
Identifying Outliers. Assume we are inserting entries into
the index with keys following an increasing order. Let 𝑝𝑜ℓ𝑒𝑠𝑖𝑧𝑒
and 𝑝𝑜ℓ𝑒_prev𝑠𝑖𝑧𝑒 denote the respective number of entries in
𝑝𝑜ℓ𝑒 and its preceding node 𝑝𝑜ℓ𝑒_prev. We want to identify if
𝑝𝑜ℓ𝑒 needs to be updated upon split. Now, let 𝑝 and 𝑞 be the
values of the smallest key in the 𝑝𝑜ℓ𝑒_prev and 𝑝𝑜ℓ𝑒 , as shown in
Figure 8a. Since 𝑝𝑜ℓ𝑒 contains in-order entries, 𝑞 is not an outlier,
and necessarily 𝑝 is also not an outlier as it precedes 𝑞. When
splitting, we would like to identify whether the smallest key in
the new node created from the split, 𝑟 (i.e., the split key), is an
outlier. This helps decide whether to keep the pointer to 𝑝𝑜ℓ𝑒
unchanged (if 𝑟 is an outlier) or move 𝑝𝑜ℓ𝑒 to the new node (if 𝑟
is not an outlier).

Our lightweight IKR estimator (inspired by Interquartile Range
outlier detection [16]) calculates themaximum acceptable domain
for a non-outlier key. Any key beyond this range is considered
an outlier (denoted by 𝑥) as follows:

𝑥 = 𝑞 +
(

𝑞 − 𝑝
𝑝𝑜ℓ𝑒_prev𝑠𝑖𝑧𝑒

)
· 𝑝𝑜ℓ𝑒𝑠𝑖𝑧𝑒 · scale (2)

The term 𝑞−𝑝
𝑝𝑜ℓ𝑒_prev𝑠𝑖𝑧𝑒

calculates the density between 𝑝 and 𝑞, i.e.,
two non-outliers. To ensure enough data for prediction, we bound
𝑝𝑜ℓ𝑒_prev𝑠𝑖𝑧𝑒 ≥ 50% of node capacity (which is always true
in traditional B+-tree-node-splitting). The scale allows a small
buffer to capture small deviations in density that are inherent
in the data. Following standard practice [16], we use scale = 1.5.
Consequently, from Eq. (2), we consider any 𝑘𝑒𝑦 > 𝑥 as an outlier.

4.2 Fast-Path Insertion in 𝑝𝑜ℓ𝑒
We now describe the application of 𝑝𝑜ℓ𝑒 as a fast-path ingestion
technique in the Quick Insertion Tree and outline the steady-state
insertion algorithm in Algorithm 1.
Initialization. The initial state of the index is represented by a
single leaf node in the tree that is also its root. We also mark this
leaf as 𝑝𝑜ℓ𝑒 . When this leaf first splits, we create a new root node
and add the pivot pointers to its two children (similar to B+-tree).
We mark the leaf that received the latest insert as the 𝑝𝑜ℓ𝑒-node.

Algorithm 1: Updating predicted-ordered-leaf
Data: 𝑝 = 𝑝𝑜ℓ𝑒_prev𝑚𝑖𝑛 , 𝑞 = 𝑝𝑜ℓ𝑒𝑚𝑖𝑛 , 𝑒𝑛𝑡𝑟𝑦 = (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)
Init: scale = 1.5

1 if 𝑞 ≤ 𝑘𝑒𝑦 < 𝑝𝑜ℓ𝑒𝑚𝑎𝑥 then // fast-insert

2 if 𝑝𝑜ℓ𝑒 is full then
3 𝑝𝑜ℓ𝑒_next← 𝑝𝑜ℓ𝑒.𝑠𝑝𝑙𝑖𝑡 () ; // return new leaf

4 𝑟 ← 𝑝𝑜ℓ𝑒_next𝑚𝑖𝑛 ;

5 𝑥 ← 𝑞 +
(

𝑞−𝑝
𝑝𝑜ℓ𝑒_prev𝑠𝑖𝑧𝑒

)
· 𝑝𝑜ℓ𝑒𝑠𝑖𝑧𝑒 · scale;

6 if 𝑟 ≤ 𝑥 then
7 𝑝𝑜ℓ𝑒_prev← 𝑝𝑜ℓ𝑒 ;
8 𝑝𝑜ℓ𝑒 ← 𝑝𝑜ℓ𝑒_next;

9 𝑝𝑜ℓ𝑒.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑒𝑛𝑡𝑟𝑦) ;
10 else
11 𝑙𝑡 ← 𝑡𝑜𝑝_𝑖𝑛𝑠𝑒𝑟𝑡 (𝑒𝑛𝑡𝑟𝑦) ; // return selected leaf

12 if 𝑙𝑡 = 𝑝𝑜ℓ𝑒_next then // 𝑝𝑜ℓ𝑒 catches up

13 𝑝𝑜ℓ𝑒_prev← 𝑝𝑜ℓ𝑒 ;
14 𝑝𝑜ℓ𝑒 ← 𝑝𝑜ℓ𝑒_next;

Steady State. In steady-state, an entry inserted to the index
utilizes 𝑝𝑜ℓ𝑒 if its key is within [𝑝𝑜ℓ𝑒𝑚𝑖𝑛, 𝑝𝑜ℓ𝑒𝑚𝑎𝑥). When 𝑝𝑜ℓ𝑒
is also the tail-leaf, we omit the upper bound check on 𝑝𝑜ℓ𝑒𝑚𝑎𝑥 .
Splitting the 𝑝𝑜ℓ𝑒-node.Once 𝑝𝑜ℓ𝑒 is full, we split it and update
the pointer to 𝑝𝑜ℓ𝑒 as shown in Figure 8. We refer to the newly
created node from the split as 𝑝𝑜ℓ𝑒_next. We compare 𝑥 from
Eq. (2) with the smallest key in 𝑝𝑜ℓ𝑒_next, denoted by 𝑟 . We
update 𝑝𝑜ℓ𝑒 to 𝑝𝑜ℓ𝑒_next if 𝑟 ≤ 𝑥 (Fig. 8b), and leave it as-is
otherwise (Fig. 8c).
Catching Up to Predicted Outliers.When 𝑟 > 𝑥 (i.e., when 𝑟 is
an outlier), we infer that all entries of the new node are outliers.
So, any future in-order entries will belong to the node that was
split, and thus, we do not update 𝑝𝑜ℓ𝑒 after splitting. Eventually,
if keys are largely in-order, entries in the 𝑝𝑜ℓ𝑒-node may catch
up to previously marked outliers in 𝑝𝑜ℓ𝑒_next. Hence, when an
entry is top-inserted to 𝑝𝑜ℓ𝑒_next, we check if it is still an outlier
using IKR and, only if not, update 𝑝𝑜ℓ𝑒 to 𝑝𝑜ℓ𝑒_next.

4.3 Improving Space Utilization
The 𝑝𝑜ℓ𝑒 optimization offers a robust and sortedness-aware fast-
path access to the leaf level of the index that avoids tree traversals
for in-order data to boost ingestion performance. However, the
current design retains the same worst-case space utilization as a
B+-tree when ingesting fully-sorted data. That is, due to consec-
utive right-deep insertions, every node will be exactly half full,
wasting 50% of space. Ideally, a sortedness-aware index should
exploit inherent data sortedness to improve its space utilization.
Finding Better Split-Points. QuIT exploits IKR and 𝑝𝑜ℓ𝑒 to
further improve space utilization. First, in Algorithm 2, we detail
a variable split strategy in the leaf nodes through which ordered
data can be more tightly packed. We re-use IKR to identify the
outliers and determine the optimal split-points for the node. Note
that this is fundamentally different from Algorithm 1, where we
first split 𝑝𝑜ℓ𝑒 by default at 50% and only use the IKR to update
𝑝𝑜ℓ𝑒 . Next, we discuss the major decisions in Algorithm 2.
Splitting a Node other than 𝑝𝑜ℓ𝑒. Similar to a B+-tree, we split
a (non-𝑝𝑜ℓ𝑒) leaf node at 50% (𝑑𝑒 𝑓 _𝑠𝑝𝑙𝑖𝑡_𝑝𝑜𝑠 = 𝑙𝑒𝑎𝑓𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦/2).
Splitting 𝑝𝑜ℓ𝑒 when 𝑝𝑜ℓ𝑒_prev is at Least Half-full. When
𝑝𝑜ℓ𝑒 is about to split and its preceding node (𝑝𝑜ℓ𝑒_prev) is at
least half-full, we use IKR to determine the split position. We

p q p q
updated pole

p q p q

split at l

p q

l

p q q’

redistribute and propagate q’ to parent

q’ = new pole_min

l

move one non-outlier

l l

(a)

(b)

(c)

} }Before splitting after splitting

polepole_prev

Figure 9: The default split position is in the middle of 𝑝𝑜ℓ𝑒
(50%). When 𝑝𝑜ℓ𝑒_prev𝑠𝑖𝑧𝑒 ≥ 50%, we use IKR to identify out-
liers. (a) If outliers occupy < 50% of 𝑝𝑜ℓ𝑒 (𝑙 > 𝑑𝑒 𝑓 _𝑠𝑝𝑙𝑖𝑡_𝑝𝑜𝑠),
we split at 𝑙 − 1, moving a non-outlier value to the newly
split node and update 𝑝𝑜ℓ𝑒; (b) Otherwise, we split at 𝑙 (us-
ing the default IKR) and keep 𝑝𝑜ℓ𝑒-pointer as is; (c) When
𝑝𝑜ℓ𝑒_prev𝑠𝑖𝑧𝑒 < 50%, we redistribute entries to 𝑝𝑜ℓ𝑒_prev,
until 𝑝𝑜ℓ𝑒_prev𝑠𝑖𝑧𝑒 = 50%.

identify the position (𝑙) of the first key greater than the largest
estimated acceptable value in the 𝑝𝑜ℓ𝑒-node in line 4.
When 𝑝𝑜ℓ𝑒 Contains Only Few Outliers. If 𝑝𝑜ℓ𝑒 mostly con-
tains in-order entries (𝑙 > 𝑑𝑒 𝑓 _𝑠𝑝𝑙𝑖𝑡_𝑝𝑜𝑠), we split the node (and
update it as 𝑝𝑜ℓ𝑒) at 𝑙 − 1 (lines 5-7), taking one in-order value
to the newly created node from the split, as shown in Figure 9a.
This ensures that the split leaf is at least half full while the new
𝑝𝑜ℓ𝑒 has more space to accommodate future fast-insertions.
When𝑝𝑜ℓ𝑒 ContainsMostlyOutliers.When 𝑙 ≤ 𝑑𝑒 𝑓 _𝑠𝑝𝑙𝑖𝑡_𝑝𝑜𝑠 ,
𝑝𝑜ℓ𝑒 contains mostly outliers, and we split it at 𝑙 and move all
outliers to the newly created node (Fig. 9b). We do not alter
the pointer to 𝑝𝑜ℓ𝑒 as it now has enough space for future fast
insertions.
Redistribution When 𝑝𝑜ℓ𝑒_prev is Less than Half-full. In
case that at 𝑝𝑜ℓ𝑒-splitting time, 𝑝𝑜ℓ𝑒_prev is less than half full
(e.g., due to an earlier variable split), using IKR may lead to an
inaccurate estimation as it does not have enough data. Instead,
we redistribute entries (line 10) from 𝑝𝑜ℓ𝑒 to 𝑝𝑜ℓ𝑒_prev until the

Algorithm 2: Variable split strategy
Data: 𝑞 = 𝑝𝑜ℓ𝑒𝑚𝑖𝑛 , 𝑒𝑛𝑡𝑟𝑦 = (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)
Init: scale = 1.5, 𝑑𝑒 𝑓 _𝑠𝑝𝑙𝑖𝑡_𝑝𝑜𝑠 = 𝑙𝑒𝑎𝑓𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

2
1 if 𝑙𝑒𝑎𝑓 ≠ 𝑝𝑜ℓ𝑒 then
2 𝑙𝑒𝑎𝑓 .𝑠𝑝𝑙𝑖𝑡 (𝑑𝑒 𝑓 _𝑠𝑝𝑙𝑖𝑡_𝑝𝑜𝑠); // split leaf at 50%

3 else if 𝑝𝑜ℓ𝑒_prev𝑠𝑖𝑧𝑒 ≥ 𝑑𝑒 𝑓 _𝑠𝑝𝑙𝑖𝑡_𝑝𝑜𝑠 then // use IKR

4 𝑙 ← 𝑙𝑒𝑎𝑓 .𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑞 +
(

𝑞−𝑝
𝑝𝑜ℓ𝑒_prev𝑠𝑖𝑧𝑒

)
· scale);

5 if 𝑙 > 𝑑𝑒 𝑓 _𝑠𝑝𝑙𝑖𝑡_𝑝𝑜𝑠 then
// take one non-outlier to new node

𝑝𝑜ℓ𝑒_next← 𝑝𝑜ℓ𝑒.𝑠𝑝𝑙𝑖𝑡 (𝑙 − 1);
6 𝑝𝑜ℓ𝑒_prev← 𝑝𝑜ℓ𝑒 ;
7 𝑝𝑜ℓ𝑒 ← 𝑝𝑜ℓ𝑒_next;
8 else

// move all outliers to new node

𝑝𝑜ℓ𝑒_next← 𝑙𝑜𝑙 .𝑠𝑝𝑙𝑖𝑡 (𝑙);
9 else

// redistribute entries from 𝑝𝑜ℓ𝑒_prev

10 𝑙𝑜𝑙 .𝑟𝑒𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (𝑝𝑜ℓ𝑒_prev);

latter is exactly half full (Fig. 9c). This allows future splits in the
𝑝𝑜ℓ𝑒 node to use the variable split strategy.
Resetting Fast-PathWhen 𝑝𝑜ℓ𝑒 Goes Stale. As with any other
fast-path optimization, there exists a scenario where 𝑝𝑜ℓ𝑒 be-
comes stale due to certain workload characteristics, leading to
unexpectedly many top-inserts. For example, this can be caused
by workloads that do not exhibit any sortedness, or by corner
cases of specific sequences of in-order and out-of-order inser-
tions that may throw IKR off. We recover from the stale state by
resetting 𝑝𝑜ℓ𝑒 to the leaf that accepted the latest insert. However,
unlike ℓ𝑖ℓ , we do not adjust 𝑝𝑜ℓ𝑒 for every top-insert. Rather, we
do so only if we have already performed a number of consecutive
top-inserts. We set this threshold as𝑇𝑅 = ⌊

√︁
𝑙𝑒𝑎𝑓𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦⌋ to offer

a balanced outcome.

4.4 Other QuIT Operations
Point Lookups. Lookups in QuIT are identical to the classical
B+-tree. A point lookup-path starts at the root node and uses
key comparisons to follow the pivot pointers, to navigate to the
appropriate leaf node that may contain the target entry. A binary
search on the keys in the leaf node returns whether the search
key is present in the index or not.
Range Lookups. In QuIT, a lookup for keys in [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑] first
performs a point lookup on 𝑠𝑡𝑎𝑟𝑡 to locate the first key ≥ 𝑠𝑡𝑎𝑟𝑡 .
It then uses the pointers between leaf nodes to scan all entries
until an entry ≥ 𝑒𝑛𝑑 is found (similar to B+-tree).
Deletes. Delete operations in QuIT are also exactly the same as
the B+-trees. Deletion of an entry begins with a point lookup on
the target key. If the key is found, in QuIT, we typically remove
the key from the corresponding leaf node and apply rebalancing
to ensure that the leaf node and all internal nodes leading to
the leaf node are at least half full. Only deletes of entries in the
𝑝𝑜ℓ𝑒-node do not rebalance eagerly. In case the key marked to
delete is the only key in 𝑝𝑜ℓ𝑒 , we reset 𝑝𝑜ℓ𝑒 to 𝑝𝑜ℓ𝑒_prev.

4.5 Concurrency Control
Concurrency control protocols that have been widely studied for
B+-trees [4, 7] can be applied out-of-the-box to QuIT.
Locking Protocol for Ingestion. In B+-trees, the internal nodes
simply redirect searches to the next level that contains either an
internal node or a leaf node. Hence, completely and exclusively
locking the entire path is wasteful. We employ a simple protocol
inspired by classical lock-crabbing [21].

Classical lock-crabbing [21] starts at the root node and de-
scends down the tree, acquiring exclusive locks at every node
along the insertion path. If a node along the path is not full, an
insertion does not result in a split. Therefore, all the acquired
locks in the preceding levels of the path are released. A lock on
the entire path is acquired only when every node along the path
is full. The locks are retained until the insertion completes, as a
split in the lowest level of the tree (i.e., the leaf node) can poten-
tially propagate to every internal node along the path, including
the root node.
Granular Crabbing for QuIT. Our locking procedure is pre-
sented in Algorithm 3 and described in detail below. Every insert
in QuIT first acquires a write lock on the fast-path metadata to
verify if we can insert to 𝑝𝑜ℓ𝑒 . We do not optimistically lock the
metadata (for read access) since we expect data to frequently
arrive near-sorted and thus target 𝑝𝑜ℓ𝑒 . Optimistically granting
read locks in such a scenario adds unnecessary effort due to

restarting the procedure as most insertions will tend to conflict
(inserting to 𝑝𝑜ℓ𝑒). We now discuss what follows after locking
the metadata.
Validating the fast-path. If the insertion key is within the range
of fast-path access, we obtain a write lock on 𝑝𝑜ℓ𝑒 and verify
again that the key is within its range. This check ensures that no
other thread resulted in a split/reset/redistribution that would
render the fast-path useless for this insertion key. If the fast-path
has changed, we unlock 𝑝𝑜ℓ𝑒 and the metadata, and top-insert
the entry.
The 𝑝𝑜ℓ𝑒 is full. If the key is within the range of fast-path access
but 𝑝𝑜ℓ𝑒 is full, we top-insert the entry because the split may
propagate to the higher levels of the tree and potentially up to the
root node. After completing the top-insert, we unlock the fast-
path metadata. That way, we avoid deadlocks due to concurrent
inserts to the index, as they will first wait to lock the metadata.
Insertion can use fast-path. If the key is within the range of the
fast-path access, and 𝑝𝑜ℓ𝑒 is not full, we update the size of the
fast-path and unlock the metadata. This ensures that we do not
hold the lock on the metadata for a long duration, so that it does
not block concurrent insertion to the index. We then proceed
with inserting the entry to 𝑝𝑜ℓ𝑒 , before unlocking it.

If key is not in 𝑝𝑜ℓ𝑒 range, we unlock the metadata before
employing a top-insert for the entry.
Locking other nodes. Additionally, a split to 𝑝𝑜ℓ𝑒 would either
result in the creation of a new node or a redistribution of entries
from 𝑝𝑜ℓ𝑒 to 𝑝𝑜ℓ𝑒_prev. In the former case, we only acquire a lock
on the metadata of 𝑝𝑜ℓ𝑒_prev (i.e., 𝑝𝑜ℓ𝑒_prev_id, 𝑝𝑜ℓ𝑒_prev_min,
and 𝑝𝑜ℓ𝑒_prev_size). For redistribution, we also acquire a lock
on 𝑝𝑜ℓ𝑒_prev and its associated metadata.
Optimistic top-inserts. During top-inserts, we obtain locks on
nodes optimistically - we take read locks on internal nodes and a
write lock on the appropriate leaf. In case the leaf node needs to
split, we restart the procedure using traditional lock-coupling.
Locking Protocol for Lookups. Like simple lookups, concur-
rent lookups to QuIT essentially follow the same procedure as
in a B+-tree. We start from the root node, acquiring read locks
on every node along the access path. Range lookups similarly

Algorithm 3: Granular Lock Crabbing in QuIT
1 metadata.writeLock();
2 if key within 𝑝𝑜ℓ𝑒 range then
3 𝑝𝑜ℓ𝑒 .writeLock();
4 if key not in 𝑝𝑜ℓ𝑒 range then // change before locking

5 𝑝𝑜ℓ𝑒 .unlock();
6 optimistic_top_insert();
7 metadata.unlock();
8 if 𝑝𝑜ℓ𝑒 is full then
9 optimistic_top_insert();

10 metadata.unlock();
11 else
12 𝑓 𝑝_𝑠𝑖𝑧𝑒 + +;
13 metadata.unlock();
14 𝑝𝑜ℓ𝑒 .insert(key, value);

15 𝑝𝑜ℓ𝑒 .unlock();
16 else
17 metadata.unlock();
18 optimistic_top_insert();

0 1 3 5 10 25 50 100

% out-of-order entries (K)

0

10

20

30

40

th
ro

u
gh

p
u

t
(M

O
p

s/
se

c)

B+-tree

tail-B+-tree

`i`-B+-tree

QuIT

ART

Figure 10: QuIT outperforms all B+-tree baselines for any
degree of data sortedness during ingestion, while it outper-
forms ART for fully sorted or nearly sorted data.

obtain read locks up to the first leaf node that is accessed by the
query and on subsequent leaf nodes.

5 EXPERIMENTAL EVALUATION
We now show the benefits of QuIT by comparing it to (i) a text-
book B+-tree (classical B+-tree) that only performs top-inserts,
(ii) a B+-tree with tail-leaf optimization (tail-B+-tree) inspired by
the state-of-the-art design in PostgreSQL [38], (iii) a B+-tree with
the last-insertion-leaf optimization (ℓ𝑖ℓ-B+-tree), the Adaptive
Radix Tree (ART) [30], and the state-of-the-art sortedness-aware
index design (SWARE [42]). We test using multiple configura-
tions, varying data sortedness and data size, stress-testing the
fast-path. Finally, we compare with a full-feature B𝜖 -tree and
LSM-tree, and we experiment with real-world stock market data.
Experimental Setup.We run experiments using our in-house
server with 128GB of DDR5 main memory at 4800 MHz and a
1.9TB NVMe SSD. The server runs Rocky Linux (version 9.3)
and is equipped with two sockets of Intel Xeon Gold (6442𝑌) 2.6
GHz processors (24 cores), each supporting 48 threads. We run
experiments on a single core and extend to multiple cores for
concurrent execution in §5.3.
Index Design and Default Setup. We use an in-memory im-
plementation of the B+-tree (inspired by state-of-the-art [8]),
and implement tail, ℓ𝑖ℓ , and 𝑝𝑜ℓ𝑒 optimizations on this plat-
form. We also implement QuIT on the same platform that in-
cludes features such as the variable-split, redistribute, and re-
set strategies. We use the same B+-tree implementation as the
underlying index when comparing with the SWARE paradigm
by extending the API to support bulk loading. For the SWARE
buffer, we deploy the open-sourced code [43] out-of-the-box and
default to a buffer size equivalent to 1% of the total data size
(same setting as the SWARE paper [42]). The default entry size
in all our experiments is 8B (with 4B keys), and we use a 4KB
page size that fits up to 510 entries in the leaf nodes. We set
𝑇𝑅 = ⌊

√︁
𝑙𝑒𝑎𝑓𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦⌋ = ⌊

√
510⌋ = 22 to trigger a reset of the

𝑝𝑜ℓ𝑒 fast-path in QuIT. We make our code available on GitHub
at https://github.com/BU-DiSC/quick-insertion-tree.
Workloads. To evaluate QuIT with varying degrees of sorted-
ness, we use the workload generator from the Benchmark on
Data Sortedness (BoDS) [41]. BoDS uses the 𝐾−𝐿 sortedness met-
ric to create a family of differently sorted data collections. The
generator takes as arguments (i) the number of entries (𝑁) to
ingest, (ii) the number of unordered entries (𝐾) and the maximum
displacement (𝐿) both as a fraction of 𝑁 , (iii) the distribution of
data sortedness (𝛼, 𝛽), and (iv) a seed value.
Default Workload. For our experiments, we set 𝑁=500M to
generate datasets of size 4GB. The skew-parameters 𝛼 and 𝛽

0 1 3 5 25 50
K (%)

1

3

5

25

50

L
(%

)

100 99 94 91 57 26

100 98 94 90 57 25

100 98 94 90 56 25

100 98 94 90 56 25

100 98 94 90 56 25

`i`(a)

0 1 3 5 25 50
K (%)

100 100 96 92 70 46

100 99 96 92 71 46

100 99 96 93 71 47

100 99 96 93 71 47

100 99 96 93 71 47

QuIT(b)

Figure 11: Comparing fraction of fast-insertions ℓ𝑖ℓ-B+-tree
and QuIT when varying data sortedness in the ingestion
workload: (a) ℓ𝑖ℓ performs best with high data sortedness;
(b) QuIT maximizes fast inserts when compared to ℓ𝑖ℓ .

are set to 1 to uniformly distribute the unordered entries. Our
query workloads (executed post data ingestion) contain 5M (1%
of total data size) point lookups that are generated uniformly
and randomly on existing keys in the index. Further, our query
workloads also contain 1000 range lookups that are generated for
random ranges in the key domain with three levels of selectivity:
0.1%, 1%, and 10%.

5.1 Benefits of Quick Insertion Tree
We first demonstrate the benefits of QuIT against three baselines
– classical B+-tree, tail-B+-tree, ℓ𝑖ℓ-B+-tree, and ART for inges-
tion performance. We also compare QuIT against other B+-tree
baselines for memory utilization and query performance. In these
experiments, we vary the out-of-order entries (𝐾) in the data col-
lection while setting their maximum displacement (𝐿) to 100%,
and compile all indexes with the -O3 optimization enabled.
QuIT Outperforms the State of the Art and ℓ𝑖ℓ-B+-tree. Fig-
ure 10 shows the ingestion throughput (y-axis) during ingestion
for the B+-tree, tail-B+-tree, ℓ𝑖ℓ-B+-tree, and QuIT when vary-
ing data sortedness (x-axis). QuIT significantly outperforms the
tail-B+-tree and the classical B+-tree in terms of ingestion per-
formance. For fully sorted data, QuIT, ℓ𝑖ℓ-B+-tree and tail-B+-
tree offer ≈ 3× better performance than a classical B+-tree, as
entries are directly inserted to the tail leaf using the fast-path
optimization, rather than performing tree traversals. However,
the performance of the tail-B+-tree degrades very quickly as the
data becomes even slightly unsorted, making it comparable to
that of a classical B+-tree. QuIT, on the other hand, exploits any
inherent data sortedness and offers up to ≈ 2.3× better through-
put for near-sorted data (𝐾 < 25%). Even for less-sorted data
(𝐾=25%), QuIT is still 1.23× better than both the classical B+-tree
and tail-B+-tree, as both the baselines always perform top-inserts,
accumulating a redundant indexing cost. The tail-B+-tree per-
forms better than the classical B+-tree only with fully sorted
data by allowing fast-path ingestion to the right-most leaf node
in the index. This fast-path, however, becomes stale with even
near-sorted data (𝐾 ≥ 1%), leading to performance degradation
as its window to capture unorderedness in the data is too nar-
row (limited to the tail-leaf’s range). Meanwhile, QuIT carefully
adapts its fast-path (i.e., 𝑝𝑜ℓ𝑒) to the data sortedness, thereby,
delivering better performance.

We also observe that QuIT performs up to 14% better during
ingestion than the ℓ𝑖ℓ-B+-tree. The ℓ𝑖ℓ optimization is simple and
effective in improving ingestion performance over a tail-B+-tree.
Unlike ℓ𝑖ℓ that pays an additional penalty (as discussed in §3),

https://github.com/BU-DiSC/quick-insertion-tree

0 1 3 5 10 25 50 100
% out-of-order entries (K)

0

25

50

75

100

av
g

le
af

oc
c.

(%
)

(a) Index Size

B+-tree QuIT

0 1 3 5 10 25 50 100
% out-of-order entries (K)

0.0

0.5

1.0

1.5

th
ro

u
gh

p
u

t
(M

O
p

s/
s)

.

(b) Point Lookups

0 1 3 5 10 25 50 100
% out-of-order entries (K)

0.0

0.5

1.0

1.5

2.0

fe
w

er
n

od
e

ac
ce

ss
es

(×
)

(c) Range Lookups

σ=0.1% σ= 1% σ=10%

Figure 12: (a) Variable split factor in QuIT allows for higher occupancy in the leaf nodes; (b) Point lookups do not incur any
read overhead; (c) Range queries are faster as they access fewer nodes during lookups.

QuIT reduces the standard index traversals to only as many as the
number of out-of-order entries during ingestion. This, coupled
with improved caching effects due to a more compact structure
results in a better performance than the ℓ𝑖ℓ-B+-tree.
More Fast-Insertions Result in Improved Performance. The
improved ingestion performance of QuIT is directly correlated
to the increase in fast-insertions performed by adapting to data
sortedness, as shown in Figure 11a and Figure 11b. QuIT per-
forms approximately only as many top-inserts as there are out-of-
order entries in the ingestion workload, very closely resembling
the ideal sortedness-aware behavior. This benefit is pronounced
when ingestion near-sorted and less-sorted data, as QuIT achieves
up to 1.8× more fast-insertions for the same ingestion workload
than the ℓ𝑖ℓ-B+-tree. This is because ℓ𝑖ℓ eagerly updates its fast-
path access pointer based on the last insertion to the index (even
during standard ingestion or top-inserts). Meanwhile, QuIT has
a more robust maintenance scheme that utilizes 𝑝𝑜ℓ𝑒 as well as
its reset strategies that help effectively and efficiently predict the
fast-path to inserting the data.
QuIT Outperforms ART for High Data Sortedness. Figure 10
also shows that QuIT outperforms ART by up to 1.53×. QuIT
benefits from its ability to avoid tree traversals for workloads
having high sortedness, directing ingestion directly to the leaf
level. On the other hand, insertions in ART still traverse the
tree. As data sortedness decreases, QuIT’s performance moves
closer to the B+-tree, and ART performs up to 2× better, as tree
traversals of a B+-tree-based index (including QuIT) are more
expensive than those of ART. While ART performs better for
workloads with lower degrees of sortedness during ingestion, it
is not a drop-in replacement for B+-trees because it does not favor
efficient range queries due to the lack of pointers between leaf
nodes. This results in more tree traversals during a range lookup,
as opposed to a B+-tree (or QuIT). QuIT, in turn, can act as a drop-
in replacement for B+-trees, as it performs significantly better
during ingestion without adding any overhead during point or
range lookups. Note that our goal was not to outperform prior
designs for all use cases but rather to create a sortedness-aware
drop-in replacement for B+-tree. Extending other data structures,
including ART, to be sortedness-aware is left as future work.
QuIT Improves the Overall Memory Utilization. The IKR-
based variable node split strategy in QuIT is crucial to reduce

Table 1: Space reduction of QuIT over all B+-tree baselines.
ℓ𝑖ℓ-B+-tree and tail-B+-tree are omitted because they have
the same memory footprint as the basic B+-tree.

Index % unordered entries
0% 1% 3% 5% 10% 25% 50% 100%

QuIT 1.96× 1.5× 1.41× 1.32× 1.16× 1.09× 1.01× 1×

the overall memory footprint. Table 1 compares the normalized
memory footprint of the indexes, where lower is better.

The memory utilization of the tail-B+-tree and the ℓ𝑖ℓ-B+-tree
is identical to that of classical B+-tree, as they all split a full
node in half. We observe that QuIT’s memory footprint is up to
1.96× smaller due to better space utilization on the leaf nodes, as
shown in Figure 12a. Here, we vary the data sortedness on the
x-axis and show the average leaf node occupancy (i.e., # entries
in a leaf node) as a fraction of the leaf capacity on the y-axis.
The worst-case space utilization for the classical B+-tree (and
consequently, all other baselines) occurs when ingesting fully
sorted data, as every node is only half full due to right-deep
insertions. QuIT alleviates this memory overhead by variable
splitting guided by IKR. With near-sorted data (1%≤𝐾≤10%), the
average leaf occupancy of the classical B+-tree is between 51-54%,
while QuIT offers an average leaf occupancy between 62-74%.
The variable split strategy in QuIT allows for tightly packing the
leaf nodes that receive ordered inserts through the 𝑝𝑜ℓ𝑒 . Further,
redistribution also increases leaf occupancy when 𝑝𝑜ℓ𝑒_prev is
less than half full, utilizing previously unused space. For less
sorted or fully scrambled data, QuIT is able to match the leaf
occupancy of the classical B+-tree.
QuIT Does Not Incur Any Overhead For Point Lookups.
QuIT performs exactly as many accesses during point lookups
as a classical B+-tree, as the lookup algorithms are identical.
Hence, QuIT does not incur any overhead for point lookups.
From Figure 12b, we observe that point lookups in QuIT can in
fact, be slightly faster (≈ 2% on average) as the tree is smaller
due to better space utilization. This results in the overall size of
the index nodes in QuIT being smaller than the system’s cache,
effectively leading to a marginal performance improvements.
QuIT is Faster for Range Lookups. Range lookups are faster
in QuIT, as shown in Figure 12c, when ingesting near-sorted data.
We observe that range queries access up to 2× fewer leaf nodes
(≈ 1.3× on average) compared to the B+-tree when the ingested
data has high sortedness (𝐾≤10%). This benefit gradually declines
as sortedness decreases since space utilization in B+-tree also
improves. However, even with low data sortedness (𝐾 ≥ 25%),
range lookups in QuIT access 1.15× fewer leaf nodes than the
B+-tree, directly correlating to improved performance. Overall,
QuIT benefits from the variable split and redistribute strategies
that tightly pack the leaf nodes, whereas, the B+-tree experiences
its worst-case space amplification when ingesting data with a
high degree of sortedness.

5.2 Sensitivity Analysis
We now vary several aspects of the workload, particularly the
data size, and different sequences of insertions that stress test
fast-path ingestion in the Quick Insertion Tree.

0

10

20

va
lu

es
(M

)

(a)

0 5 10 15 20 25

inserts (M)

0

5

10

to
ta

l
fa

st
-i

n
se

rt
s

(M
) (b)

tail-B+-tree

`i`-B+-tree

po`e-B+-tree

QuIT

Figure 13: Stress testing the Fast-path optimizations under
workloads with varying densities of data sortedness: (a)
a workload that varies sortedness density by alternating
between near-sorted and scrambled data in different data
segments; (b) performance of tail, ℓ𝑖ℓ , and 𝑝𝑜ℓ𝑒 optimiza-
tions in B+-trees when comparing fast-insertions in QuIT.

5.2.1 Sensitivity Analysis on Data Size. Next, we analyze the
scalability of QuIT by increasing the number of entries ingested
into the index from 50M to 4B (scaling the data size from 40MB
to 32GB). We pick candidate data collections reflecting three
degrees of data sortedness - (i) fully sorted data (𝐾=0%), (ii) nearly-
sorted data (𝐾=𝐿=5%) that has a sizeable fraction of out-of-order
entries, and (iii) less sorted data (𝐾=𝐿=25%) that has significantly
many out-of-order entries. Table 2 summarizes our results when
compared to the classical B+-tree. We observe that QuIT’s ability
to utilize its fast-path and exploit sortedness in the ingested
workload remains unaffected as the data size grows. The observed
fraction of fast-inserts is 100% for fully sorted data, ≈ 95% for
nearly-sorted data, and ≈ 75% for less sorted data. This aligns
with the expected optimal performance for a sortedness-aware
index from Figure 7b. The speedup during ingestion, however, is
slightly amplified when scaling the data size since the number of
levels in the tree grows. Scaling data size results in longer tree
traversals and, therefore, an increase in indexing cost (top-insert)
and maintenance. QuIT continues to employ fast-path insertions
enabled by 𝑝𝑜ℓ𝑒 , offering an amortized indexing cost. Overall,
QuIT is at least 2× faster than B+-tree when ingesting workloads
having near-sorted data.

5.2.2 Stress Testing the Fast-Path. We now explore the perfor-
mance of the fast-path optimizations in tail-B+-tree, ℓ𝑖ℓ-B+-tree,
and 𝑝𝑜ℓ𝑒-B+-tree (i.e., QuIT without variable split, redistribute,
and reset strategies), along with the full design of QuIT for work-
loads that alternate between near-sorted and fully scrambled. We
anticipate that such a workload will be harder to predict and use
it to stress-test all fast-path optimizations and IKR. We ingest into
each index 25M entries divided into 5 segments (of 5M entries),

Table 2: QuIT scales with data size.

Sortedness Metric Data Size (GB)
0.4 2 4 8 16 32

fully sorted Speedup 3.13× 3.19× 3.23× 3.25× 3.27× 3.31×
% fast-inserts 100% 100% 100% 100% 100% 100%

nearly sorted Speedup 2.43× 2.52× 2.56× 2.57× 2.61× 2.77×
% fast-inserts 95.2% 95.2% 95.2% 95.2% 95.2% 95.2%

less sorted Speedup 1.31× 1.32× 1.33× 1.34× 1.35× 1.35×
% fast-inserts 74.6% 74.6% 76.4% 74.6% 74.6% 74.6%

1 2 4 8 16 32 48

threads

0

10M

20M

th
ro

u
gh

p
u

t
(o

p
s/

se
c)

fully sorted

near-sorted

less sorted

QuIT B+-tree OptiQL

Figure 14: QuIT performs better than the baseline B+-tree,
and the state-of-the-art design in OptiQL for high data
sortedness, under concurrent insertions into the index.

alternating between near-sorted data (𝐾=10%) or scrambled data
(𝐾=100%), while we default 𝐿 to 100%. We visualize this work-
load using the position (x-axis) and the value (y-axis) of the keys
inserted in Figure 13a.

Figure 13b shows the number of entries ingested to the index
using the fast path (on y-axis) at different snapshots on the x-axis
(i.e., one for each segment). Note that a flat line in any segment
implies that the index performed only top-inserts. We observe
that the tail-B+-tree very quickly reaches the stale state and
fails to perform fast-path insertion as soon as the data becomes
even slightly unordered. The ℓ𝑖ℓ-B+-tree continues to perform
fast-path insertion when the data is nearly sorted, while only per-
forming top-inserts for the scrambled data segments. Meanwhile,
the 𝑝𝑜ℓ𝑒-B+-tree marginally outperforms the ℓ𝑖ℓ-B+-tree in the
first near-sorted data segment, and subsequently, only performs
top-inserts for the remaining workload. This is because 𝑝𝑜ℓ𝑒 is
trapped in a stale state after the first scrambled segment of data
(between keys 5M and 10M). QuIT addresses the limitations of
𝑝𝑜ℓ𝑒 and recovers from this stale state with the help of its re-
set strategy (described in §4.3), allowing continued use of the
fast-path when inserting near-sorted data. A robust fast-path
ingestion strategy (like 𝑝𝑜ℓ𝑒) coupled with the reset strategy
helps QuIT outperform ℓ𝑖ℓ-B+-tree by performing ≈ 11% more
fast-path insertions.

5.3 QuIT under Concurrent Execution
We now benchmark QuIT and compare it with the classical B+-
tree as we have more threads concurrently using the two indexes.
We also compare QuIT with the state-of-the-art optimistic lock-
ing design in OptiQL [46]. Here, we use optimistic lock coupling
for B+-tree, while we employ the locking protocol described in
§4.5 for QuIT. We experiment with fully sorted data (𝐾 = 0%),
near-sorted data (𝐾 = 5%), and less-sorted data (𝐾 = 25%), con-
taining 500M entries (8B keys and 8B values).
QuIT Scales Better Than B+-tree for Inserts. Ingesting data
with a high degree of sortedness using multiple threads is ex-
pected to result in high contention because most insertions target
the same leaf node. As a result, concurrently inserting with mul-
tiple threads hurts ingestion performance for both B+-tree and
QuIT. However, granular crabbing for QuIT leads to a shorter
critical section, as we attempt to lock the 𝑝𝑜ℓ𝑒-node only when
the specific insert uses the fast path. Figure 14 corroborates our
expectations, showing that both indexes face contention as we
increase the number of threads. Overall, QuIT offers up to ≈ 2×
higher throughput than B+-tree.
QuIT Scales Similar to OptiQL. Figure 14 further shows that
QuIT outperforms the state-of-the-art optimistic lock coupling
design used in OptiQL [46] when ingesting data with a high
degree of sortedness for fewer than four threads while having

1 2 4 8 16 32 48

threads

2M

5M

8M

th
ro

u
gh

p
u

t
(o

p
s/

se
c)

fully sorted

near-sorted

less sorted

QuIT B+-tree

Figure 15: Concurrent Reads for both B+-tree and QuIT
have similar performance.

similar performance for four or more threads. Note that in the Op-
tiQL analysis [46], the authors observe that performance scales
linearly as the number of threads increases. However, this exper-
iment targets updates that virtually never alter the structure of
the tree and, thus, rarely take exclusive locks for non-leaf nodes.
On the other hand, the insert-heavy experiments we conduct
significantly alter the structure of the tree and need to acquire
exclusive locks when splitting internal nodes. As a result, lock
coupling approaches like the ones employed by OptiQL and QuIT
have long critical sections that hurt scalability when ingesting
data with a high degree of sortedness.
QuIT Scales Similar to B+-tree for Reads. As expected, read
queries in both trees behave very similarly since QuIT’s read
path is essentially the same as the one of the classical B+-tree.
Figure 15 shows that both trees scale almost perfectly until 8
threads, while the scaling slows down for 16 threads and beyond.

5.4 Comparing with SWARE
We now compare QuIT with SA-B+-tree [40], the state-of-the-art
sortedness-aware index that employs the SWARE design. We
ingest 500M entries (4GB) into both indexes and measure the
throughput during insertions and 5M random point lookups
(existing), when varying the fraction of out-of-order entries in
the data collection (defaulting 𝐿=100%). Note that we utilize a
more optimized B+-tree (also used in QuIT) than the one provided
with the SWARE codebase [43] as the underlying tree index in
the SA-B+-tree. SWARE originally packs a B𝜖 -tree [6] that also
functions as a B+-tree when appropriately tuned. This, however,
introduces orthogonal complexities and overheads that we avoid
in our B+-tree prototype. We compile both the index designs with
the -O3 optimization enabled.
QuIT Outperforms SWARE During Ingestion. Figure 16a
shows that QuIT offers significantly better throughput than the
SA-B+-tree for any data sortedness. Even when ingesting fully
sorted data, QuIT offers a 16% improvement over the SA-B+-
tree, as every insert can be directly appended to the fast-path
node (𝑝𝑜ℓ𝑒). Despite SA-B+-tree performing opportunistic bulk
loading on-the-fly, it still pays a cost to index the data in the
buffer through two levels of Bloom filters (the global and per-page
Bloom filters) and the Zonemaps, in addition to costs associated
with data movement in the buffer after every flush operation.
Likewise, when ingesting near-sorted data (𝐾≤10%), QuIT is at
least 1.55× (and 1.86× on average) better than SA-B+-tree during
ingestion. The additional costs incurred by the SA-B+-tree to
update the necessary metadata (i.e., identifying non-overlapping
zones, Zonemaps, and Bloom filters) for facilitating opportunistic
bulk loading far exceed the costs associated with maintaining
QuIT’s metadata, primarily due to the latter’s lightweight index
design. Thus, QuIT outperforms SA-B+-tree during near-sorted
data ingestion. Both indexes perform top-inserts for those entries

0 1 3 5 10 25 50 100
% out-of-order entries (K)

0

10

20

30

40

50

th
ro

ug
hp

ut
(M

O
ps

/s
) (a) SWARE QuIT

0 1 3 5 10 25 50 100
% out-of-order entries (K)

0.0

0.5

1.0

1.5

th
ro

ug
hp

ut
(M

O
ps

/s
)

(b)

Figure 16: Comparing the SA-B+-tree and QuIT: (a) A com-
plex design allows SA-B+-tree to opportunistically bulk
load near-sorted data while QuIT maximizes fast inser-
tions through index appends; (b) SA-B+-tree incurs a read-
overhead while QuIT is marginally faster than the B+-tree.

that cannot utilize the fast-path optimization (opportunistic bulk
loading in the case of SA-B+-tree). As data sortedness decreases,
top-inserts are more pronounced, thus, the average latency for
an insertion increases for both indexes. QuIT and SA-B+-tree
are have comparable performance when ingesting less sorted
(𝐾≥25%) or scrambled data.
QuIT’s Benefits Come with No Query Penalty. QuIT does
not incur any read overhead due to its lightweight design, while
the SA-B+-tree incurs an additional cost of scanning the buffer
for the target key, as observed from Figure 16b. While the SA-
B+-tree employs additional data structures like Bloom filters
and Zonemaps, as well as techniques like query-driven partial
sorting to reduce this cost, it still pays an increased cost compared
to QuIT, which only performs a B+-tree lookup. Overall, QuIT
outperforms the SA-B+-tree by up to 32%.

5.5 Comparing with B𝜖-tree
Next, we compare QuIT with a textbook B𝜖 -tree [6] previously
open-sourced [43] with a workload with 500M insertions, exe-
cuted using a single-thread, where we vary sortedness. We set
up the B𝜖 -tree with 𝜖 = 0.5, and 4KB pages, similar to QuIT
and report the observed throughput in Table 3. To ensure a fair
comparison we exclude locking protocols in QuIT and integrate
it with the buffer pool infrastructure of the B𝜖 -tree prototype,
only for this set of experiments.

Table 3: Throughput (MOps/sec) for the different indexes
when varying data sortedness. QuIT offers higher through-
put when compared to other baselines.

Index % unordered entries
0 1 3 5 10 25 50 100

B𝜖 -tree 4.60 2.23 1.7 1.58 1.31 1.11 0.86 0.71
QuIT 43.93 30.06 16.6 14.38 10.44 5.99 3.49 2.37

QuIT Outperforms the B𝜖 -tree.We observe that QuIT signif-
icantly outperforms the B𝜖 -tree during ingestion by up to 13×.
While the B𝜖 -tree asymptotically improves the ingestion cost by
a factor of 𝜖 (amortized due to buffering entries in the internal
nodes) when compared to the B+-tree, entries are added to the in-
dex within the buffers of the internal nodes. Hence, it still incurs
the cost of repeatedly sort-merging and flushing entries between
its internal nodes. On the other hand, QuIT optimizes ingestion
by utilizing a fast-path to directly place entries into the leaf level
of the index when possible, reducing the index traversals. This
results in significantly better performance than the B𝜖 -tree. We
would like to point out that the idea of sortedness-aware fast-path

NIFTY SPXUSD
0.0

0.5

1.0

1.5

sp
ee

d
u

p

tail B+-tree SWARE `i`-B+-tree QuIT

Figure 17: QuIT performs best for near-sorted ingestion
on stock-market data, offering up to 1.3× speedup over the
standard B+-tree, which is higher than all other sortedness-
aware designs (SWARE, tail-B+-tree, and ℓ𝑖ℓ-B+-tree).

ingestion can also be extended to the B𝜖 -tree, such that in-order
entries are fast inserted. Out-of-order entries that would other-
wise revert to top-insertions can take advantage of the amortized
ingestion through the buffers, achieving the best of both worlds.

5.6 Indexing Real-World Data
Real-world data frequently exhibit a degree of near-sortedness
that may be unknown or difficult to quantify, where the K-L met-
ric may not be a natural descriptor, like data from stock-market
applications, as discussed earlier in Figure 1a. We obtain the intra-
day stock price data for the two tickers at one-minute timeframes
(sources listed in footnote2 and footnote3). Both datasets contain
≈ 1.4M entries and 2.2M entries, respectively. We see an overall
upward trend that intuitively implies near-sortedness.
QuIT Offers Best Performance for Real-World Data. Fig-
ure 17 shows the speedup offered when ingesting the stock price
data into the tail-B+-tree, SA-B+-tree, ℓ𝑖ℓ-B+-tree, and QuIT, nor-
malized vs. the baseline B+-tree. QuIT offers a ≈ 30% improve-
ment on average during ingestion when compared to the tail-B+-
tree. In fact, our approach offers the maximum speedup among
all baselines, even outperforming the state-of-the-art sortedness-
aware index by ≈ 8% and 5% for the NIFTY and SPXUSD in-
struments, due to its lightweight design. Overall, tree indexes
like B+-tree-based designs benefit from sortedness-aware inges-
tion optimizations even when intrinsic data sortedness is hard to
quantify or predict, as shown by the ingestion speedup offered
by both SWARE and QuIT.

6 RELATEDWORK
There is a plethora of B+-tree variants optimizing for data inges-
tion. We recognize two design patterns aiming to reduce the cost
of incremental data insertion: (i) approaches that optimize tree
traversal and insertion operations by taking maximum advantage
of modern hardware, and (ii) approaches that re-design the inter-
nal structure of the tree to amortize the cost of insertions across
the workload. Specifically, the CSB-tree [44] resizes nodes to
make all operations cache-conscious and minimize cache misses.
The PLI-tree [48], BP-tree [50], T-tree [29], YATS-tree [26], Par-
titioned B+-trees [20] and B𝜖 -trees [6] adapt the data layout in
nodes to their corresponding use case. For instance, B𝜖 -trees
trade-off fan-out for per-node buffers that can batch insertions.
This allows the B𝜖 -tree to amortize the ingestion cost, while
the buffers are gradually flushed down the index. Finally, Bw-
trees [31] are log-structured and take a latch-free approach using
a delta update scheme with dynamically sized pages. The nodes
2https://github.com/aeron7/nifty-banknifty-intraday-data
3https://github.com/FutureSharks/financial-data

of the Bw-tree are only logical and do not occupy fixed physical
locations on main memory or storage. Bw-trees design eliminates
thread blocking and is optimized for modern hardware.

These B+-tree designs improve ingestion performance, how-
ever, they are unaware of prospective gains opportunities from
taking advantage implicit sortedness of the incoming data. The
SWARE indexing paradigm takes advantage of sortedness by
using a combination of in-memory buffering and bulk-loading to
optimize index ingestion [42]. However, its gains require a com-
plex design that utilizes additional resources, adversely affecting
the lookup performance. Meanwhile, QuIT offers sortedness-
awareness index ingestion through a lightweight design and
minimal metadata footprint.
Applicability to Data Streaming and Time Series. Time series
indexing assumes that data ingestion follows an expected increas-
ing order [28, 37, 51–53]. Streaming systems often use a buffer to
capture the arrival skew within time-based windows [47] that al-
low for effective data series comparisons [10, 18]. QuIT eliminates
the need for the additional buffer as in-order data will always be
fast-inserted, leaving the arrival data skew to be captured by the
fraction of top-inserts performed, as shown in §5.2.2.

7 CONCLUSION
Commercial data systems employ fast-path optimization tech-
niques to amortize the cost of index construction during data
ingestion. For B+-trees fast-path ingestion helps avoid tree traver-
sals, inserting entries directly to the tail leaf if the inserted data is
fully sorted. However, this tail-leaf fast path becomes stale when
the data is not fully sorted. We address this by proposing two new
fast-path ingestion strategies for B+-trees – ℓ𝑖ℓ and 𝑝𝑜ℓ𝑒 – that
target near-sorted data. Further, we present QuIT, a lightweight
index design that reduces the indexing cost proportionally to
the sortedness of the indexed data. In addition, QuIT improves
the memory footprint of the index, while also offering better
lookup performance. Overall, QuIT outperforms the tail B+-tree
(and SWARE) by up to 2.3× (2×) when ingesting near-sorted
data while offering on average 20% better space utilization when
compared to the B+-tree. The reduced memory footprint helps
QuIT access up to 2× fewer nodes during range lookups, while it
does not incur overhead for point lookups.

8 ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their constructive feed-
back. This work is funded by the National Science Foundation
under Grant No. IIS-2144547, a Facebook Faculty Research Award,
and a Meta Gift.

REFERENCES
[1] Daniar Achakeev and Bernhard Seeger. 2013. Efficient Bulk Updates on

Multiversion B-trees. Proceedings of the VLDB Endowment 6, 14 (2013), 1834–
1845.

[2] Manos Athanassoulis and Anastasia Ailamaki. 2014. BF-Tree: Approximate
Tree Indexing. Proceedings of the VLDB Endowment 7, 14 (2014), 1881–1892.

[3] Manos Athanassoulis, Michael S. Kester, Lukas M. Maas, Radu Stoica, Stratos
Idreos, Anastasia Ailamaki, and Mark Callaghan. 2016. Designing Access
Methods: The RUM Conjecture. In Proceedings of the International Conference
on Extending Database Technology (EDBT). 461–466.

[4] Rudolf Bayer and Karl Unterauer. 1977. Prefix B-trees. ACM Transactions on
Database Systems (TODS) 2, 1 (1977), 11–26.

[5] Sagi Ben-Moshe, Yaron Kanza, Eldar Fischer, Arie Matsliah, Mani Fischer, and
Carl Staelin. 2011. Detecting and Exploiting Near-Sortedness for Efficient
Relational Query Evaluation. In Proceedings of the International Conference on
Database Theory (ICDT). 256–267.

[6] Michael A. Bender, Martin Farach-Colton, William Jannen, Rob Johnson,
Bradley C. Kuszmaul, Donald E. Porter, Jun Yuan, and Yang Zhan. 2015. An
Introduction to B𝜖-trees and Write-Optimization. White Paper (2015).

https://github.com/aeron7/nifty-banknifty-intraday-data
https://github.com/FutureSharks/financial-data

[7] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concur-
rency Control and Recovery in Database Systems. Addison-Wesley.

[8] Timo Bingmann. 2007. STX B+ Tree. https://github.com/bingmann/stx-btree
(2007).

[9] Burton H Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable
Errors. Commun. ACM 13, 7 (1970), 422–426.

[10] Paris Carbone, Marios Fragkoulis, Vasiliki Kalavri, and Asterios Katsifodimos.
2020. Beyond Analytics: The Evolution of Stream Processing Systems. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data. 2651–2658.

[11] Svante Carlsson and Jingsen Chen. 1992. On Partitions and Presortedness of
Sequences. In Acta Informatica, Vol. 29. 267–280.

[12] Badrish Chandramouli and Jonathan Goldstein. 2014. Patience is a Virtue:
Revisiting Merge and Sort on Modern Processors. In Proceedings of the ACM
SIGMOD International Conference on Management of Data. 731–742.

[13] Badrish Chandramouli, Jonathan Goldstein, and Yinan Li. 2018. Impatience Is a
Virtue: Revisiting Disorder in High-Performance Log Analytics. In Proceedings
of the IEEE International Conference on Data Engineering (ICDE). 677–688.

[14] Douglas Comer. 1979. The Ubiquitous B-Tree. Comput. Surveys 11, 2 (1979),
121–137.

[15] CouchDB. [n. d.]. Online reference. http://couchdb.apache.org/ ([n. d.]).
[16] Frederik M. Dekking, Cornelis Kraaikamp, Hendrik P. Lopuhaä, and Ludolf E.

Meester. 2005. A Modern Introduction to Probability and Statistics. Springer
London. 488 pages.

[17] Jochen Van den Bercken and Bernhard Seeger. 2001. An Evaluation of Generic
Bulk Loading Techniques. In Proceedings of the International Conference on
Very Large Data Bases (VLDB). 461–470.

[18] Marios Fragkoulis, Paris Carbone, Vasiliki Kalavri, and Asterios Katsifodimos.
2024. A survey on the evolution of stream processing systems. The VLDB
Journal 33, 2 (2024), 507–541.

[19] Nikolaus Glombiewski. 2023. Robust Stream Indexing. Ph. D. Dissertation.
Philipps-Universität Marburg.

[20] Goetz Graefe. 2003. Sorting And IndexingWith Partitioned B-Trees. In Proceed-
ings of the Biennial Conference on Innovative Data Systems Research (CIDR).

[21] Goetz Graefe. 2010. A survey of B-tree locking techniques. ACM Transactions
on Database Systems (TODS) 35, 3 (2010).

[22] Goetz Graefe. 2011. Modern B-Tree Techniques. Foundations and Trends in
Databases 3, 4 (2011), 203–402.

[23] Stratos Idreos and Mark Callaghan. 2020. Key-Value Storage Engines. In
Proceedings of the ACM SIGMOD International Conference on Management of
Data. 2667–2672.

[24] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2007. Database Crack-
ing. In Proceedings of the Biennial Conference on Innovative Data Systems
Research (CIDR).

[25] Stratos Idreos, Stefan Manegold, Harumi Kuno, and Goetz Graefe. 2011. Merg-
ing What’s Cracked, Cracking What’s Merged: Adaptive Indexing in Main-
Memory Column-Stores. Proceedings of the VLDB Endowment 4, 9 (2011),
586–597.

[26] Chris Jermaine, Anindya Datta, and Edward Omiecinski. 1999. A Novel Index
Supporting High Volume Data Warehouse Insertion. In Proceedings of the
International Conference on Very Large Data Bases (VLDB). 235–246.

[27] Donald E. Knuth. 1997. The art of computer programming, Volume I: Funda-
mental Algorithms (3rd Edition). Addison-Wesley.

[28] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Pal-
panas. 2018. Coconut: A Scalable Bottom-Up Approach for Building Data
Series Indexes. Proceedings of the VLDB Endowment 11, 6 (2018), 677–690.

[29] Tobin J. Lehman and Michael J. Carey. 1986. A Study of Index Structures for
Main Memory Database Management Systems. In Proceedings of the Interna-
tional Conference on Very Large Data Bases (VLDB). 294–303.

[30] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The Adaptive Radix
Tree: ARTful Indexing for Main-Memory Databases. In Proceedings of the IEEE
International Conference on Data Engineering (ICDE). 38–49.

[31] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:
A B-tree for New Hardware Platforms. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE). 302–313.

[32] Heikki Mannila. 1985. Measures of Presortedness and Optimal Sorting Algo-
rithms. IEEE Transactions on Computers (TC) 34, 4 (1985), 318–325.

[33] Guido Moerkotte. 1998. Small Materialized Aggregates: A Light Weight Index
Structure for Data Warehousing. In Proceedings of the International Conference
on Very Large Data Bases (VLDB). 476–487.

[34] MongoDB. 2023. Online reference. http://www.mongodb.com/ (2023).
[35] MySQL. 2023. MySQL. https://www.mysql.com/ (2023).
[36] Oracle. 2018. Introducing Oracle Database 18c. White Paper (2018).
[37] Themis Palpanas. 2015. Data Series Management: The Road to Big Sequence

Analytics. ACM SIGMOD Record 44, 2 (2015), 47–52.
[38] PostgreSQL. 2023. PostgreSQL: The World’s Most Advanced Open Source

Relational Database. https://www.postgresql.org (2023).
[39] Raghu Ramakrishnan and Johannes Gehrke. 2002. Database Management

Systems. McGraw-Hill Higher Education, 3rd edition.
[40] Aneesh Raman, Konstantinos Karatsenidis, Subhadeep Sarkar, Matthaios Olma,

and Manos Athanassoulis. 2022. BoDS: A Benchmark on Data Sortedness.
In Performance Evaluation and Benchmarking - TPC Technology Conference
(TPCTC). 17–32.

[41] Aneesh Raman, Subhadeep Sarkar, Matthaios Olma, and Manos Athanassoulis.
2022. OSM-tree: A Sortedness-Aware Index. CoRR abs/2202.0 (2022).

[42] Aneesh Raman, Subhadeep Sarkar, Matthaios Olma, and Manos Athanassoulis.
2023. Indexing for Near-Sorted Data. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE). 1475–1488.

[43] Aneesh Raman, Subhadeep Sarkar, Matthaios Olma, and Manos Athanassoulis.
2024. https://github.com/BU-DiSC/sware.

[44] Jun Rao and Kenneth A. Ross. 2000. Making B+-trees Cache Conscious in
Main Memory. In Proceedings of the ACM SIGMOD International Conference
on Management of Data. 475–486.

[45] Marc Seidemann, Nikolaus Glombiewski, Michael Körber, and Bernhard Seeger.
2019. ChronicleDB: A High-Performance Event Store. ACM Transactions on
Database Systems (TODS) 44, 4 (10 2019).

[46] Ge Shi, Ziyi Yan, and Tianzheng Wang. 2023. OptiQL: Robust Optimistic Lock-
ing for Memory-Optimized Indexes. Proceedings of the ACM on Management
of Data (PACMMOD) 1, 3 (11 2023), 1–26.

[47] Utkarsh Srivastava and Jennifer Widom. 2004. Flexible Time Management in
Data Stream Systems. In Proceedings of the ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS). 263–274.

[48] Kristian Torp, Leo Mark, and Christian S Jensen. 1998. Efficient Differential
Timeslice Computation. IEEE Trans. Knowl. Data Eng. 10, 4 (1998), 599–611.

[49] TPC. 2021. TPC-H benchmark. http://www.tpc.org/tpch/ (2021).
[50] Helen Xu, Amanda Li, Brian Wheatman, Manoj Marneni, and Prashant

Pandey. 2023. BP-Tree: Overcoming the Point-Range Operation Tradeoff
for In-Memory B-Trees. Proceedings of the VLDB Endowment 16, 11 (7 2023),
2976–2989.

[51] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. 2014. Indexing for
interactive exploration of big data series. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 1555–1566.

[52] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. 2016. ADS: the
adaptive data series index. The VLDB Journal 25, 6 (2016), 843–866.

[53] Kostas Zoumpatianos and Themis Palpanas. 2018. Data Series Management:
Fulfilling the Need for Big Sequence Analytics. In Proceedings of the IEEE
International Conference on Data Engineering (ICDE). 1677–1678.

https://github.com/BU-DiSC/sware

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Sortedness-aware fast paths
	4 Quick Insertion Tree
	4.1 A Robust Fast-Path Optimization
	4.2 Fast-Path Insertion in lol
	4.3 Improving Space Utilization
	4.4 Other QuIT Operations
	4.5 Concurrency Control

	5 Experimental Evaluation
	5.1 Benefits of Quick Insertion Tree
	5.2 Sensitivity Analysis
	5.3 QuIT under Concurrent Execution
	5.4 Comparing with SWARE
	5.5 Comparing with B-tree
	5.6 Indexing Real-World Data

	6 Related Work
	7 Conclusion
	8 Acknowledgements
	References

