
Foundations and Trends® in Databases

Data Structures for Data-Intensive
Applications: Tradeoffs and Design

Guidelines

Suggested Citation: Manos Athanassoulis, Stratos Idreos and Dennis Shasha (2023),
“Data Structures for Data-Intensive Applications: Tradeoffs and Design Guidelines”, Foun-
dations and Trends® in Databases: Vol. 13, No. 1-2, pp 1–168. DOI: 10.1561/1900000059.

Manos Athanassoulis
Boston University

mathan@bu.edu

Stratos Idreos
Harvard University

stratos@seas.harvard.edu

Dennis Shasha
New York University

shasha@courant.nyu.edu

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading (by
robots or other automatic processes) is prohibited without explicit
Publisher approval. Boston — Delft

Contents

1 Introduction 2
1.1 Data Structures Are Foundational 2
1.2 Tradeoffs in Data Structure Design 4
1.3 Audience & Prerequisites 7
1.4 Learning Outcomes . 8
1.5 Overview of the Book . 8

2 Performance Metrics and Operational Tradeoffs 9
2.1 Memory Hierarchy . 9
2.2 From Read/Update to RUM: Memory & Space Costs . . . 10
2.3 RUM Performance Costs 11
2.4 From RUM to PyRUMID 14
2.5 Chapter Summary . 17
2.6 Questions . 18
2.7 Further Readings . 19

3 Dimensions of the Data Structure Design Space 21
3.1 Global Data Organization 24
3.2 Global Search Algorithms When Not Using an Index 26
3.3 Search When Using an Index 32
3.4 Local Data Organization 46
3.5 Local Search . 48

3.6 Modification Policy: In-place vs. Out-of-place 48
3.7 Buffering . 53
3.8 Key-Value Representation 55
3.9 Summary of the Design Space Dimensions 57
3.10 Data Structure Design Expert Rules 58
3.11 Chapter Summary . 61
3.12 Questions . 61
3.13 Further Readings . 64

4 From Workloads to Data Structures 67
4.1 Point and Range Queries, Modifications, but Rare Scans

(Traditional B+-trees and Learned Tree Indexes) 68
4.2 Similar Workload With a Working Set That Fits in Memory

(Fractal B+-trees) . 70
4.3 Point and Range Queries, Rare Scans, More Modifications

(Insert-Optimized Search Trees) 70
4.4 Mixed Workload With No Short Range Queries

(Hybrid Range Trees) . 75
4.5 Mixed Workload, With Ever Increasing Data Size

(Radix Trees) . 78
4.6 Point Queries, Inserts, and Some Modifications

(Static Hashing with Overflow Pages) 79
4.7 Read-mostly With Long Range Queries

(Scans with Zonemaps) 81
4.8 Modification-intensive With Point and Range Queries

(LSM-tree) . 82
4.9 Modification-intensive With Point Queries Only

(LSM-hash) . 84
4.10 When to Design Heterogeneous Data Structures 85
4.11 Data Structures in Practice 86
4.12 Chapter Summary . 88
4.13 Questions . 89
4.14 Further Readings . 92

5 Adaptivity: Evolving Data Structures to a Workload 93
5.1 Design Dimension: Reorganization Aggressiveness 96
5.2 Adaptivity for Frequently Accessed Data 96
5.3 Adaptivity for Value-Organized Data 97
5.4 Aggressiveness of Adaptivity during Initialization 100
5.5 Partial Adaptive Indexing 101
5.6 Adaptive Modifications 102
5.7 Adaptivity and Concurrency 103
5.8 Adaptivity Metrics . 104
5.9 Open Topics . 105
5.10 Chapter Summary . 106
5.11 Questions . 107

6 Data Structures for Specific Application Domains 109
6.1 Data Structures in Relational Database Systems 109
6.2 File Systems & Memory Management 117
6.3 Data Structures in Machine Learning Pipelines 118
6.4 Cross-System Design Considerations and Tradeoffs 120
6.5 Chapter Summary . 121
6.6 Questions . 122
6.7 Further Readings . 123

7 Challenging Design Considerations 124
7.1 Concurrency . 125
7.2 Distributed Systems . 127
7.3 Emerging Workload Types 127
7.4 Hardware Considerations in Data Structure Implementation 128
7.5 Chapter Summary . 129
7.6 Questions . 129
7.7 Further Readings . 130

8 Summary 132

Acknowledgments 134

References 135

Data Structures for Data-Intensive
Applications: Tradeoffs and Design
Guidelines
Manos Athanassoulis1, Stratos Idreos2 and Dennis Shasha3

1Boston University, USA; mathan@bu.edu
2Harvard University, USA; stratos@seas.harvard.edu
3New York University, USA; shasha@cs.nyu.edu

ABSTRACT
Key-value data structures constitute the core of any data-
driven system. They provide the means to store, search,
and modify data residing at various levels of the storage
and memory hierarchy, from durable storage (spinning disks,
solid state disks, and other non-volatile memories) to random
access memory, caches, and registers. Designing efficient
data structures for given workloads has long been a focus of
research and practice in both academia and industry.
This book outlines the underlying design dimensions of data
structures and shows how they can be combined to support
(or fail to support) various workloads. The book further
shows how these design dimensions can lead to an under-
standing of the behavior of individual state-of-the-art data
structures and their hybrids. Finally, this systematization of
the design space and the accompanying guidelines will en-
able you to select the most fitting data structure or even to
invent an entirely new data structure for a given workload.

Manos Athanassoulis, Stratos Idreos and Dennis Shasha (2023), “Data Structures
for Data-Intensive Applications: Tradeoffs and Design Guidelines”, Foundations and
Trends® in Databases: Vol. 13, No. 1-2, pp 1–168. DOI: 10.1561/1900000059.
©2023 M. Athanassoulis et al.

1
Introduction

1.1 Data Structures Are Foundational

Data structures are the means by which software programs store and
retrieve data. This book focuses on key-value data structures, which are
widely used for data-intensive applications thanks to the versatility of
the key-value data model. Key-value data structures manage a collection
of key-value entries, with the property that a given key maps to only
one value but the same value can be associated with many keys. The
value part of a data entry may have arbitrary semantics. For example,
it may be a record in a relational database or a Pandas DataFrame,
or an arbitrary set of fields that the application knows how to parse
and use in a NoSQL system. In some settings, such as when systems
manage data for social networks, the value may contain a reference to
a large object such as an image or video.

Physically, a key-value data structure consists of (1) the data, physi-
cally stored in some layout, (2) optional metadata to facilitate navigation
over the data, and (3) algorithms to support storage and retrieval opera-
tions (Hellerstein et al., 2007; Selinger et al., 1979; Idreos et al., 2018a).
Other terms used in the literature for data structures include “access
methods,” “data containers,” and “search structures.”

2

1.1. Data Structures Are Foundational 3

Data systems, operating systems, file systems, compilers, and net-
work systems employ a diverse set of data structures. This book draws
examples primarily from the area of large-volume data systems which
require secondary storage devices, but the core analysis and design
dimensions apply to purely in-memory systems as well, where access to
RAM (random access memory) is far slower than access to the cache.
In fact, the analysis applies to any setting in which there are two or
more levels in the memory/storage hierarchy.

Given the wealth of applications that can be modeled using key-value
data, such data structures have enormous general utility. For example, a
particular data structure can be used to describe (i) metadata access in
files, networks, and operating systems (Bovet and Cesati, 2005; Rodeh,
2008), (ii) data access in relational systems (Hellerstein et al., 2007),
(iii) data access in NoSQL and NewSQL systems (Idreos and Callaghan,
2020; Mohan, 2014), and (iv) feature engineering and model structures
in machine learning pipelines (Wasay et al., 2021).

Each application, or workload, can be represented as a mixture of
key-value operations (point queries, range queries, inserts, deletes, and
modifications) it supports over its data. In addition, the amount of
memory and persistent storage required, along with their cost, shape the
requirements of a given application. For example, file systems manage
file metadata and contents using data structures optimized for frequent
updates. Compilers typically use hash maps to manage variables during
the variables’ lifespan and use abstract syntax trees to capture the overall
shape of a program. Similarly, network devices require specialized data
structures to efficiently store and access routing tables.

As data-intensive applications emerge and evolve over time, using
efficient data structures becomes critical to the viability of such applica-
tions, sometimes resulting in a three orders of magnitude performance
change, as shown by Chatterjee et al. (2022). The reason is that data
movement is the major bottleneck in data-intensive applications. Data
movement is largely governed by the way data is stored, i.e., by the
data structure. Thus, we expect that there will be an ongoing need
for new data structures as new applications appear, hardware changes
and data grows. Currently, research in academia and industry produces
several new data structure designs every year, and this pace is expected

4 Introduction

to grow. At the same time, with a growing set of new data structures
available, even the task of choosing from an off-the-shelf data structure,
that is, one that can be found in textbooks, has become more complex.

This book aims to explain the space of data structure design choices,
how to select the appropriate data structure depending on the goals and
workload of an application at hand, and how the ever-evolving hardware
and data properties require innovations in data structure design. The
overarching goal is to help the reader both select the best existing data
structures and design and build new ones.

1.2 Tradeoffs in Data Structure Design

Every data structure represents a particular workload- and hardware-
dependent performance tradeoff (formalized by Athanassoulis et al.,
2016 and Idreos et al., 2018b). In order to choose an existing data
structure or to design a new data structure for a particular workload on
particular hardware, you should understand the possible design space
of data structure design clearly and formally. That is the focus of this
book. To motivate that discussion, let us look at a few examples of
designs and tradeoffs when considering the workload (Section 1.2.1)
as well as the underlying hardware (Section 1.2.2) and how they both
evolve over time.

1.2.1 Workload-Driven Designs

Optimizing for a Workload. Consider a workload that consists of
a small number of inserts and updates together with a large number
of point and range queries. In order to balance the read and the write
cost, many applications employ a B+-tree, originally proposed by Bayer
and McCreight (1972) and later surveyed by Graefe (2011). B+-trees
have a high node fanout, so that traversing from root to leaf requires
few secondary memory accesses, and their top levels are cached in the
faster levels of the memory hierarchy (Section 4.1). Further, a B+-tree
supports range queries by maintaining all the keys sorted in the leaf
nodes and by connecting the leaf nodes in a linked list. As the number of
insertions and updates increase, however, leaf nodes must be reorganized
and maybe even split, which can become a performance bottleneck.

1.2. Tradeoffs in Data Structure Design 5

To address workloads having many inserts, a completely different
approach is taken by a data structure called the log-structured merge-
tree (LSM-tree). LSM-trees were originally introduced by O’Neil et al.
(1996), and their many variants were surveyed by Luo and Carey (2020).
As we will see in Section 4.8, LSM-trees place all updates in a common
memory buffer which is flushed to disk when it becomes full. As more
buffers accumulate, they are merged to form larger sorted data collection.
This design employs an out-of-place policy of handling modifications,
surveyed in detail by Sarkar and Athanassoulis (2022), in which there
can be many key-value pairs in the structure having the same key. (For
a given key k, the most recently inserted key-value pair for k has the
current value.)

Thus two different workloads – one with more read queries and one
with more insert operations – suggest different data structures.

32

19

11

6

123

55

12

78

search values in (15, 60)

6

11

12

32

19

55

123

78

< 15

> 60

Figure 1.1: Adaptive data organization using the most recent search as a hint. In
this example, a range query for values 15 to 60 leads to partitioning the base data
in three non-overlapping partitions, one with values less than 15, one with values
between 15 and 60, and one with values greater than 60.

Adapting to a Workload. Because the central theme of this book is
to design a data structure given the expected workload, we also consider
designing data structures that gradually adapt to the ideal design. To
illustrate this point, consider that the B+-tree and the LSM-tree, as
originally designed, impose a sorted order within disk-resident nodes in
order to answer any point or range query. An adaptive data structure
may start with one or more unsorted nodes, but sorts them gradually
in an opportunistic way, as shown in Figure 1.1. Chapter 5 will explain
the concept of database cracking, proposed by Idreos et al. (2007a)

6 Introduction

and further expanded by Idreos et al. (2007b) and Idreos et al. (2009).
Intuitively, cracking uses the access patterns of incoming queries to
continuously and incrementally physically reorganize the underlying
data with the goal of improving the performance of future queries.

1.2.2 Memory-Driven And Storage-Driven Designs

As a complement to workload-based considerations, hardware advances
create new challenges, needs, and opportunities in data structure design.
Over the years, the memory and storage hierarchy has been enriched
with devices such as solid-state disks, non-volatile memories, and deep
cache hierarchies. Here, we discuss a few key hardware considerations
for data structures, and we expand on them in Chapters 6 and 7.
Optimizing for the Storage/Memory Hierarchy. In a storage
hierarchy, the lower levels offer a lot of storage at a low price but at high
access latency, and as we move higher, that is, closer to the processor(s),
the storage is faster but smaller and more expensive per byte. In the
storage/memory hierarchy there is always a level that is the bottleneck
for a given application, which depends on the size of the application
data relative to the storage capacity available at the different levels of
the hierarchy.

Originally, B+-trees tried to minimize disk accesses by maximizing
the fanout. As the memory sizes grew, however, much of the data could
fit into random access memory or non-volatile secondary memory. This
changed the tradeoffs dramatically. For example, in-memory B+-trees
perform best with small fanout, as shown by Kester et al. (2017).
Memory Wall. While the memory hierarchy is expanding with tech-
nologies like high-bandwidth memory as outlined by Pohl et al. (2020),
a key hardware trend for several decades has been the growing disparity
between processor speed and the speed of off-chip memory, termed
the memory wall by Wulf and McKee (1995). Since the early 2000s,
operating systems, as discussed by Milojicic and Roscoe (2016), and
data management systems, as discussed by Johnson et al. (2009), have
been carefully re-designed to account for the memory wall by optimizing
the use of cache memories.

1.3. Audience & Prerequisites 7

Storage Devices Evolve. In addition, secondary storage itself has
reached a crossover point. Traditional hard disks have long since hit
their physical speed limits (Athanassoulis, 2014), and have largely
been replaced by shingled disks and flash-based devices (Hughes, 2013).
Shingled disks increase the density of storage on the magnetic medium,
changing the performance properties of disks because the granularity
of reads and writes changes (Hughes, 2013). Flash-based drives offer
significantly faster read performance than traditional disks, but suffer
from relatively poor write performance. Further, flash-based drives
are equipped with a highly functional firmware layer called the Flash
Translation Layer (FTL), which can be rewritten to yield dramatic
changes in performance. Thus, flash hardware performance depends on
both hardware and firmware. Such changes create a need for new data
structures to optimize for different hardware/firmware combinations.

1.3 Audience & Prerequisites

This book aims to be used as part of graduate-level classes on designing
complex data structures. It assumes at least an undergraduate-level
familiarity with data structures.

Specifically, we assume that the reader is already familiar with
basic data structures like arrays, linked lists, binary trees, queues,
stacks, heaps, and hash tables, all taught in introductory courses for
data structures and algorithms (Cormen et al., 2009). Such basic data
structures sit at the core of the more complex designs we outline. Most
of the use cases and the presented designs are motivated by data-
intensive systems, hence building on classical data structures used in
database systems like B+-trees (Bayer and McCreight, 1972), open
hashing (Ramakrishnan and Gehrke, 2002), and LSM-trees (O’Neil
et al., 1996).

Other than that, the book is self-contained. We will describe all
algorithms used in navigating complex data structures and outline how
to combine the various design decisions we introduce.

8 Introduction

1.4 Learning Outcomes

After reading this book, you will be able to reason about which existing
data structure will perform best given a workload and the underlying
hardware. In addition, you will be able to design new and possibly
hybrid data structures to handle workloads with different composition,
locality, and access patterns.

1.5 Overview of the Book

Here is the outline of our book. We recommend that you read the
chapters sequentially.

• Chapter 2 introduces the fundamental performance metrics for data
structures with respect to the most important key-value operations
and hardware properties.

• Chapter 3 presents the core set of design principles, primarily
based on workload characteristics, that largely guide the design of
key-value data structures.

• Chapter 4 starts by explaining the design and performance charac-
teristics of traditional data structures based on the design principles.
We then discuss how to use the design principles to design new data
structures for arbitrary workloads.

• Chapter 5 discusses the need for and design principles underlying
adaptive data structures. We also illustrate use cases in which
adaptivity leads to greatly improved performance.

• Chapter 6 discusses how data structures are utilized in big data ap-
plications, including databases, file systems, and machine learning.

• Chapter 7 discusses additional design considerations that can in-
fluence the detailed deployment of data structures ranging from
deploying data structures in a setting with concurrent execution,
in the context of distributed systems, to new hardware, new type
workloads, and new application requirements.

2
Performance Metrics and Operational Tradeoffs

We now describe the core performance metrics we use to characterize
key-value data structure designs. Because the metrics depend partly on
the underlying hardware, we start by reviewing the memory/storage
hierarchy and its importance for data structure design.

2.1 Memory Hierarchy

The memory hierarchy is a sequence of memory devices or layers, from
fastest – e.g., registers and cache – to slowest – e.g., memory and disk
(Manegold, 2009). They complement each other in terms of size, cost
and speed of access. At least one layer of the memory and storage
hierarchy is typically persistent (especially for file systems and data
systems) so the data will not be lost when power fails or a machine
is shut down. In addition, one layer of the memory hierarchy is large
enough to hold all the data needed for a particular application. Data is
transferred back and forth across layers as requests for data arrive, new
data is inserted, and old data is deleted or updated.

Because different types of memory work at vastly different speeds,
when data is moved towards the processing unit from a very slow memory
layer, such as a disk, the overall cost of using a particular data structure

9

10 Performance Metrics and Operational Tradeoffs

is dominated by this transfer cost. However, large transfer sizes from the
slower memories to the faster memories partly mitigate the difference
in speed. For example, the unit of transfer from memory to a fast cache
memory is a few bytes, while the transfer unit from disk to main memory
may be several kilobytes. The larger size potentially reduces the need
for many disk-to-memory transfers. The cost of all other data movement
at higher (i.e., faster) layers of the memory hierarchy is negligible by
comparison. Typically, a modern processor running at more than 1 GHz
speed is under-utilized because it is waiting for data from random access
memory (which may take tens of nanoseconds) or disk (which may take
thousands or millions of nanoseconds). Thus, design choices for data
structures seek to minimize the number of accesses to the slowest layer.

For this reason, the modeling and design discussions in this book
take these performance properties into account and always assume two
abstract layers of memory hierarchy (Aggarwal and Vitter, 1988): one
that is slow but can be treated as having essentially infinite capacity
and one that is much faster but with limited capacity. This approach
captures the random access memory and disk pair, but it can also
capture any two layers of memory that have a significant difference in
access latency and cost (e.g., 1-3 orders of magnitude).

2.2 From Read/Update to RUM: Memory & Space Costs

In order to compare data structure designs and decide which one to
use under particular conditions, we first need to define the appropriate
metrics. The most common metrics quantify the read performance and
update performance (Brodal and Fagerberg, 2003; Yi, 2009; Yi, 2012).
Read vs. Update. The Read cost defines how fast we can retrieve
data while the Update cost describes how fast we can insert new data
or change existing data. In this way, these costs collectively describe
the end-to-end performance that a data structure design provides for
a given workload. Such costs can be measured in terms of (expected)
response time or more typically in terms of the amount of data we need
to move to complete an operation. Reducing either of these often also
increases throughput (the number of operations per second).

2.3. RUM Performance Costs 11

Read vs. Update vs. Memory. Data size is an additional metric
that is crucial in practice. This metric is important because the disk or
memory space to hold data structures is neither cheap nor unlimited.

Historically, data structure design research considered only read
and update performance and ignored data size. This assumption comes
from the time that disk was used as secondary storage and was so much
cheaper than memory that the storage cost was considered insignificant
and the main consideration was storage performance (Gray and Putzolu,
1986). Since then, the storage hierarchy has been augmented with various
devices including solid-state disks (SSDs), shingled magnetic recording
disks (SMR), non-volatiles memories (NVMs) and other devices. The
new storage media can be either expensive per byte and fast, or cheap
but slow (Athanassoulis, 2014). Sometimes the higher performance
comes at significant energy cost (Shehabi et al., 2016). Flash-based
SSDs exhibit a read/write asymmetry, where writes are typically one to
three times more expensive than reads. At the same time, such devices
can sustain a number of concurrent accesses before saturating the device
bandwidth (Papon and Athanassoulis, 2021a; Papon and Athanassoulis,
2021b). In the current sensor-rich world, data generation outpaces the
rate at which storage devices are delivered leading to a data-capacity
storage gap (Bhat, 2018; Hilbert and López, 2011; Spectra, 2017).

Overall, the increasing use of storage with more expensive capacity
and efficient random access has made the memory vs. performance
(read/update cost) analysis an important factor in the design and
optimization of data structures (Athanassoulis et al., 2016; Dong et al.,
2017; Zhang et al., 2016).

Storage and memory are not free, hence the footprint and cost of a data
structure should also be considered when judging its efficiency.

2.3 RUM Performance Costs

We now formally define the Read, Update, and Memory costs. We first
define three quantities that help capture the individual costs. These are
defined as the cost amplification over the minimum conceivable.

12 Performance Metrics and Operational Tradeoffs

1. Read cost is defined as the read amplification of every lookup
operation. This is the ratio between the size of the metadata
(typically, in an index) plus the data an operation needs to touch
divided by the actual size of the needed data. In other words, this
reflects the extra data that is read when using a particular data
structure design compared to the minimum conceivable cost a
system could achieve in an ideal world where the system could
directly retrieve the result without any additional search effort.

2. Update cost is defined as the write amplification of every update
operation. That is the ratio between the size of the data and
metadata that were accessed and the size of the updated data
itself.

3. Memory (or storage) cost is defined as the space amplification of
the employed data structure. That is the ratio between the aggre-
gate size of data, metadata, and lost space due to fragmentation,
divided by the size of the base data.

Amplification as an Alternative Cost Definition. The most com-
mon cost metric in terms of data structures is typically the total number
of pages that have to be moved between slow and fast storage. The above
definitions of the three overheads (RUM overheads for short) present
amplification as a data-size-sensitive metric. For example, consider that,
in an ideal world, a point query needs to access only the single data page
that contains the target key-value entry. However, when using a tree-like
structure, the query traverses indexing pages to locate the target data.
The ratio between the number of all accessed (index and data) pages
and the page(s) holding the data constitutes the read amplification.
The definitions of write amplification and memory amplification are
similar in that they capture the excess data pages an operation must
access during a write operation and the excess memory required by the
data structure. Thinking about the costs in terms of amplification, as
opposed to in terms of the total number of pages of slow memory that
are accessed, is often helpful as it gives a sense of how close a design is
to the optimal.

2.3. RUM Performance Costs 13

Adaptive Indexing

Read Optimized

Update Optimized Memory Optimized

Tries

Hash
Indexes

Log-Structured Trees

B+-Trees

Scans
Bitmap Indexes

Hybrid Indexing

Differential
Updates

Approximate Indexes

Figure 2.1: The RUM tradeoff space and a broad classification of data structure
designs according to the RUM balance they maintain. The primitives underlying
these data structures are discussed in Chapter 3 and the full structures are described
in Chapter 4.

The three RUM overheads expose a three-way tradeoff (Athanas-
soulis et al., 2016), between read, update, and memory overhead (Brodal
and Fagerberg, 2003; Yi, 2009; Yi, 2012; Hellerstein et al., 2002; Heller-
stein et al., 1997; Wei et al., 2009).

Figure 2.1 conceptually shows a broad classification of data structure
designs in the RUM tradeoff space. For example, a scan operation has
high read cost, as it requires traversing an entire table – or at least a
column (Abadi et al., 2013) – to return relatively little data. Hence, the
read amplification is large. By contrast, space amplification is minimal
or even zero, because there is no need to maintain metadata.

Write amplification is also minimal when we can simply append
or prepend new data (otherwise, it can be large if writes must locate
previous instances of an input key through a scan).

By contrast, a typical tree-structured index (such as a B+-tree)
utilizes extra space for the index metadata to reduce read and update
costs. The index nodes are used to navigate to the leaf node(s) that

14 Performance Metrics and Operational Tradeoffs

house the desired data. In addition, it is also typical to trade space
for efficient updates. For example, free slots available in leaf nodes
of a B+-tree, leading to an average fill factor of 67% (Ramakrishnan
and Gehrke, 2002), increase the space consumed. This guarantees that
most inserts will update only one page and not require splitting a page.
Effectively this trades space amplification for update amplification.
Figure 2.1 shows similar design tradeoffs, which are common in data
structure designs as outlined by Athanassoulis and Idreos (2016) and
Athanassoulis et al. (2016).

Overall, during the design of data structures, every step is a tradeoff
consideration. Every new piece of metadata or any structure imposed
on the base data has direct side effects on read, update, or memory
amplification.

2.4 From RUM to PyRUMID

The RUM costs offer a good high-level metric of how broad design
classes of data structures behave. To get a more complete view, which is
necessary for hardware- and workload-conscious data structure design,
we need to refine these metrics further. To do that we consider all
possible operations that may form a workload of a data structure.
Specifically, read performance depends on the exact access pattern. A
Point query asking for the value associated with a single key differs
from a Range query asking for a set of key-value entries ranging from
a low key to a high key. Similarly, for writes, an Insert operation has
different requirements from an Update or Delete. While RUM classifies
all modifications as Updates, their costs may differ in different data
structures. For example, in a B+-tree, an Insert needs to store a new
key-value pair which may trigger a sort operation on a leaf node, while
an Update might change a value without disturbing the key order and
a Delete might simply mark a key as logically deleted.

Overall, this makes for a complex tradeoff, which we call PyRUMID
tradeoff from Point queries, Range queries, Updates, Memory, Inserts,
and Deletes. PyRUMID is more complex to reason about than RUM
because there are more metrics but it offers a more accurate mapping
of data structure designs to actual costs.

2.4. From RUM to PyRUMID 15

Next, we define in detail the costs of the different workload operations
captured by the PyRUMID tradeoff. As before, we define all costs in
terms of the total number of pages that need to be moved from slow
memory to fast memory.

• Point Query: A point query needs to retrieve a single data entry
based on a given key. The total cost in terms of pages includes
not only the page that contains the target data entry but also any
indexing data pages that we need to read because of the design of
the data structure. Similarly, if the design of the data structure
does not give direct access to the target data pages, then we likely
first need to read additional data pages so we can locate the target
data entry. These components are included in the total read cost.

• Range Query: A range query needs to retrieve all key-value
entries whose key falls between specified low and high values. As
with point queries, the total cost includes all indexing pages that
need to be read. A critical factor that characterizes range queries is
the selectivity, that is the fraction of the data pages requested with
respect to the total number of data pages. Thus, there are three
types of range queries, having different performance properties.

– Short range queries have similar performance characteristics
to point queries if the data is sorted, because accessing data
requires reading the minimum granularity of data storage,
typically a single data page. See below a more detailed dis-
cussion on how to reason about what range constitutes a
short range query.

– Long range queries read several data pages and the exact
organization of data and the efficiency of locating useful data
matters.

– Full scans need to access all data pages. They might benefit
from a special type of indexing, termed filtering (Section
3.3.2), which allows for partial data skipping. Further, they
are affected by the design choices for laying out the base data,
and can be enhanced by low-level engineering optimizations

16 Performance Metrics and Operational Tradeoffs

to consume data in the fastest possible way. Such optimiza-
tions include vectorization (Boncz et al., 2008), pre-fetching
(Ramakrishnan and Gehrke, 2002) or using SIMD (single
instruction/multiple data) instructions (Polychroniou et al.,
2015; Willhalm et al., 2009).

• Insert: An insert operation adds a new key-value entry to the
data structure. As with read operations, the cost is given by the
total number of pages on slow storage (e.g., disks) that need to be
read and written for the insert operation to be persistent. The cost
includes both data pages that need to be read and those that need
to be written. For example, an insert on a B+-tree needs to locate
an appropriate page for the new data entry. Further, any new
key-value entry should not disrupt the existing data organization
because that would degrade the performance of future operations.
Insert performance – or ingestion rate – can be enhanced by
techniques that allow accumulating key-value entries out-of-place
and then reorganizing (e.g., re-sorting) later. That preserves the
sorted organization of the base node without requiring expensive
maintenance operations. Such a strategy allows multiple instances
of the same key, generally with different values. The correct value
to be associated with a key is the value of the most recent insert
or update.

• Delete: A delete operation removes a key-value entry given an
input key. Deleting a key-value entry may create fragmentation,
which in turn, requires a mechanism to reclaim the space occupied
by deleted data. This delayed deletion may cause additional space
amplification and also privacy challenges if the invalid data is not
physically erased.

• Update: An update operation modifies the value of a specific
key-value entry. Updates will often take less time than inserts or
deletes, because the key organization does not change.

Characterizing Short Range Queries. In order to classify a range
query as a short range query, we consider the random vs. sequential

2.5. Chapter Summary 17

access tradeoff. Specifically, we consider that a point query accesses
approximately a single data page with a random access, while a short
range query would spend about the same amount of time sequentially
accessing data. Following the analysis by Kester et al. (2017), we consider
that the latency of random access of a page with size P is L time units
and that the sequential read bandwidth is BW . Assuming that a point
query performs one random access, the latency of that query is L, a
range query would be considered to be short if it has a similar cost.

The amount of data we can read sequentially in L time units is
BW ·L, which occupies BW ·L

P pages. For example, assuming a 4KB page
size which is prevalent in contemporary systems, when operating in a
memory that offers 100GB/s read bandwidth and 180ns access latency,
a short range query would be one that accesses (100GB/s) · 180ns/4KB ≈ 4.7
memory pages (in 180ns), or (100GB/s) · 180ns/64B ≈ 300 cache lines (of
64 bytes each). If we consider an SSD with 1GB/s read bandwidth,
50µs latency, and 2KB page size, the corresponding short range is
(1GB/s) · 50µs/2KB ≈ 26 pages (in 50µs). Finally, for a traditional hard disk
drive with 150MB/s read bandwidth, 4ms access latency, and 4KB page
size, the short range is (150MB/s) · 4ms/4KB ≈ 150 pages in 4ms. As devices
evolve, one can use the BW ·L

P rule of thumb to quantify how much
data (or memory units, like pages, cache lines, etc.) can be accessed
sequentially in the same time as needed for a point query. Thus, that
amount of data characterizes a short range query.
Memory Utilization. When storage is expensive, e.g., within non-
volatile memory or the memory supplied by cloud providers, the addi-
tional space occupied by auxiliary data, duplicate copies of the data,
indexing, and buffer space increases the monetary cost of a data struc-
ture design. Using more memory for access methods can, however, lead
to lower read or update time cost. So there is often a money/time
tradeoff.

2.5 Chapter Summary

This chapter starts by characterizing the memory hierarchy from slow
abundant memory to fast expensive memory. Next, it defines the notion
of cost amplification as the ratio of the data that an operation needs

18 Performance Metrics and Operational Tradeoffs

to touch to locate and access the relevant data compared to the size
of the relevant data itself. For example, if a read of a record r must
scan an entire file to find record r, the amplification would be the file
size divided by the size of r. Finally, the chapter discusses the most
important amplification issues that apply to each operation (point query,
range query, insert, delete, update).

2.6 Questions

1. How does an update operation compare to a read operation in
terms of how much data movement each needs to do, assuming
the data is on slower memory (e.g., disk)?
Answer Sketch: We assume that the relevant data is on a single
page. Both a read operation and an update operation need to read
the data page. The update operation, however, may have to reorga-
nize the data page. In addition, the updated page must eventually
be written back to disk so the update persists.

(More advanced answer related to later chapters.) Both read and
update operations may amortize their costs across many opera-
tions. For example, for update operations, the write to disk may be
delayed by putting the update in a memory buffer so that several
updates on the same page can be written to disk at once and share
the write cost. However, if there is a crash before the updates make
it to disk, the data structure may need to be re-populated with the
aid of a higher level recovery process (e.g., a write-ahead log).

2. In moving from RUM performance metrics to the PyRUMID
metrics, we distinguish among inserts, deletes, and updates. How
might those different modifications be handled differently in a
sorted array?
Answer Sketch: Inserts may need to move data within a sorted
array to maintain the sorted order (e.g., if the key being inserted
lies in the middle of the key range of that page). Deletes also
may require data movement unless they are processed simply by
marking a key-value pair as not valid (logical deletion). Updates

2.7. Further Readings 19

may require little data movement if the replacing value is no larger
in size than the replaced value. Thus the different modifications
may require different analyses.

3. For a sorted array, do short range queries and point queries have
similar compute and data movement cost characteristics? What
about for unsorted arrays?
Answer Sketch: Any sorted data structure will have similar costs
for point and range queries because it is likely that the entire
short range will be present in the same section of the array (and
therefore the same page). For an unsorted array, a short range
query may require scanning the entire array.

2.7 Further Readings

Data Management on new Storage Hardware. In this chapter,
we discuss the interplay of data access methods with hardware and,
specifically, with the memory hierarchy. Further understanding can be
gained by studying tutorials and surveys that discuss the implications
of new storage devices on data management and indexing targeting
flash devices, by Koltsidas and Viglas (2011) and the broader class
of non-volatile memories by Viglas (2015). Moreover, storage devices
can be tailored to support specific workload characteristics by co-
designing them with the application, as outlined in the tutorial by
Lerner and Bonnet (2021).

Examples. Athanassoulis and Ailamaki (2014), Na et al. (2011),
Roh et al. (2011), and Thonangi et al. (2012) proposed tree indexes
that exploit the underlying storage device parallelism, while Jin et al.
(2011), Li et al. (2010), and Papon and Athanassoulis (2023) propose
ways to address the read/write asymmetry of flash storage devices,
and Kang et al. (2007) aim to aggressively exploit locality.

20 Performance Metrics and Operational Tradeoffs

Further, Athanassoulis et al. (2015), Debnath et al. (2010), Lim
et al. (2011), and Nath and Kansal (2007) proposed key-value data
stores that are tailored to flash storage by exploiting parallelism and
efficient random accesses, while respecting limitations regarding the
write cost and the higher cost compared to traditional disks. More
examples of data management on flash devices have been discussed
by Athanassoulis et al. (2010).

Data Management on new Compute Hardware. In addition to
the evolution of storage hardware, compute hardware is also dramat-
ically shifting. Surveys on multi-cores and deep memory hierarchies
(Ailamaki et al., 2017; Ross, 2021), GPUs for data management (Paul
et al., 2021), FPGA-based specialized hardware for data management
(Fang et al., 2020; István et al., 2020), and storage systems in the
RDMA (Remote Direct Memory Access) era (Ma et al., 2022) can
help understand the implications of new hardware trends on data
access methods, storage, and data management.

Examples. Ailamaki et al. (1999) found that row-oriented systems
face a very high number of cache memory data stalls. Based on
this finding, Ailamaki et al. (2002) presented a new weaved page
layout that reduced the cache stalls by grouping together elements
belonging to the same column. Boncz et al. (1999) and Boncz et al.
(2005) proposed a new vertically fragmented physical data layout to
address the memory bottleneck. Further, Chen et al. (2001) proposed
cache prefetching as a technique to optimize indexes for main memory,
Ross (2004) improved selection conditions by avoiding expensive if
statements, and Manegold et al. (2002a) built a cost model for cache-
resident execution. More work on buffering, block-based accesses,
and other optimizations follows similar principles (Lam et al., 1991;
Manegold et al., 2002b; Manegold et al., 2004; Zhou and Ross, 2004).
The overarching goal is to keep the useful data at the fastest level of
the memory hierarchy.

3
Dimensions of the Data Structure Design Space

We now present the dimensions of the data structure design space.
Choosing the values of these dimensions constitutes the fundamental
design decisions about how key-value data is physically stored and
accessed. We present eight dimensions that collectively describe both
well known state-of-the-art data structure designs as well as still un-
specified designs that can be characterized by the design space. The
eight dimensions are as follows:

1. Global Organization (Section 3.1): the assignment of keys to
data pages. For example, a given page may contain a particular
sub-range of the keys or a subset dictated by a hash function.

2. Global Search Method:

(a) when there is no index (Section 3.2): the algorithm used to
search over the data pages, e.g., binary search for sorted data
pages.

(b) using an index (Section 3.3): metadata that accelerates ac-
cess to the target set of data pages for a given query, e.g., a
hierarchical organization such as a B+-tree.

21

22 Dimensions of the Data Structure Design Space

3. Local Organization (Section 3.4): the physical key-value orga-
nization within each data page. For example, each page could be
sorted by key.

4. Local Search Method (Section 3.5): the algorithm used to search
within a data page or a partition. For example, binary search or
hash lookup.

5. Update Policy (Section 3.6): in-place vs. out-of-place. For exam-
ple, in an out-of-place list, the same key k may be found several
times. The logical value to be associated with key k is the value
stored with the first instance of k when traversed from the root of
that list.

6. Buffering (Section 3.7): the decision to use auxiliary space to store
read and write requests and then to apply the requests later to the
data structure. For example, modifications to a key-sorted node
may be buffered separately from the sorted contents. Later, the
updates can be applied as a batch at once and thus require only one
sort for the batch instead of one shift per insert or delete. Searches
would first look at the buffered updates and then the sorted node.

7. Key-value Representation (Section 3.8): whether the access
method stores keys whose values are entire records, only a record
ID, a pointer to a record or a bitvector representation of the records
corresponding to a key.

8. Adaptivity (Chapter 5): that is, whether the design uses queries
as hints to gradually reorganize a structure to accelerate future
queries. For example, a query on an unordered node may perform
a range partitioning within the node. We treat adaptivity as a
meta-dimension, since it changes the design to gradually reach a
specific end-point which can be described by a value in each of
the above seven design dimensions. For that reason, we discuss the
seven design dimensions in this chapter and adaptivity in Chapter 5.

Cost Model: Quantifying Design Impact. In the rest of this chapter,
we present the possible decisions for each dimension and how they affect
the overall design in terms of PyRUMID performance.

23

To quantify the PyRUMID costs we utilize a cost model with the
parameters shown in Table 3.1. This is an I/O model that captures
the number of disk pages moved. As discussed in the previous chapter,
we focus on data movement as this is the primary factor that affects
end-to-end performance for data system applications where computation
is light (e.g., simple comparisons).

Table 3.1: Parameters capturing the various dimensions of the data set and the
data organization that affect the cost of accessing keys in a particular data structure.

Key-value entry size (# bytes) E

Key size (# bytes) K

Page size (# entries that fit in a page) B

Data size (# entries) N

Data size (# pages) NB ≥ ⌈N/B⌉
Memory size (# pages that fit in main memory) M

partitions P

index of searched key i

index of the page of the searched key iB

index of the partition of the searched key iP

selectivity (fraction of entries retrieved) s

radix length of the key domain r

Note to the reader: This chapter is the longest in the book
as it gives all fundamental principles. If you are new to the field,
we propose reading this chapter in two or more sessions. For
example, you might choose to read through the end of “Search
When Using an Index” (Section 3.3) in the first sitting, let that
soak in, and then read the rest of the chapter in a second sitting.
Every subsection is also self-contained, describing one design
decision at a time.

24 Dimensions of the Data Structure Design Space

3.1 Global Data Organization

The first decision for an access method is how to organize data across
pages or partitions, or the global data organization. Below, we introduce
the main global data organization options, and we accompany each
with a simple example for illustration. We further differentiate between
key-level organizations and partition-level organizations. Key-level or-
ganizations specify how all the keys in a data structure are organized
(e.g., sorted, hashed, or unordered), while partition-level organizations
specify the organization in a nested fashion: first how to organize keys
across partitions, and second how to organize the keys within a partition
(further discussed in Section 3.4).

3.1.1 Key-level Organizations

Notation: In each example below, data pages are separated by “;”,
partitions are indicated using “(...)”, and the overall dataset is enclosed
by “[...]”. In the absence of “(...),” there are no partitions. Note that,
while a partition typically consists of multiple pages, having multiple
partitions within a page or one partition per page is also possible.
No Organization. The key-value pairs are stored in pages without
any structure or order enforced. As a result, any particular key-value
pair may appear in any page.
Example (showing keys in pages only):
[242 2000 1002; 200 49 2304; 25 230 1500]
Sorted. Key-value pairs are sorted based on their keys (note we repre-
sent only the keys and not their associated values).
Example (showing keys in pages only):
[25 49 200; 230 242 1002; 1500 2000 2304]
Hashing. Key-value pairs are stored based on the hash of the key in
the hash table.
Example (using as hash function h(x) = x mod 9), hash value in {·}:
[{0}: 2304, {1}: 200, {2}: 2000; {3}: 1002, {4}: 49, {5}: 230; {6}: 1500,
{7}: 25, {8}: 242]

3.1. Global Data Organization 25

sorted

unsorted

logging

hashed

Figure 3.1: The four fundamental key-level global data organizations (without
sub-partitions). Key-value pairs may be stored without regard to the key values
(unsorted); in key-sorted order (sorted); based on a hash function on keys (hashed);
and in time order of entry (logging).

Logging. Key-value pairs are physically stored according to their arrival
order forming a log1.
Example:
[230 2000 1002; 200 49 1500; 25 242 2304]
Figure 3.1 summarizes the key-level data organization options using
a visual representation that we use in the remainder of the book to
describe data structure designs.

3.1.2 Partition-Level Organizations

Range Partitioning. There are P non-overlapping partitions. Each
key-value pair (k, v) belongs to the single partition whose key range
contains k. For example, if there are three partitions with key ranges
[1, 220), [220, 1200) and [1200, 3000], the collection of our running ex-
ample could be partitioned as follows. In this example, each partition
occupies exactly one page. Further, note that within each partition, the
keys need not be organized in any particular way.
Example:
[(49 25 200); (1002 230 242); (2000 2304 1500)]
Radix Partitioning. A prefix of the bit representation of the key k of a
given key-value pair (k, v) is used to map (k, v) to a specific partition. For

1Note that the use of the term “logging” here refers to the notion of appending
data in a time-ordered manner to form a log and does not relate to database recovery
(Bernstein et al., 1987).

26 Dimensions of the Data Structure Design Space

example, we can use the first two bits of the 12-bit binary representation
of the keys in our example data set: 25 = 0b000000011001, 49 =
0b000000110001, 200 = 0b000011001000, 230 = 0b000011100110, 242 =
0b000011110010, 1002 = 0b001111101020, 1500 = 0b010111011100,
2000 = 0b011111010000, and 2304 = 0b100100000000.
This would result in the following (uneven, because most of the keys
are small) partitioning:
[(0b00: 49 25 242; 1002 200 230); (0b01: 2000 1500); (0b10: 2304)]
Hash Partitioning. Each key-value pair (k, v) goes into a partition
h(k) based on a hash function h(·). For example, assuming for ease of
presentation a simple hash function h(k) = k mod 3, the data collection
in our example will be partitioned as follows.
Example, hash value in {·}:
[({0}: 1002 1500 2304); ({1}: 49 25); ({2}: 230 2000 200 242)]

A special case of hashing is order-preserving hashing, which creates
non-overlapping partitions with increasing value ranges (Fox et al., 1991;
Hutflesz et al., 1988; Robinson, 1986; Sabek et al., 2022).
Partitioned Logging. As an alternative to pure logging, partitioned
logging partitions key-value pairs based on disjoint time intervals called
epochs, where the ith epoch is marked as ei. The same key may be
present in multiple epochs, resulting in memory amplification.
Example:
[(e1: 230 2000 1500; 200); (e2: 49 1500 25); (e3: 242 200 2304)]
Figure 3.2 summarizes the partition-level data organization options.
Note that once a partitioning-based global data organization is selected,
the various partitions may have different local data organizations, which
we discuss in Section 3.4.

3.2 Global Search Algorithms When Not Using an Index

Having discussed the fundamental global data organizations, we now
discuss the algorithms to search for a single key or a key range in
each data organization. For each of the choices, we provide definitions,
examples, and the order of magnitude time cost. The decisions and their
impact are summarized in Tables 3.2 and 3.3. In order to handle the

3.2. Global Search Algorithms When Not Using an Index 27

radix

0b00 0b:01 0b10

range

[1-220) [220-1200) [1200-3000]

hash partitioning h(k)=0 h(k)=1 h(k)=2

partitioning logging epoch e1 epoch e2 epoch e3

Figure 3.2: The four partition-level data organizations. The assignment of a key-
value (k, v) pair to a partition can be based on which range of values key k lies
(range partitioning); based on the bit representation of k (radix); the value of the
hash on k; or the time interval when (k, v) arrived.

worst case, we assume that our algorithms cannot benefit from caching,
so all data is assumed to reside in the slowest level of the memory
hierarchy considered (e.g., disk). We first present the fundamental
algorithm classes for searching data when not using an index.

3.2.1 Full Scan

A full scan accesses all NB pages regardless of the data organization as
shown in Figure 3.3.
Applicable to: all data organizations for point or range queries.
Point and Range Query Performance. The performance of a full
scan depends only on the data size and the query selectivity which
together affect the overheads of predicate evaluation and writing the
output (Kester et al., 2017). In terms of I/O cost, a full scan will
always have to read O(NB) pages of data to find the required key-
value pair(s). As a rule of thumb, a full scan should be used if (i) the
search/update/delete has no information about the data organization,
(ii) the data is stored using no organization, (iii) the data is stored
based on logging but the key is not time-monotonic (sequential), or (iv)
the query will return a large fraction of the initial data collection.

28 Dimensions of the Data Structure Design Space

Optimizations. While a full scan has to access the entire data collection,
it can be significantly accelerated by techniques that exploit hardware.
The two main techniques are (i) parallelization, which breaks the data
collection into disjoint chunks and use a different processor to scan each,
and (ii) vectorization, which exploits SIMD commands to increase the
throughput of comparisons.

scan

Figure 3.3: A full scan can be applied to any data organization strategy

3.2.2 Binary Search

A binary search uses the order in the data to avoid accessing all pages.
Specifically, a binary search needs to access only a logarithmic (base 2)
number of pages for point queries as shown in Figure 3.4. For example,
if there are a million pages, then binary search will read only 20 pages.
Applicable to: sorted, range-partitioned, order-preserving hash, and
radix-partitioned organizations, for point as well as range queries.
Point Query Performance. Binary search finds the desired value in a
sorted collection after O(⌈log2(NB)⌉) accesses. If the data is partitioned
in P partitions, the search must first find the correct partition and
then, in the worst case, search all pages in that partition, requiring
O(⌈log2(P)⌉ + ⌈NB/P ⌉) accesses.
Range Query Performance. If the query is a range query, the
binary search for the first key will be followed by sequential accesses
to subsequent pages. The cost of a range query includes a component
that depends linearly on the fraction of the data retrieved (s%). In the
case of a sorted data organization, the number of matching pages is
⌈s% · NB⌉. Including the search for the first key, the cost of a range
query on a sorted data organization is O(⌈log2(NB)⌉ + ⌈s% · NB⌉). In
the case of range partitioning, a range query will read k = ⌈s% · P ⌉
partitions. Thus, the cost of a range query (when there is no order
within partitions) is O(⌈log2(P)⌉ + k · ⌈NB/P ⌉) pages.

3.2. Global Search Algorithms When Not Using an Index 29

Optimizations. In addition to binary search, a sorted collection can be
searched using an m-ary search with m groups, leading to O(logm(N))
search cost (Schlegel et al., 2009). The main idea of this algorithm is
that we divide the search space (initially the entire array) into m parts.
At the first step, an m-ary search uses SIMD commands to load and
compare the values at m positions of the array to identify which of
the m parts we should look into. An m-position search is performed
recursively within the selected part.

binary search

Figure 3.4: A sorted or a range partitioned data organization can benefit from
binary search (and even more from an m-ary search).

3.2.3 Direct Addressing

Direct Addressing is the strategy of mapping a key directly to a location,
perhaps after some transformation. For example, a hash structure based
on a function H will map a key-value pair (k, v) to a block whose
location is H(k). By contrast, binary search trees, B-trees, and other
such structures map keys to locations based on a series of comparisons.
Applicable to: hash and radix partitioned organizations for point and
range queries.
Point Query Performance. When there are few collisions, a hash
index needs to read only one data block to answer a point query as shown
in Figure 3.5. Radix partitioning maps a prefix of the bit representation
of the key to a partition ID. In disk-based implementations, the hash or
the radix of the key points to a unique position of an array that hosts a
partition ID and its offset. Note that, as in every partitioning strategy,
the entire partition containing the desired key might have to be read if
there is no internal organization.
Range Query Performance. Both radix-based data organizations
and order-preserving hashing support range queries. Specifically, a range

30 Dimensions of the Data Structure Design Space

query will first perform a constant time lookup to find the beginning of
the range of the qualifying entries, and then it will scan the qualifying
entries leading to total cost O(1 + k · ⌈NB/P ⌉) where k is the number
of partitions read for the range and NB/P is the average number of
pages per partition.

direct addressing

Figure 3.5: Direct addressing is able to access the desired data in a point query
without an expensive search if the underlying data organization is hash or radix
based.

3.2.4 Data-Driven Search

Data-driven search consists of a class of search algorithms that lie
between sorted search and direct addressing. Data-driven search uses
available knowledge of the data distribution as a hint about how to
navigate the data, as shown in Figure 3.6.
Applicable to: sorted, range partitioned, and radix partitioned orga-
nizations for point and range queries.
Performance. In contrast to binary search which discards roughly
half the data at each step, data-driven search potentially discards
a much higher fraction of the data by using information about the
data distribution. For example, if the key range is between 10 and
20 million, the keys are close to uniformly distributed, and the key
is 18,542,123, then interpolation search (Perl et al., 1978; Van Sandt
et al., 2019; Yao and Yao, 1976) will perform a first search at about
the 85th percentile of the array. The time complexity is calculated
to be on average O(log2(log2(NB))) for a uniform dataset (Perl et
al., 1978; Yao and Yao, 1976). Other generalized search algorithms
(Kraska et al., 2018) improve upon binary search in the face of a
non-uniform data distribution by storing some characterization of that
distribution.

3.2. Global Search Algorithms When Not Using an Index 31

Exponential search (Bentley and Yao, 1976) starts by searching for k

at a position bound = L. If the value v at position L is less than k, then
it searches at bound = 2 · bound. Otherwise, it initiates a binary search
between the beginning of the array and the current bound. Overall,
exponential search has time complexity O(log2(iB)), where iB is the
page index where the search key is located in the data collection, leading
to O(log2(NB)) worst-case performance. In practice, this algorithm can
be much faster than simple binary search when the search key is located
at the beginning of the array, but it may be slower (due to the additional
cost of re-initiating binary searches) when the key in question is near
the end of the array.

data-driven searchf(x)

Figure 3.6: Data-driven search uses information about the data distribution to
reduce the number of search steps taken. This can be much faster then binary search
and sometimes faster than m-ary search.

3.2.5 Summary of Access Costs without Indexing

Table 3.2 presents the search cost for a point query for each of the
possible combinations of data organizations on the one hand (first
column), and search algorithms on the other hand (columns 2-5). These
costs assume that none of the data is in memory when the query
begins. Note that a missing entry (marked as “–”) indicates that the
combination of data organization and search algorithm is not feasible.

Table 3.3 presents the search cost for a range query for each possible
combination of data organizations and search algorithms, again assuming
that none of the data is in memory when the query begins. Note that
we add one more row to refer to order-preserving hash partitioning (OP
hash part.).

32 Dimensions of the Data Structure Design Space

Table 3.2: Costs for point queries. All organizations support scans, but some
organizations can be much faster using other search strategies (binary, direct, and
data-driven). M-ary changes the base of the logarithm from 2 to m (not shown).

Search Algor. → Scan Binary Direct Data-driven
Organization ↓

none O(NB) – – –
sorted O(NB) O(⌈log2(NB)⌉) – O(log2(log2(NB)))
logging O(NB) – – –
range part. O(NB) O(⌈log2(P)⌉ + NB/P) – –
hash part. O(NB) – O(NB/P) –
radix part. O(NB) – O(NB/P) –
part. logging O(NB) – – –

Table 3.3: Costs for range queries. Scanning always works, but other methods may
work faster especially when the hardware supports random access page access that
is as fast as sequential page access.

Search Algor. → Scan Binary Direct Data-driven
Organization ↓

none O(NB) – – –
sorted O(NB) O(⌈log2(NB)⌉ + ⌈s% · NB⌉) – O(log2(log2(NB)))
logging O(NB) – – –
range part. O(NB) O(⌈log2(P)⌉ + k · ⌈NB/P ⌉) – –
hash part. O(NB) – – –
OP hash part. O(NB) – O(1 + k · ⌈NB/P ⌉) –
radix part. O(NB) – O(1 + k · ⌈NB/P ⌉) –
part. logging O(NB) – – –

3.3 Search When Using an Index

An index is auxiliary metadata2 that accelerates any search structure
operation by rapidly locating the position of the relevant key. This
applies to searches, but also to modifications, because, in many common
data structures (e.g., binary search trees, hash indexes and B+-trees),
insert, delete, and update operations must first find the location of the
target key-value pair to be modified.

In the previous subsection, we covered the different ways to search
a data set depending on the employed data organization but without
using any indexes. In this section, we discuss the different index design

2Note that in classical database systems literature, indexes may also be the main
file organization as discussed by Ramakrishnan and Gehrke (2002), however, even in
this case, the index metadata is in addition to the base data the resides in the leaf
nodes of the index as part of the value of the key-value pairs.

3.3. Search When Using an Index 33

options to accelerate the search process for any key-value operation.
Before that, we present our memory management assumptions.

3.3.1 Memory Management

In this section, we assume the availability of M page frames, which can
be used to store the highest levels of an index (those near the root) in
fast memory while the remaining index pages and all data pages reside
in slower memory.

Achieving this ideal memory utilization requires a buffer replacement
policy that attempts to keep the most useful pages in memory. The
widely-used least recently used (LRU) replacement policy keeps the
M most recently used pages, assuming that future accesses will most
probably be similar to recent accesses. However, this approach does not
necessarily keep the upper levels of the index in memory. For example,
when a search on a B+-tree accesses a particular leaf node, LRU would
retain that leaf node, even though that leaf node may not be accessed
again for a long time. It would be better to use that memory for an
interior node of the index. For that reason, a wealth of buffer replacement
policies improve on LRU in the sense of tending to retain the highest
level nodes of the index (i.e., those closest to the root) have been
proposed by Chan et al. (1992), Graefe and Kuno (2010b), Johnson and
Shasha (1994), Megiddo and Modha (2004), O’Neil et al. (1993), Sacco
(1987), and Stonebraker (1981). Because buffer replacement is beyond
the scope of this book, we assume the use of an idealized strategy that
keeps the nodes of the top levels in fast memory for purposes of our
cost model.

In the rest of this section, we relate the search algorithms described
in Section 3.2 to the corresponding indexing approaches.

3.3.2 Full Scan improved by Filter Indexing

A scan is perhaps the most fundamental operation because it is used
when there is no order in the data, either globally or locally.

To speed up a scan, a filter index can be used. A filter index is an
in-memory index that can indicate that a certain disk-resident page
or partition is irrelevant to a given query and, therefore, need not be

34 Dimensions of the Data Structure Design Space

searched. We will refer to the portion of data summarized as a “chunk”
since the granularity can be one of a partition, a page, or a group of
pages. Overall, the goal of filter indexes is to reduce the scan ratio, that
is the fraction of pages that need to be scanned. Figure 3.7 visualizes
filter indexing.

15 26 11 33 5 78 45 76 44 25

min:5, max:78

Figure 3.7: Filter indexes incorporate per-partition summaries that allow scan
implementations of key searches to skip some partitions. In the example, the partition
has no particular local data organization, and the filter stores the minimum and the
maximum keys in the partition.

There are a variety of such structures: Zonemaps (Moerkotte, 1998),
Column Imprints (Sidirourgos and Kersten, 2013), as well as Bloom
filters (Bloom, 1970) and its variants (Bender et al., 2012; Breslow
and Jayasena, 2018; Deeds et al., 2020; Fan et al., 2014; Lang et al.,
2019; Pandey et al., 2021). A filter index rapidly determines whether
it is safe to avoid accessing a partition of base data. For example, a
Zonemap summarizes each partition using that partition’s minimum
and maximum key. These small summaries allow a search, update, or
delete to completely skip a partition (or potentially a page within a
partition) when the search key falls outside its range. Similarly, Column
Imprints store a lightweight histogram per page such that if the search
key does not lie within that histogram, then that page can be skipped.

While the above methods are most useful when there is range-
partitioning, Bloom filters use hashing to index each element of a chunk
by setting a number of bits of a bitvector as shown in Figure 3.8. Bloom
filters can allow a point query to completely skip accessing an entire
chunk when the bitvector indicates that the query’s argument cannot
be in that partition. Note that a positive result from a Bloom filter

3.3. Search When Using an Index 35

indicates merely that the query argument could be in the partition.
There is some probability of a false positive. This probability is tunable:
devoting more space to Bloom filters by using more bits to index the
same number of elements will reduce the false positive probability.

	𝑣!

ℎ! 𝑣"
ℎ" 𝑣"

ℎ# 𝑣"
1 1 11 1 1

ℎ! 𝑣#
ℎ" 𝑣#

ℎ# 𝑣#

	𝑣"

ℎ! 𝑣!ℎ" 𝑣!
ℎ# 𝑣!

True negative

1 1 11 1 1

ℎ! 𝑣$
ℎ" 𝑣$

ℎ# 𝑣$

False positive

1 1 11 1 1

	𝑣#

𝑚 bits

𝑚 bits

𝑚 bits

Figure 3.8: A Bloom filter stores membership information of a set of n elements
using a bitvector of m bits. The accuracy of a Bloom filter depends on the ratio of
bits per key (BP K = m

n
). In order to insert a key, we hash it with k (three in the

example) different hash functions that map keys to the range 0..k − 1, and we set
the corresponding bits to 1, as shown in the top part of the figure. Every other bit
remains 0. When searching for a key, the same process is followed. When we search
for a key that was not inserted in the Bloom filter, then either one or more of the
tested bits will be set to 0 (middle part of the figure), leading to a true negative,
or all k bits will be set to 1 due to the insertions of other keys (bottom part of the
figure), leading to a false positive.

Search Cost. Suppose the page size in bytes is E · B (that is, the
number of entries per page × entry size). The total size of a Zonemap
filter index is O(2 · NB · K), where K is the key size. A Column Imprint
that uses histograms of H bytes per page has a total size of O(NB · H)
bytes. A collection of Bloom filters per partition (or a single Bloom
filter for the entire data set) has total size O(NB · B · BPK/8) bytes,

36 Dimensions of the Data Structure Design Space

where B is the number of entries per page, and BPK is the number
of bits per key for the Bloom filter. By contrast, a full index is much
larger. Consider for example an in-memory hash index with load factor
lf (with a common value of 90%-95%). The total size of such a hash
index is O(NB · B · E/lf).

Assuming that the memory buffer has enough space to hold this
small amount of metadata, the cost of a point query using filter indexes
over sorted data can be as low as O(1), and over range partitioned data
as low as O(NB/P), while for other data organizations, it depends on
the data distribution per partition (Moerkotte, 1998; Sidirourgos and
Kersten, 2013).
Filters vs. Sparse Indexing. Filter indexing is different from sparse
indexing (Dong and Hull, 1982; Ramakrishnan and Gehrke, 2002).
Consider a point query on key k. A sparse indexing approach will point
to at most a single data page that might contain k. By contrast, a filter
indexing approach may indicate that multiple pages may contain k. The
key space must be partitioned for sparse indexing: sorted for B+-tree
style indexes or partitioned based on a function for hash indexes.

A filter index benefits from partitioning but does not require the
key space to be partitioned. For example, if the dataset is not sorted
and a key k falls in the range of several pages, then Zonemaps would
indicate that all those pages would have to be searched, but might still
filter out the vast majority of pages. If the data is sorted, the value of
a point query will always belong to the range of a single page. In the
sorted case, a filter index that lies in main memory has the same I/O
cost as a sparse index.

3.3.3 Binary Search implemented as Binary, m-Ary, B+-trees

As we have seen before, when the data is sorted, a binary search leads
to a logarithmic base 2 cost of searching by safely discarding half of the
data in every iteration. That yields a cost of O(log2(NB)) page reads.

Indexes on sorted data effectively gain in read performance at the
cost of memory. Specifically, the index increases the base of the loga-
rithm from 2 to hundreds or more. This can have an enormous impact
on performance. For example if NB is a billion, log2(NB) = 30, but

3.3. Search When Using an Index 37

log1000(NB) = 3. To achieve this, we would need to design tree-based
indexes where every node has a fanout of about 1000, implying that
each search on a node discards 999/1000 of the remaining possible
nodes. The levels of the tree are connected via pointers that help to
point a search to a limited number of memory/disk accesses per level.
The concept of pointers between levels is called fractional cascading
(Chazelle and Guibas, 1985) and is the defining principle of tree indexes.
Figure 3.9 visualizes a search tree index.

sorted/range partitioned

Index

Figure 3.9: Sorted search can be accelerated with a search tree. The underlying
data should be sorted or at least range-partitioned to benefit from the search tree.

Search Cost: O(logm(NB)).
Tradeoffs: While m-ary trees for large fanout values of m enable
fast searching, such trees must also be maintained when the sorted
collection of keys is modified due to new data or updates. In order
to facilitate dynamic workloads, both the sorted collection and the
auxiliary metadata are organized in logical nodes, often having some
empty space. The resulting tree can be modified in place (e.g., by
inserting new entries into the empty space of a single leaf node) without
having to move large amounts of data. Empty space, however, comes at
a cost. Interior tree nodes with empty space will not only occupy more
total disk space but will also have a smaller fanout than full nodes. Less
fanout will, in certain cases, imply an increase in the number of levels
of the tree.

3.3.4 Direct Addressing implemented as Hash Indexes

Instead of scanning or iteratively searching, an alternative approach is
to use the binary representation of a key k to directly locate where k

and its associated value are physically stored through hashing or radix

38 Dimensions of the Data Structure Design Space

search. Hashing is particularly good for highly skewed distributions
because it assigns nearly equal keys to different partitions. For example,
the simple hash function h(k)=k mod 101 will hash 100 consecutive
keys to 100 different partitions. Figure 3.10 shows a visualization of
hash indexing.

hashed

Figure 3.10: The ball represents a function that takes a key and maps that (or
"kicks" it) to an address of a partition where the key is present if that key is anywhere
in the data structure. Thus, hash indexing can lead a point query directly to the
location of the desired data.

Search Cost: O(NB/P) on average. Note that if the partitions have
different sizes, the worst-case cost depends on the size of the largest
partition.

3.3.5 Direct/Partial Key Addressing implemented as Radix Trees

Another approach that can be seen as a hybrid of classical search trees
and direct addressing is a search tree with compressed internal nodes,
or a radix tree. Though the first applications of Radix trees were to
store strings, Radix trees are now frequently used to store arbitrary
key-value pairs using the bit-wise (radix) representation of the key when
searching. Radix trees (also called prefix trees or tries) support searches
by associating portions of a key with each edge in the tree as shown in
Figure 3.11 (Morrison, 1968). The common prefix of all key strings is
stored in the root node. Navigating a radix tree entails matching bits
to each edge. In the context of data management, the design of Radix
Trees has been refined to reflect hardware considerations (Mao et al.,
2012) and data properties (Leis et al., 2013).

Radix trees have other applications as well. For example, Weiner
(1973) proposed suffix trees. Suffix trees take as input a set of key

3.3. Search When Using an Index 39

strings and form the radix tree of all suffixes of those strings. This data
structure enables efficient substring searching, along with searches of
consecutive substrings, longest repeated substrings, longest common
substrings, and other similar searches within the indexed collection of
strings.

A classical search tree (e.g., B+-tree) has internal nodes that use
values from the search domain as “separators” to create the internal
node hierarchy. Since all these values come from the same domain, each
node needs to store only the differentiating information. Now suppose
that we have a binary representation of the domain (or a radix) that
needs r bits to represent each indexed value.

0 1

11 00

10 10 10 10

{0,v0} ∅ {2,v2} {3,v3} ∅ ∅ ∅{6,v6}

A

0 110

00

{0,v0} ∅ {2,v2} {3,v3}

{6,v6}

B

01 10
11

Figure 3.11: A simple (A) full radix tree design, and (B) the adaptively compressed
counterpart. In the left subtree of tree B, three nodes having two children have been
merged into one node having four children. In the right subtree of tree B, edges
pointing to nulls are eliminated.

Given a key, a search using a basic radix tree will start at the root
and branch based on each bit of the key, in turn from left to right. To
improve space efficiency and reduce random access during tree traversals,
nodes that have valid values in only one child can be merged with the
child. Further space efficiency can be achieved by collapsing an entire
sub-tree to a single node. A simple example is given in Figure 3.11.
Radix trees can be compressed in two ways. The first is node merging,
where binary nodes are fused together with their parent nodes – shown
in the bottom left part of Figure 3.11(B). Node merging can be applied
recursively across multiple levels. The second is subtree removal, where
an entire subtree can be removed if there are no keys in its leaf nodes –

40 Dimensions of the Data Structure Design Space

shown in the rightmost part of Figure 3.11(B), where the subtree for
keys with prefix 10 is completely removed because neither 100 and 101
exists. Subtree removal compression is particularly effective for skewed
data. When the data is not skewed, all or most subtrees will have a key
in one of their leaf nodes.

A practical design is to use 4 or 8 bits of the radix in a single node
that would have 16 or 256 child nodes (Leis et al., 2013), respectively.
Such a radix-tree node fits in a few cache lines and maintains high
locality while offering effective navigation in the key domain. Radix
trees and their space-optimized variants efficiently support both point
and range queries.
Search Cost: O(⌈log2S (U)⌉) = O

(⌈
log2(U)

S

⌉)
, where U is the maximum

value of the domain, so ⌈log2(U)⌉ is the number of bits needed for that
maximum value, and S is the number of radix bits used per node. For
example for a 32-bit domain, if we use a radix tree with nodes storing 8
bits of the radix, the height of the tree would be log2232/8 = 32/8 = 4.
Note that the cost for a point search query on a radix tree does not
depend on the data size, but rather on the maximum possible value
of the domain. An optimization that would allow the search cost to
exploit the data distribution is to tune S dynamically to be different in
different parts of the domain (Leis et al., 2013) and to collapse paths of
the trees that lead to only one leaf node, as illustrated in Figure 3.11.

3.3.6 Model-Driven Search evolves into Learned Indexes

All indexes presented so far that target both point and range queries
maintain a sorted, range-based, or radix-based version of the data and
create meta-data for navigation purposes. The meta-data is based on
the data organization. Operations over the data structure may navigate
this metadata to reach the target data entries directly without having to
read the rest of the data. On the other hand, this navigation metadata
may require a lot of memory space as it involves explicitly maintaining
key order.

An alternative index design option is to maintain key order as a
model instead of explicit keys. The basic idea of model-driven search
algorithms is to calculate the expected position of a data entry using

3.3. Search When Using an Index 41

knowledge of the key distribution. For example, the original learned
index vision (Kraska et al., 2018) proposes to sort all data entries and
learn the distribution of the data by building a machine learning model.
Searches over the data structure then use the model to predict the
expected location of a data entry given its key. Given that prediction,
a query may have to search for the exact slot of the data entry in the
data page. However, as long as the model points to the right data page,
the overall I/O cost is still reading a single page (e.g., for a point query).
This is illustrated in Figure 3.12.

learned
index

f(x)

f(x) f(x) f(x)f(x)

Figure 3.12: A hierarchy of models captures the data distribution in a learned
index design.

One approach to creating a learned index is to build a single model
to represent all data. For example, the model for a dense uniform
distribution might say that key k will be on page 1000 + k/100. This
means that the whole index is replaced by a single model. However,
this is an extreme approach, and the core idea may be further refined
by partitioning the space like a classical tree index and then making
further design decisions on how to navigate the additional structure.
Creating the last indexing level of a learned tree. State-of-the-art
learned index designs make the decision to first partition the sorted data
into many contiguous parts, called segments, each of which contains one
or more pages. Within each segment, a separate model can be created
that tries to achieve a desired error bound. This is necessary for good
model prediction and, thus, I/O performance. One way to think about
the segments and the models representing those segments is that they
represent the second to last level of a classical tree (i.e., the last level of
internal nodes of a B+-tree).

42 Dimensions of the Data Structure Design Space

Recall that in a classical multi-way tree, each interior node with
fanout F , has F pointers, one per target page, and F −1 key separators.
By contrast, a learned index node that employs a linear model approx-
imates the relationship between the F − 1 values and the F pointers
that have to be followed when searching using a linear approximation
of the form pos = value · α + β. Hence, instead of having to store F − 1
keys and F pointers, it needs to store only the two coefficients α and β,
the starting key of the segment as well as a single pointer/offset to the
segment.

By contrast, the leaf nodes of a learned index take the same space
as the leaf of a B+-tree. Thus the main advantage is that the interior
nodes take much less space, as illustrated in Figure 3.13.

Data file: 𝑁 entries

𝑁/𝐹 leaf nodes𝐹 − 1 keys
𝐹 pointers

Data file: 𝑁 entries

𝑁/𝐹 leaf nodes

2 coefficients &
starting position

Figure 3.13: Every non-leaf level in a B+-tree (top) stores the key and the pointer
for every child node. By contrast, for a learned index (bottom), the nodes above the
leaf level need to store only a coefficient and the starting position of each segment in
the level below.

In a learned index, each node uses a variation of a local interpolation
search. Instead of using the first and the last pairs of (key, position) to
perform the interpolation, a learned index finds the maximal size of a
segment that allows efficient search using an interpolated position. The
structure can even provide error guarantees with respect to position.

3.3. Search When Using an Index 43

Figure 3.14 shows an example of a two-segment approximation in a
learned index to match the data distribution (blue line) in comparison
with a simple interpolation search that might significantly misrepresent
the data distribution (red line).
Creating the rest of the indexing levels. Once the segments
have been created, approaches differ in how the rest of the navigation
structure is created. For example, Ferragina and Vinciguerra (2020)
propose the PGM index that recursively creates more models in order
to index the segments themselves, thus, creating a full learned tree of
models. On the other hand, Galakatos et al. (2019) propose FITing-Tree
that uses a classical B+-tree to index each segment. The latter approach
creates a hybrid tree that blends classical nodes and models for the last
level, i.e., the most space-consuming level of an index and the one that
really “points” to the data.

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16 18

po
sit

io
n

key domain

learned index with 2 segments

interpolation search

actual keys

Figure 3.14: The node of a learned tree index approximates the positions using
linear regression. In contrast to an interpolation search that would simply use the
first and the last point of the dataset (red line), a learned index node creates one
or more regression lines (blue lines) whose offsets need not be the lowest key in
a subtree. In general, using multiple segments with distribution-dependent length
allows a learned index to better match the distribution. In this example, if we had
to use a single segment (red line) it would not accurately capture the distribution.
Breaking it into two segments captures the distribution almost perfectly.

Performance Tradeoffs. Learned indexes reduce the size of the index
at the expense of potential indexing errors in which a search accesses
an incorrect child node and must therefore perform additional reads to
correct such errors. In addition, learned indexes may require substantial

44 Dimensions of the Data Structure Design Space

maintenance effort during updates. If an update changes the distribution
of keys substantially, then the data structure needs to retrain its model(s)
which can be time-consuming (Ding et al., 2020b). If updates avoid
retraining models, then future searches can be very slow because the
estimated location of data entries may be highly inaccurate.
Search Cost: The ideal cost of a learned index is O(1) since it directly
calculates which page to access using very small metadata that can easily
fit in memory and then only one page needs to be read. However, this
ideal cost may be unobtainable if the underlying key distribution has
several subranges of keys with duplicates or with different distributions,
in which case a regression model will be inaccurate and there will be
position errors, requiring accesses to many leaf pages. Even when the key
distribution is friendly, learning the distribution may require significant
time.

Overall, there are three different cost components to be considered:
the index access cost before the learning is completed, the cost when
it is completed, and the cost to retrain the models after modifications.
Empirically, the search cost is O(1) for point queries and O(k) for
a range query where k pages are required, but the learning cost has
no fixed upper bound and depends on the complexity of the models
involved as well as the data properties and the frequency of updates
(Kraska et al., 2018).

3.3.7 Summary of Access Costs with Indexing

Here we summarize the cost of point queries and range queries when
using indexing for searching, along with the cost to insert new entries
in each of the indexing strategies. We assume that we have M pages of
available memory. When M is larger than the size of a filter index (e.g.,
when M > 2 · NB · K for Zonemaps) then the filter index can be stored
in memory and offer the maximum possible benefit when searching.
Similarly, the coefficients from learned indexes have a small memory
footprint so can be kept in memory. For B+-trees and their variants,
the top levels (as many as will occupy M pages) will reside in memory,
assuming an ideal page-replacement algorithm.

3.3. Search When Using an Index 45

Table 3.4: Search cost for point queries when using an index. Each row corresponds
to one data organization decision (“Org.”), and each column corresponds to an
indexing decision. Note that some combinations are impossible, that is, the specific
index type would not help find a key given that data organization (marked as “–”).

Index → Filter Search Hash Radix Learned
Org. ↓ Index Tree Index Tree Index

none O(NB) – – – –
sorted O(1) O(⌈logB(NB)⌉ − l) – O(⌈logS (U)⌉ − l) O(1)
logging O(NB) – – – –
range part. O(NB/P) O(⌈logB(P)⌉ − l + NB/P) – O(⌈logS (U)⌉ − l) O(NB/P)
hash O(NB) – O(1) – (open)
radix O(NB/P) O(⌈logB(NB)⌉ − l) – O(⌈logS (U)⌉ − l) (open)
part. logging O(NB) – – – –

Table 3.5: Search cost for range queries with selectivity s% when using an index.
The table follows the same structure as Table 3.4.
∗Note that the range query using a hash index used the number of entries N and
can work only in the case of a discrete domain.
∗∗Further, note that order-preserving hashing will allow for the near-optimal cost of
only reading the relevant data pages sequentially.

Index → Filter Search Hash Radix Learned
Org. ↓ Index Tree (P Q + . . .) Index Tree (P Q + . . .) Index

none O(NB) – – – –
sorted O(⌈s% · NB⌉) O(⌈s% · NB⌉) – O(⌈s% · NB⌉) O(⌈s% · NB⌉)
logging O(NB) – – – –
range part. O(⌈s% · NB⌉) O(⌈s% · NB⌉) – O(⌈s% · NB⌉) O(⌈s% · NB⌉)
hash O(NB) – O(⌈s% · N⌉)∗ – –
OP hash O(NB) – O(⌈s% · NB⌉)∗∗ – –
radix O(⌈s% · NB⌉) O(⌈s% · NB⌉) – O(⌈s% · NB⌉) (open)
part. logging O(NB) – – – –

Table 3.4 shows the cost of a point query for each possible indexing
methodology given the data organization. Table 3.5 shows the cost for
a range query with selectivity s%. When a query uses a search tree
or a radix tree, the cost is calculated by adding the corresponding
point query cost from Table 3.4. Further, note that the hash index cost
depends on the number of entries N and not on the number of pages
NB, and is applicable only when the domain is discrete and we can
map a range query to multiple point queries. This mapping approach
quickly becomes inefficient even for very selective queries. On the other
hand, in case an order-preserving hashing approach can be used, the
range query will have a near-optimal cost.

46 Dimensions of the Data Structure Design Space

Finally, in the case of learned indexes, we have identified a few
combinations that are possible but currently, they are the subject of
active research, and we mark them as “(open)”.

Table 3.6: Index insertion cost.

Index Cost

Sparse Index O(1)
Search Tree O(⌈logB(NB)⌉ − l)
Hash Index O(1)
Radix Tree O(⌈logS (U)⌉ − l)
Learned Index (open)

Last but not least, we discuss the insert cost in the basic classes of
index structures in Table 3.6. Recent literature contains some approaches
for updating learned indexes (Ding et al., 2020b), however, the question
of how to perform efficient updating is still open as of this writing.

3.4 Local Data Organization

After deciding on the global data organization, the search methods,
and the use of indexing to accelerate the location of the correct page
in Sections 3.1, 3.2, and 3.3, we must now decide on the local data
organization, i.e., how to organize each partition. A given data structure
may even organize different partitions differently. Below, we present the
five local data organizations which are visualized in Figure 3.15.

In addition to the general goal of creating metadata to help find the
sought-for data items fast, local search introduces new goals. One is that
local data organizations should fit into cache lines to eliminate accesses
to RAM. On certain hardware, the local organization is designed to
accommodate SIMD instructions better. Further, operations in local
organizations often try to avoid a new memory allocation at every insert
or update.
Logged. Entries to a partition are appended in time order to an array,
forming a log3.

3Please recall that the term “logged” here does not refer to a data structure
that supports recovery from failure (Bernstein et al., 1987), but rather to data being
appended in a time-ordered manner.

3.4. Local Data Organization 47

sorted

logged

hashed

range

cracked

Figure 3.15: The five local data organizations.

Hashed. The partition uses a hash structure internally to store (and
locate) the key-value pairs within that partition.
Sorted. The contents of the partition are maintained in sorted order
by key.
Range. The contents of the partition are maintained in a range-
partitioned manner by key, possibly with a non-sorted organization
with those sub-partitions.
Cracked. The contents of the partition are cracked. That is, they
are initially logged, but whenever a query (typically a range query) is
executed, the data may be adaptively organized to become sorted or
range-partitioned. Chapter 5 discusses this method and its generaliza-
tions in detail.
Performance Implications. Each local data organization has similar
performance implications at a local level as the corresponding global
data organization without indexes have at the global level. For example,
binary search is possible if the local data organization is sorted. The key
difference is that local data often fit in memory. In addition, making
different global and local decisions may result in hybrid cost models.
For example, a data organization may combine partitioned logging at
the global level with hashing, sorting, or cracking at the local level.

48 Dimensions of the Data Structure Design Space

3.5 Local Search

Once we decide on the local data organization, we must choose an exact
local search algorithm, that is, the algorithm for searching within each
partition.
Sequential Search. Any local data organization for the contents of a
single partition or page can be searched using sequential search, which
examines all key-value entries.
Hashing. If the data is organized locally using a hash structure, then
answering point queries through hashing is the fastest approach.
Sorted Search. When the data within a partition is sorted, a sorted
search algorithm can be employed such as binary search, m-ary search,
or some data-driven search algorithm. The considerations are analogous
to those described in Section 3.2 for a sorted global organization.
Hybrid Search. Finally, for hybrid local data organizations like range-
partitioned, a hybrid sorted-sequential search can be employed. For
example, binary search might locate the correct mini-partition, which
would then be scanned.

3.6 Modification Policy: In-place vs. Out-of-place

For every organized data collection, an incoming modification (that is
update, insert, or delete) on key k will either:

• Perform an in-place modification: on insert, place the pair (k,v)
somewhere in the structure if k is nowhere present; on update,
replace the value associated with k by a new value; on delete,
remove k and its associated value. The net result will be to preserve
the single-copy invariant that there is always at most a single
instance of k in the structure. This invariant holds for historically
familiar data structures such as hash structures and B-trees.

• Perform an out-of-place modification: every modification will
manifest as an append of a pair (k,v) in some previously empty po-
sition. The key k may therefore occur many times in the structure,
leading to a multi-copy data organization. A search that follows

3.6. Modification Policy: In-place vs. Out-of-place 49

a modification on k must determine which key-value pair for k

was the most recent and return the associated value (which will
be a “tombstone” when k is deleted, indicating that there is no
value associated with k). Out-of-place modifications are typically
followed by periodic eliminations of duplicate and invalid items
to reduce read and space amplification.

3.6.1 In-place Modifications

An in-place modification normally conforms to whatever global and
local data organization was present before the modification occurred.
For example, if we have a sorted collection and we insert a new key-value
pair (k, v), it will have to be inserted in the position dictated by the rank
of k in the sorting order as shown in Figure 3.16. If the data organization
is range partitioning, the new item should be placed physically in the
corresponding partition. In-place modification is the policy used in
basic data structures including textbook B+-trees, hash indexes, sorted
linked lists, and others. In-place modifications on such data structures
enjoy high read performance but may incur a reorganization burden for
modifications.

in-place

Figure 3.16: In-place modifications insert a new key-value pair (k, v) in the position
that corresponds to k in the current data organization. This may require moving
several existing entries to “make room” for the entry. If the modification is an update,
the value is updated and subsequent entries have to move if the value has a different
size from the previous value associated with k. A delete may require contracting
entries unless an implementation chooses to mark an entry as deleted.

Impact on PyRUMID Costs. The cost of an in-place modification is
equal to the cost of a point search to find the key-value pair to modify
and at least one more write access to ensure that the updated key-value
pair is on disk. The cost of this approach is presented in Table 3.6.

50 Dimensions of the Data Structure Design Space

out-of-place

Figure 3.17: Out-of-place updates are directed to new empty positions without
disturbing the existing data organization. This leads to potentially multiple copies
(when modifications update existing entries), and the need to garbage collect invali-
dated entries periodically to reduce space wastage.

3.6.2 Out-of-place Modifications

An out-of-place modification on key k avoids interfering with the current
data organization. Instead, the modification may be stored separately
from any other instances of k in the data structure. Following the
paradigm of the Log-Structured Merge (LSM) Trees originally proposed
by O’Neil et al. (1996) and surveyed by Luo and Carey (2020), out-of-
place modifications are (a) logged as part of an in-memory container, so
modifications require zero disk accesses and (b) they do not affect the
organization or accessing strategy of the pre-existing data, as shown
in Figure 3.17. In an LSM-tree, any new or modified entry is simply
appended in a memory-resident buffer. When the buffer becomes full, it
is pushed to a container on disk as a set of key-value pairs. As a result,
any read query may have to search through multiple data containers
to provide the final answer, as shown in Figure 3.18. Space-wise, out-
of-place modifications allow for duplication because several key-value
pairs may exist for a given key k.
Consolidation. Accumulated modifications may create invalid data
entry either through deletion or through updating. These invalid copies,
in turn, increase the space amplification of the data structure and the
read amplification, leading to worse read performance since more data
needs to be sifted through to find the desired data entry. To address
this, out-of-place modifications are typically followed by periodic consol-
idations that merge existing data. For example, in an LSM-tree setting,
different sorted runs are merged into a single sorted run. During this con-
solidation phase – which is also termed compaction, garbage collection,

3.6. Modification Policy: In-place vs. Out-of-place 51

in-place
out-of-place

read query

read query

Figure 3.18: The modification policy affects the way we execute read queries. An
out-of-place modification allows multiple versions of the same key in different portions
of the data, so both the base data and the out-of-place buffer have to be searched.
On the other hand, in-place modifications maintain only a single valid copy per key
in the base data organization.

or simply merging – duplicates and invalid entries are discarded. Note
that consolidation necessarily re-writes data previously appended, hence
it increases the write amplification, however, it reduces the number of
sorted runs that need to be accessed, thus benefiting read performance.
This is a classical manifestation of the three-way tradeoff between read,
update, and storage costs as outlined in Section 2.3.
Impact on PyRUMID Costs. Out-of-place modifications aggressively
minimize the modification cost at the expense of both increased read
cost and increased space utilization. When an out-of-place modification
appends to a buffer in main memory, it requires zero disk accesses.
Searches, however, must find the appropriate partition or page and may
perform local re-organization. Practical designs of systems that employ
out-of-place modifications, like LSM-based key-value stores, reduce the
space and read amplification by merging sorted runs to form fewer
longer sorted runs that have fewer or no duplicates and are easier to
search. A basic design for an LSM-tree is shown in Figure 3.19. The
LSM-tree data structure is discussed in more detail in Section 4.8.
A Practical Comparison of In-Place vs. Out-Of-Place. When
compared with an in-place approach, out-of-place modifications signifi-
cantly reduce the write amplification when ingesting data. For example,
Sears and Ramakrishnan (2012) point out that B+-trees may have a
write amplification of up to 1000, while out-of-place modifications in
LSM-based key-value stores have significantly smaller write amplifica-

52 Dimensions of the Data Structure Design Space

18127

9

12 18

2 7 25 2 7 9 12 18 25

3 4 5 9 12 15 25 31 2 4 53 9 15 25

insert 18

313 4 5 9 12 15 25 31

1

flush buffer & compact
with the file in Level 1

2 Level 1 saturated;
initiate compaction

3

compact the single file
from Level 1 with the

file in Level 2

4

compaction: every compaction job compacts
all data from two consecutive levels

5

Level
0

1

2

0

1

2

0

1

2

memory buffer level capacity file (SST) file to compact

Level Level

Figure 3.19: An LSM-tree comprises a memory buffer and multiple levels with
sorted runs in storage that have exponentially increasing sizes. Once the buffer is
full, the entries are sorted and flushed to the next level. If the level already contains
data, then the current data and the incoming data are merged in a process called
compaction, and if after the compaction, the level reaches its maximum capacity, it
is flushed to the next level where the same process will be repeated.

tion, typically between 10 and 40, leading to a 25×-100× more efficient
ingestion (Sarkar et al., 2021; Dong et al., 2017). In earlier work, Sears
and Ramakrishnan (2012) showed that for an ingestion-only workload on
a (then) contemporary SSD, bLSM, their LSM-based system, achieved
32K op/s as opposed to 2K op/s for baseline InnoDB, which was the
B+-tree-based storage engine of MySQL. Though technology contin-
ually evolves, the reduced write amplification of LSM-trees and their
variants compared with in-place data structures gives LSM structures
an advantage for insert-heavy workloads.

3.6.3 Differential Out-of-place modifications

A variation of out-of-place modifications is the concept of differential
out-of-place modifications. When updating the value associated with
a key k, differential out-of-place modifications store key k and the
difference from the old value associated with k rather than storing the
entire new value (Severance and Lohman, 1976), potentially saving
space. This allows for space-efficient updating but may incur higher
costs during read queries because it may be necessary to reconstruct the
value associated with k from several key-value pairs. This differential
approach is most useful when the values are large (e.g., image or video
files) and the modifications can be expressed succinctly. The differential
approach would not, however, be useful for values consisting of integers
or floating point numbers or modestly-sized strings.

3.7. Buffering 53

Impact on PyRUMID Costs. Differential out-of-place modifications
reduce space consumption at the expense of more expensive searches
because they require reconstructing the current logical value from a
base and possibly several differential values.

3.7 Buffering

In addition to using main memory to index metadata, main memory
can be used to buffer read and write requests. The goal is to apply
multiple requests (typically called a “batch”) in one go.

3.7.1 Buffering Read Requests

A typical goal of buffering read requests is to apply several or all such
requests together on each data partition. Such batching of requests will
normally cause an increase in individual query response time (because
read requests don’t return any value while they are buffered) but may
result in higher overall throughput. The improvement in throughput
comes from the ability to bring a partition into memory and then
process all the requests of the buffer on that partition.
Examples. Analytical data systems employ shared scans (also known
as cooperative scans) (Arumugam et al., 2010; Candea et al., 2009;
Giannikis et al., 2012; Harizopoulos and Ailamaki, 2003; Harizopoulos
et al., 2005; Johnson et al., 2007; Mehta et al., 1993; Psaroudakis et al.,
2013; Qiao et al., 2008; Unterbrunner et al., 2009; Zukowski et al.,
2007), which batch multiple long running queries to exploit common
data accesses to achieve concurrent execution of long-running queries
with low CPU and disk utilization. A single access over the data set is
enough to answer all the queries of the batch provided there is sufficient
buffer space for the read requests and the bookkeeping to keep track of
which items qualify for which request.
Impact on PyRUMID Costs. Buffering reads increases the read
throughput at the cost of increased response time and additional space
to store the batched reads.

54 Dimensions of the Data Structure Design Space

3.7.2 Global Buffering of Modifications

The typical goal of buffering modification requests is to apply several or
all such requests together on each piece of data at one time, including any
needed reorganizations. This form of buffering and batching penalizes
reads that must scan the buffered modifications but increases modifica-
tion throughput because the page or partition can be reorganized just
once for the entire batch as opposed to once per modification.

Examples include cracking (Idreos et al., 2007a), buffer repository
trees (Brodal and Fagerberg, 2003) and fractal trees (Kuszmaul, 2014).
Another variant of buffering modifications creates additional metadata in
main memory to indicate where the new modification(s) will eventually
go in the base data structure (Héman et al., 2010). This leads to fast
query performance on both the base data and the pending modifications,
assuming that all the pending modifications fit in memory.
Impact on PyRUMID Costs. Every modification is associated with
the partition to which it belongs, but is placed in a buffer. The partition
is later reorganized with respect to the modifications in the buffer. This
reduces reorganization overhead overall but may increase search time
because the buffer may have to be scanned by reads to determine the
most recent value associated with a search key.

3.7.3 Local Buffering of Modifications

Further, buffered modifications can be stored locally on a per-partition
basis as opposed to in a global buffer for the entire data structure.
Examples include the Bϵ-Tree (Bender et al., 2015) which resembles
a B+-tree but also employs a buffer per internal node to accumulate
incoming modifications before forwarding them to the next level of the
tree (and, ultimately, to the corresponding leaf node). We will discuss
Bϵ-trees in detail in Section 4.3.

Localized buffering makes it easy to process each partition sepa-
rately. Choosing which partition to process may depend on how many
modifications have been buffered per partition (how “write-hot” each
partition is) and on search traffic to the partition.

3.8. Key-Value Representation 55

Impact on PyRUMID Costs. Similar to global buffering, local
buffering uses additional space in order to apply per-partition modifica-
tions. Processing a batch of modifications to a single partition tends
to be more efficient when using local buffering than when using global
buffering.

3.7.4 Cache Pinning as a Special Case of Buffering

A special form of buffering is cache pinning. While caching is not a
design dimension of an access method, cache pinning can be considered a
particular form of buffering. Instead of buffering requests, cache pinning
aims to ensure that frequently accessed data is kept in fast memory.
Access methods can identify frequently read items and pin them in
the cache. The net effect is to speed access to those items, sometimes
dramatically.
Impact on PyRUMID Costs. Cache pinning is the explicit request
to keep popular or useful pages in the cache. It guarantees lower latency
for pinned page frames but leaves less cache memory available for the
remaining pages.

3.8 Key-Value Representation

Independently of the index design, we have to decide how to physically
lay out keys and values. This is called key-value representation. Below,
we present the different options for content representation.
Key-Value Separation. The first decision is whether to store keys
and values physically close to one another. The default approach of
most data structures is to collocate them. However, because the value is
not used when searching, separating the key from the value can increase
the speed of searching (Lu et al., 2016).

3.8.1 Key-Record

A natural way to index a table is to associate an entire record with each
key. That is, a record constitutes the value in a key-value pair. This
approach is common in NoSQL data stores and heap files. The Key-

56 Dimensions of the Data Structure Design Space

Record representation is termed the alternative-1 data representation
in (Ramakrishnan and Gehrke, 2002).

This representation is used when the primary goal is to avoid addi-
tional disk accesses for the value after locating the key. It’s especially
useful when most or all of the associated record is needed. When only
part of the record is typically needed, one can choose to store just those
parts of the record with the key.

3.8.2 Key-Pointer (Offset)

When the access method is purely in-memory or uses pointer swiz-
zling (Wilson, 1991) to convert offsets to in-memory addresses (Graefe
et al., 2014), the contents of the access method are represented by the
indexed key and the corresponding pointer(s). The Key-Pointer content
representation is useful when the record associated with a key does not
move and having the pointer readily available accelerates data access.

3.8.3 Key-RowID

When the records are stored in a separate file, then we can use a row ID
to find the position of the record associated with a key. This approach
is frequently used when the base data is stored in a separate heap
file in a database system, or when the records are stored in a separate
container like a log. This approach is termed alternative-2 or alternative-
3 (Ramakrishnan and Gehrke, 2002) and corresponds to the classical
database system design for secondary indexes. Note that record IDs can
be logical (e.g., primary keys), or physical (e.g., page ID and slot ID).

The Key-RowID content representation works well for queries that
do not care about a row’s contents (e.g., for count queries). It is also
useful when the workload issues frequent updates that change the size
of the row, which would cause significant reorganization cost if pointers
to records were stored in the index.

3.8.4 Key-Bitvector

A substantially different alternative is to associate a bit vector with each
distinct key value. This applies to cases where there are few distinct

3.9. Summary of the Design Space Dimensions 57

key values (e.g., gender, days of week) and relatively many records. The
set of bit vectors constitutes a bitmap (Chan and Ioannidis, 1998).

For example, suppose that we have three unique keys k1, k2, k3 and
overall we have five entries. Each key will be associated with a 5-bit
long bitvector. Now consider that the first entry is equal to k1, the
second and the fourth equal to k2, and the third and the fifth equal
to k3. The bitvector for k1 will be 10000, the bitvector for k2 will be
01010, and the bitvector for k3 will be 00101, as shown in Figure 3.20.

A=k3A=k2A=k1
k1
k2
k3
k2
k3

1

0

0

0

0

0

1

0

1

0

0

0

1

0

1

Array A

Figure 3.20: A bitmap index representation of an array of values.

Bitvectors are typically aggressively compressed using various encoding
schemes like Byte-aligned Bitmap Compression (Antoshenkov, 1995),
Word-Aligned Hybrid (Wu et al., 2006), Position List Word Aligned
Hybrid (Deliège and Pedersen, 2010) and others (Chan and Ioannidis,
1999; Colantonio and Di Pietro, 2010). A key benefit of most bitvector
encoding schemes is that data can be processed directly on the bitvectors
for several operations, including selection, projection, joins, and sorting.
Bit vectors can further exploit machine-efficient bitwise operations to
process data very fast (Ding et al., 2020a).

3.9 Summary of the Design Space Dimensions

This chapter has described the design space of access methods using
eight fundamental design dimensions, each representing a key decision
made when designing an access method. Table 3.7 shows the options in
each dimension.

58 Dimensions of the Data Structure Design Space

Table 3.7: Design space of access methods.

(A) Global Data (B) Search (C) Search (D) Local Data
Organization (§3.1) w/o Indexing (§3.2) w/ Indexing (§3.3) Organization (§3.4)

no org. full scan filter indexing logging
sorted binary search search trees sorting
logging direct addressing hash indexes hashing
range partitioning data-driven search learned indexes range recursive
hash partitioning cracked
radix partitioning
partitioned logging

(E) Local (F) Modification (G) Buffering (§3.7) (H) Contents
Search (§3.5) Policy (§3.6) Representation (§3.8)

sequential search in-place buffering reads key-record
hashing out-of-place buff. mod. globally key-pointer
sorted search diff. out-of-place buff. mod. locally key-rowID
hybrid search cache pinning key-bitvector

3.10 Data Structure Design Expert Rules

We now present a collection of expert rules that can help a designer
choose or invent an access method as a function of the workload and the
available resources. We find that the three most important factors are:
(i) the presence of range queries, (ii) the importance of modification
performance, and (iii) whether space amplification is tolerable.

1. Range-prevalent: If range queries are prevalent, then employ sorted,
order-preserving hashing, or range/radix partitioned data organiza-
tions (Section 3.1).

2. Point-only: If a workload has only point queries then hash parti-
tioning will often be faster than sorted or range partitioned global
data organizations (Section 3.1), and a hashed local data organiza-
tion will be preferable to a sorted local data organization (Section
3.4).

3. Selective queries: If point or range queries are selective, i.e., access a
small fraction of the entries, then indexing (as described in Section
3.2) and global data partitioning are helpful (Section 3.3).

3.10. Data Structure Design Expert Rules 59

3.a Small RAM: If the index does not fit entirely in main
memory and indexing is used, then the fan-out should be high
for the parts of the index on disk storage. So, a B+-tree or hash
index is preferable to a low-fanout structure, like a binary search
tree (Section 3.3.3 and Section 3.3.4).

4. Size-agnostic search time: When data size increases and we want to
decouple the search time from the data size, we can employ direct
addressing (Section 3.2.3) in the form of hash indexing (Section
3.3.4) if our workload has only point queries, or radix-based indexing
when the underlying data is sorted and organized based on radix
partitioning (Section 3.3.5). Radix trees (Section 3.3.5) are particu-
larly beneficial when indexed data is highly skewed because the tree
itself can take less space than when keys are more nearly uniformly
distributed over the key space.

5. Modification-frequent: If inserts/deletes are frequent, then we
differentiate between moderate and intensive modification traffic.
Specifically, when modification traffic is heavy, we may want to
employ logging, partitioned logging, or hashing at the global level
(Section 3.1). When modification traffic is moderate, then there can
be more flexibility at the global level (e.g., B+-tree style may be fine),
but the local level can use a hashed or logged local data organization
(Section 3.4). We also note the following provisions:

5.a Batching can replace local logging: A design that employs a
logged local data organization to support modification traffic
can instead employ a highly organized (e.g., sorted) local data
organization and then batch modifications either globally (Section
3.7.2) or locally (Section 3.7.3).

5.b Overlapping partitions require filters: A design that employs
partitioned logging as a global data organization should also
employ light-weight filter indexing (such as Bloom filters) to
eliminate at least some unnecessary page accesses (Section 3.3.2).

6. Query bursts: If there are bursts of read queries, batching them
together reduces redundant data accesses. The benefit is maximized

60 Dimensions of the Data Structure Design Space

when queries are grouped together based on key-locality, i.e., by
batching together queries that target the same partition (or group of
partitions). Batching read queries increases overall read throughput,
but will also potentially increase the response time of individual
operations (Section 3.7) that must wait until their batch is processed.

7. Update bursts: If there are bursts of updates on sorted data,
then update batching should be employed in order to reduce overall
reorganization costs (Section 3.7.2).

8. Scan-only: If the queries are full scans or large range queries,
then no indexing is required (Section 3.2.1 and Section 6.1.2). Large
range scans can be optimized using Zonemaps, Bloom filters, and
other forms of filter indexing (Section 3.3.2).

9. Scans with logging: If the queries are full scans or large range
queries, and are based on the time of insertion, then time-
ordered logging should be employed (Section 3.1). Filter indexing
(such as Zonemaps, in this case) should also be used (Section 3.3.2).

10. Locality vs. Flexibility: The decision regarding key-value represen-
tation is orthogonal to the other dimensions. When data locality
is the prime goal, keys and values should be stored together.
On the other hand, when building an index, typically a secondary
index, on a set of records that is already organized, each key of that
index should be paired with a pointer to a record or a rowID rather
than duplicating the records. Further, if a workload has updates
that might drastically affect the size of values, then keys and
values should be stored separately in order to avoid the data
movement reorganization entailed by those updates.

In the next chapter, we discuss how to use these rules both to choose
among existing designs for a given workload and to propose new designs
if no existing design satisfies all requirements.

3.11. Chapter Summary 61

3.11 Chapter Summary

This chapter has described the eight major design dimensions of access
methods. The first four dimensions concern the structure at both the
global and local levels. The next three dimensions concern choices in
how to implement operations. The final dimension describes various
key-value layout options. The chapter ends with a presentation of expert
rules that map workloads to design choices.

3.12 Questions

1. Give an example of a workload for which a sorted global and
sorted local data organization would work well. Give an example
of a possibly different workload for which a range partitioned
global but hashed local organization would work well.
Answer Sketch: A workload with many range queries would benefit
from a sorted global data organization. This makes it easy to locate
the end points of a requested range. The sorted local organization
would be particularly helpful when the partitions extend over many
pages and the range queries are short (so a query could fetch
only the relevant pages). On the other hand, a range partitioned
global and hashed local organization would be a good fit for a
workload that has a mix of point queries and long range queries.
In the hashed local organization setting, long range queries would
skip some partitions thanks to the global range organization but
would have to perform complete scans of the unskipped partitions.
Maintaining the local hash organization is likely to be less expensive
than maintaining a sorted local organization.

2. We have treated response time and memory costs as different
criteria to minimize. Describe some ways in which increasing the
size of memory can decrease response time.
Answer Sketch: Increasing the size of memory may allow putting
parts of a data structure in memory or even expanding the data
structure design with additional in-memory components. For ex-
ample, in a B+-tree design, we may put all internal nodes in

62 Dimensions of the Data Structure Design Space

memory. This would mean that a point query over the tree needs
just a single I/O operation, giving it the same I/O cost as a hash
table.

In addition, increasing memory can also allow the inclusion of
filtering indexes such as Bloom filters to avoid accessing data pages
when the relevant data is certain to be absent. This is commonly
used in key-value stores systems where the LSM-tree is the core
structure.

3. How does the distribution of the indexed key affect the size of
B+-trees and radix trees?
Answer Sketch: The distribution of the indexed key does not sig-
nificantly affect the size of a B+-tree, which is mostly governed by
the number of inserted elements (though prefix compression does
benefit from skewed data). By contrast, radix trees can benefit from
specific data distributions. Highly skewed data allow for aggressive
subtree removal, yielding good compression of the radix tree.

4. When a data structure must hold data that is large enough that
most must reside on disk, which is likely to have more impact
in terms of end-to-end data system performance: local or global
organization? Answer this question for each of the five major
operations: point query, range query, insert, update, and delete.
Answer Sketch: If much of the data is on disk, then global orga-
nization will have by far a bigger effect because that can change
the time complexity of disk operations from linear in the size of
the data to logarithmic or even constant time for any operation
(whether point, range, insert, update, or delete) which must access
a single key. In comparison to disk operations, local node opera-
tions are so inexpensive as to be considered free.

By contrast, if the data fits in memory, then local organization
will have a relatively larger influence on overall cost, because local
node costs are comparable to the costs of traversing from one node
to another.

3.12. Questions 63

5. Buffering of updates can be applied at different levels of a B+-
tree structure. Suppose the buffering will be in memory, and all
internal levels of the B+-tree will be in-memory except for the
leaf level which will be on disk. Describe the relative benefits of
applying buffering at the leaf level versus at any other level of the
tree.
Answer Sketch: Buffering is most useful if it allows an overall
reduction in disk I/O. For this reason, for any level of the tree
structure that may be in memory, buffering is only minimally
helpful. Therefore, in the setting described in the question, buffering
would be most useful at the leaves.

6. How is the policy of out-of-place updates impacted by workload
properties with respect to the order of operations in the workload?
Consider the following three workloads in which reads may be
point or range queries: (i) all insert operations arrive before all
read queries; (ii) all read queries arrive before the inserts; and
(iii) reads and inserts are fully mixed in the workload. Present a
design for each of these three workload patterns.
Answer Sketch: For workload (i), batch the inserts locally on fully
sorted nodes and then apply them all at once before the reads. For
workload (ii), sort the nodes to support the queries and then batch
the inserts and apply when done. For workload (iii), provided most
reads are point queries or large range queries, use global range
partitioning, but local hashing to support point queries. Range
queries might have to read entire nodes, but they would have to
do so anyway. If all or most reads are short range queries, then
it might be good to refine the range partitioning to within-node
range partitioning. Regardless of the form of read traffic, avoid
a sorted organization, because maintaining that sort would entail
large costs on inserts.

7. How does introducing an index affect the PyRUMID costs? For
example, consider both the increase and reduction of PyRUMID
costs resulting from introducing a tree index over sorted data.
Answer Sketch: Indexes take up space so increase memory costs.
They nearly always reduce read costs, however. They can also

64 Dimensions of the Data Structure Design Space

reduce update, insert, and delete costs, especially for in-place
(single-copy) structures, because they lead to a quick identification
of where the relevant key(s) is(are).

8. Consider a sorted and unsorted global partitioned data organi-
zation. For which organization would Zonemaps be more useful?
For which organization would Bloom filters be more useful?
Answer Sketch: Zonemaps are far more useful for a sorted data or-
ganization. For an unsorted organization, the zone ranges would be
very large. Bloom filters help most for unsorted data organizations.

3.13 Further Readings

Modeling: The readings by Brodal and Fagerberg (2003), Hellerstein
et al. (2002), Yi (2009), and Yi (2012) provide a more in-depth view
of detailed modeling for diverse operations in data structures.

Transformation-based Design: The following series of works rely
on decomposing workloads and treating every workload operation
as a potential to change/transform a static data structure design
given a set of transformation rules (Bentley, 1979; Bentley and Saxe,
1980; Scholten and Overmars, 1989; Overmars and Leeuwen, 1981;
Leeuwen and Overmars, 1981; Leeuwen and Wood, 1980). This way
one can generate a tailored design for a given workload.

Extensible Designs via Abstractions: Hellerstein et al. (1995)
proposed generalized search trees (GiST) as a data structure abstrac-
tion. GiST offers an API and a code template that can implement
different search trees, to tailor the design to a specific application. For
example, GiST can behave like a B+-tree (Graefe, 2011), an R-Tree
(Guttman, 1984; Manolopoulos et al., 2006), an RD-Tree (Hellerstein
et al., 1995), or a variety of other variations of tree indexes (like
partial sum trees (Wong and Easton, 1980), k-D-B-Trees (Robinson,
1981), Ch-trees (Kim et al., 1989), hB-trees (Lomet and Salzberg,
1990), V-trees (Mediano et al., 1994), and TV-trees (Lin et al., 1994)).

3.13. Further Readings 65

Data Structure Grammar: Another approach to data structure
design is from first principles, i.e., from the smallest possible design
decisions involved in a full design. The Data Calculator (Idreos et
al., 2018a; Idreos et al., 2018b) presents such a grammar of data
structures which consists of design principles and design rules. It
shows that there exist more than 10100 possible data structure designs
for key-value data structures. In addition, this work enables a more
fine-grained classification of designs and tradeoffs (Athanassoulis and
Idreos, 2016; Athanassoulis et al., 2016), as well as providing data
structure designs and code automatically by utilizing mathematical
modeling and machine learning-enhanced search algorithms (Idreos
et al., 2019b).

Rotations and Rebalancing. When data is modified in place and
the data organization is augmented with an index structure, this index
structure has to be updated as well to reflect the new positions of each
element. In order to preserve the benefits of tree-based indexing in
the face of inserts, deletes, and updates, dynamic search trees require
reorganization to maintain their sub-linear performance. Binary tree
variations offer self-balancing through rotations (Sedgewick, 1983).
AVL-Trees (Adelson-Velsky and Landis, 1962) and Red-Black-Trees
(Bayer, 1972) are two notable examples. New designs of self-rotating
self-balancing binary trees strive to ensure that rotations will affect
only a local region (Haeupler et al., 2015).

Rebalancing B+-trees. Dynamic search trees that have many more
children, such as B+-trees and their variations, maintain balance by
splitting and merging nodes to support an invariant that every node
will be at least 50% full (Graefe, 2011; Ramakrishnan and Gehrke,
2002). The rebalancing happens mostly at the bottom level, and
exponentially fewer times as we move towards the root, leading to
low amortized insert cost. Further, this approach ensures that the
tree will always be balanced, offering the same (logarithmic) path
length for every part of the key domain (Bayer and McCreight, 1970;
Comer, 1979).

66 Dimensions of the Data Structure Design Space

Deletion in B+-trees. While the textbook algorithms for B+-trees
include the merging of nodes as outlined above, workloads in which
there are more inserts than deletes (even slightly more) will tend
to split shortly after merging. In such cases, rather than merging
a node n when n has more than 50% empty space, it is better to
wait until n is empty and then simply remove it. This approach gives
close to the same utilization at far less maintenance cost (Johnson
and Shasha, 1989).

Multi-version Indexing. In the discussion of the modification
policy in Section 3.6, we note that out-of-place modifications create
a multi-copy data organization because older key-value versions
of a given key remain in the data structure even after new ones
enter. While the multi-copy property is primarily treated as an
overhead leading to increased space amplification, as discussed by
Dong et al. (2017), this artifact of out-of-place modifications provides
(unintentional) partial support for a multi-version data organization
that aims to store, index, and provide access to multiple historic
versions of values associated with a given key. Log-like structures
that explicitly support multiple versions LHAM by Muth et al. (2000)
or multi-version B+-trees (Becker et al., 1996; Varman and Verma,
1997). Other multi-version indexes for modern hardware and HTAP
applications include (Gottstein et al., 2014; Riegger et al., 2017;
Riegger et al., 2019; Riegger et al., 2020), which capitalize on the
design of LSM-trees (O’Neil et al., 1996) and Partitioned B-Trees
(Graefe, 2003).

4
From Workloads to Data Structures

We now use the framework presented in Chapter 3, specifically the
design rules from Section 3.10, to show how we can derive both existing
and novel data structure designs starting from the knowledge of target
workloads, environmental information (e.g., the available hardware),
and the properties of data (e.g., size).

In Chapter 2, we introduced the five fundamental operations that a
search structure supports: point queries, range queries (that can further
be classified as short range queries, long range queries, and full scans),
inserts, updates, and deletes. We classify a workload based on the
following three fundamental dimensions:

1. the type and relative frequencies of read queries: point, short
range, long range, scans,

2. whether queries focus on data inserted over a certain time range
(e.g., data inserted from two hours ago to one hour ago) and

3. whether the workload is modification-heavy or read-mostly.

67

68 From Workloads to Data Structures

4.1 Point and Range Queries, Modifications, but Rare Scans
(Traditional B+-trees and Learned Tree Indexes)

When the workload is read-mostly and includes range queries but
very few scans (what database practitioners call an on-line transaction
processing setting), the rules from Section 3.10 suggest the use of a
sorted or a range partitioned data organization (rule #1: range-preva-
lent). In addition, when the data does not fit in RAM, indexing would
work best with high fanout (rule #3.a: small-RAM). Following these
rules, we get a data structure design that maps to B+-trees.
The B+-tree design. A traditional B+-tree (Graefe, 2011) uses range
partitioning across leaves and internal nodes. All key-value pairs are
stored in the leaves. Internal nodes help in navigation. Each leaf node
is typically fully sorted. To find the leaf in question, a search navigates
the tree. Each modification happens in place, possibly triggering a
re-organization of a leaf to maintain sortedness and, relatively rarely,
a change to the node structure of the tree through splits or merges.
The leaf nodes of a B+-tree store keys and row IDs or keys and entire
records. The B+-tree design is visualized in Figure 4.1 and summarized
in Table 4.1.

sorted

range

sorted sorted sorted sorted

1
3

4 8 18 26 35 41

15 30 90 150

50

55 70 99 120 160 180

5
7

9
11

16
17

20
22

27
29

32
33

37
39

42
43

52
54

57
67

75
85

92
98

101
105

125
130

155
157

170
175

185
199

Figure 4.1: A B+-tree design in terms of its design decisions (top left) and its data
structure design (main figure). Internal nodes have key separators and pointers to
guide a search query toward the leaf that contains the desired data. Every node is
sorted, and searching for a key in a node can be done using binary search, though
sequential search can sometimes be more efficient (e.g., when the node size is small).

4.1. Point and Range Queries, Modifications, but Rare Scans 69

Table 4.1: Traditional B+-trees

Global Data Organization: Range partitioning
Global Searching: Indexing
Local Data Organization: Sorted
Local Searching: Sequential/Sorted
Modification Policy: In-place
Batching Requests: None
Content Representation: Key-Record, Key-RowID

Learned B+-trees. The recursive model index (RMI) proposed by
Kraska et al. (2018) implements a tree-based index where the internal
navigational nodes are replaced by models, i.e., local linear regressions.
Ding et al. (2020b) augmented this design to make it modification-
friendly. While learned indexing is a brand new area of research, in
terms of design principles, the two indexes (classical and learned B+-
trees) are very similar, having a few different key decisions specifically
on how to search. The learned B+-tree design is visualized in Figure
4.2 and summarized in Table 4.2.

sorted

range

sorted sorted sorted sorted

1
3

5
7

9
11

16
17

20
22

27
29

32
33

37
39

42
43

52
54

57
67

75
85

92
98

101
105

125
130

155
157

170
175

185
199

M

M

M

MM

Figure 4.2: A learned B+-tree design in terms of its design decisions (top left) and
its data structure design (main figure). Instead of key separators in an internal node,
a learned B+-tree has models that predict the position of the pointer that should
be followed to find the key in question. The number of entries in an internal node
depends on the distribution of the indexed data.

70 From Workloads to Data Structures

Table 4.2: Learned tree indexes

Global Data Organization: Range partitioning
Global Searching: Recursive Models
Local Data Organization: Sorted
Local Searching: Interpolation search
Modification Policy: In-place
Batching Requests: None
Content Representation: Key-Record, Key-RowID

4.2 Similar Workload With a Working Set That Fits in Memory
(Fractal B+-trees)

We now consider a workload that has a working set that, most of the
time, fits in main memory. By following rule #3.a: small-RAM, we arrive
at a design whose internal nodes have large fanout, but where each
internal node consists of many small nodes (based on the unit size of
cache memory) having small fanout. These “fractal B+-trees” optimize
for different levels of the memory hierarchy with a single design, while
efficiently supporting point and range queries as do classical B+-trees. A
fractal B+-tree behaves like a traditional B+-tree for disk-resident nodes,
but improves in-memory performance. Though they gain in efficiency
because of their better locality both on disk and in memory, they require
a more complex implementation than classical B+-trees.
The Fractal B+-tree Design. In contrast to traditional B+-trees,
fractal B+-trees are tailored for both the disk I/O unit size, and the
cache memory unit size. A fractal B+-tree node has the size of a disk
page, but it contains cacheline-sized mini-pages (Chen et al., 2002).
Effectively fractal B+-trees support a hybrid data organization with
two levels of range partitioning. The design is visualized in Figure 4.3
and summarized in Table 4.3.

4.3 Point and Range Queries, Rare Scans, More Modifications
(Insert-Optimized Search Trees)

For workloads that include point and range read queries as well as
a significant number of insertions, rule #5: modification-frequent sug-
gests employing logging at each node instead of re-sorting the node

4.3. Point and Range Queries, Rare Scans, More Modifications 71

range

1
3

5
7

9
11

16
17

20
22

27
29

32
33

37
39

42
43

52
54

57
67

75
85

92
98

101
105

125
130

155
157

170
175

185
199

Figure 4.3: A fractal B+-tree shares the same design principles as the B+-tree with
an additional level of abstraction where each local organization is range partitioned
itself (top left). This is essentially a three-level style of data organization, which is
implemented by storing a mini-tree within each non-leaf node (top right). Overall a
fractal B+-tree shares the same high-level design as a classical B+-tree (main figure).

Table 4.3: Fractal B+-trees

Global Data Organization: Range partitioning
Global Searching: Indexing (Search Tree)
Local Data Organization: Range
Local Searching: Sequential/Sorted
Modification Policy: In-place
Batching Requests: None
Content Representation: Key-Record, Key-RowID

after each modification. Such an approach imposes less reorganization
overhead on inserts, but requires reads to scan the log at each node
instead of using binary search. For disk-resident nodes, this decision has
negligible impact because loading the node into memory is vastly more
expensive than scanning it. By contrast, for memory-resident nodes,
reorganization is expensive relative to simple access, so this decision can
improve performance substantially in modification-heavy environments.
For example, Levandoski et al. (2013) reported speedups between 5.8×
and 18.7× over a traditional B+-tree when applying in-memory ap-
pending to absorb modifications, combined with a careful latch-free
implementation of tree maintenance operations. Note, however, that
using the appending strategy for internal nodes would slow down all
tree traversals, so appending is employed only at leaf nodes.

72 From Workloads to Data Structures

logging

range

logging logging logging logging

1
3

4 8 18 26 35 41

15 30 90 150

50

55 70 99 120 160 180

7
5

9
11

17
16

20
22

29
27

32
33

39
37

43
42

52
54

67
57

75
85

98
92

101
105

130
125

157
155

170
175

199
185

Figure 4.4: The various insert-optimized B+-tree designs maintain the same internal
node structure as traditional B+-trees, but instead of maintaining all leaf nodes
sorted, they append incoming changes. The contents of the leaf nodes are only lazily
sorted, typically at split time or adaptively at query time.

The Insert-Optimized B+-tree Design. Two approaches have pro-
posed B+-trees whose nodes are not sorted internally. The unsorted
B+-tree for non-volatile memories (Chen et al., 2011) aims to minimize
write amplification and the Bw-Tree design (Levandoski et al., 2013)
aims at faster updates through time-ordered logging. Both approaches
support range partitioning of the data across leaf nodes but unsorted
data within each node. The class of insert-optimized B+-tree designs is
visualized in Figure 4.4 and summarized in Table 4.4.

Table 4.4: Insert-optimized B+-trees

Global Data Organization: Range partitioning
Global Searching: Indexing (Search Tree)
Local Data Organization: Logging
Local Searching: Sequential + Binary Search
Modification Policy: Deferred In-place
Batching Requests: Batching Modifications via

Local Buffering
Content Representation: Key-Record, Key-RowID

The Bϵ-tree Design. Brodal and Fagerberg (2003) proposed a sig-
nificantly different insert-optimized B+-tree variation, called a Bϵ-tree.
The core idea is that instead of logging incoming key-value data only at
the leaf level, a buffer is attached to all internal nodes, following rules

4.3. Point and Range Queries, Rare Scans, More Modifications 73

sorted

range

sorted sorted sorted sorted

1
3

4 8 18 26 35 41

15 30 90 150

50

55 70 99 120 160 180

5
7

9
11

16
17

20
22

27
29

32
33

37
39

42
43

52
54

57
67

75
85

92
98

101
105

125
130

155
157

170
175

185
199

buffer

buffer buffer

buf. buf. buf. buf. buf. buf.

Figure 4.5: Another way to absorb incoming data efficiently is to employ buffering.
The Bϵ-tree design follows the same overall decision as classical B+-trees, with the
addition of per-node buffering across all levels to allow for lazy insertions that are
only gradually propagated toward the leaf nodes.

#5.a: batching can replace local logging and #7: update-bursts. Thus,
incoming data is buffered both globally and locally. The unbuffered
data is maintained sorted following rule #1: range-prevalent. Searching
for a key entails searching both first through the buffered data and then
through the unbuffered data at each level.

The Bϵ-tree borrows the overall structure of the classic B+-tree.
The difference is that every internal node n, in addition to the classic
pivot-pointer structure to navigate the domain of the indexed key,
is augmented with a buffer to store incoming data. That data will
eventually be propagated to appropriate leaf nodes of n. Leaf nodes
store fully sorted key-value pairs as in a classic B+-tree. Incoming
data are stored in the buffer of the root node (global buffering), and
once the buffer is full, the data entries are propagated to buffers of
the children with the corresponding key range (local buffering). Every
buffer maintains entries in sorted order, and there is no overlap between
sibling nodes. Having the data sorted in the buffers allows for the quick
selection of which entries to push to the next level of the tree. Overlap
may exist at different levels of a single root-to-leaf path. In that case,
an internal node may buffer a key-value pair (k, v) that invalidates a
key-value pair (k, v′) that is at the leaf level in the spirit of LSM-trees.

A query for a specific key navigates the tree as in a B+-tree except
that, at each level L, it first performs a binary or other sorted search

74 From Workloads to Data Structures

Table 4.5: Bϵ-trees

Global Data Organization: Range Partitioning
Global Searching: Indexing (Search Tree)
Local Data Organization: Sorted
Local Searching: Sorted Search + Sorted Search
Modification Policy: Out-of-place
Batching Requests: Batching Modifications via

Global and Local Buffering
Content Representation: Key-Record, Key-RowID

in the buffer at L before following the pointer in the node at level L

towards a child node. This design is tunable by a parameter ϵ, which
controls the fraction of the internal nodes dedicated to the pivot-pointers
vs. the buffer. Because of the combination of global and local buffering,
the Bϵ-tree can absorb a small burst of updates, inserts, and deletes
at negligible cost while offering read performance similar to a B+-tree
(Bender et al., 2015). For large bursts of modifications, the cost of
continuous merging becomes more pronounced. Further, answering a
range query requires merging multiple sources (buffers from each level
and leaf nodes). The Bϵ-tree design is visualized in Figure 4.5 and
summarized in Table 4.5.
The SA B+-tree design. Raman et al. (2023) has proposed a variation
of an ingestion-optimized B+-tree, which aims to benefit from partial
data pre-sortedness. The design follows the same overall principles of
the above insert-optimized indexes, and focuses specifically on the rule
#7: update-bursts to employ global buffering for the incoming data.

The intuition of this design is that indexes can be thought of as
a means to add structure (sortedness) to an otherwise unsorted data
collection. As a result, if the data entries are inserted in-order or in
a near-sorted fashion, the ingestion should be more efficient. In fact,
when data is fully ordered, they can be very efficiently bulk loaded.
However, when data is near-sorted, then most indexes would treat the
data in the same way as if the data entries were scrambled. By contrast,
the sortedness-aware B+-tree (SA B+-tree) uses a sortedness buffer to
absorb near-sorted data, which are appended as they arrive, and at

4.4. Mixed Workload With No Short Range Queries 75

sorted

range

sorted sorted sorted sorted

1
3

4 8 18 26 35 41

15 30 90 150

50

55 70 99 120 160 180

5
7

9
11

16
17

20
22

27
29

32
33

37
39

42
43

52
54

57
67

75
85

92
98

101
105

125
130

155
157

170
175

185
199

sorted

logging/cracking

Sortedness Buffer:

when possible, bulk-load

incoming entries are logged

Figure 4.6: With a global buffering scheme, an SA B+-tree aims to absorb update
bursts, specifically targeting near-sorted incoming data. The global sortedness buffer
allows the tree to maximize the fraction of entries that can be bulk-loaded when they
arrive near-sorted. The cracking approach used in the buffer, allows read queries to
exploit any data sorting effort done for previous queries.

query time, they are cracked (discussed more in Chapter 5) as needed.
Once the buffer is full, the cracked data is fully sorted, so if there is
no overlap with the data already in the tree, that data is bulk loaded.
Otherwise, the data is inserted starting from the root. SA B+-tree
outperforms a traditional B+-tree by up to 5× for mixed read/write
workloads, due to achieving a 8.8× improvement in ingestion efficiency
for near-sorted data. On the other hand, when the data is completely
scrambled, SA B+-tree pays a cost of 10%-20%. Overall, any workload
with a non-negligible degree of sortedness would benefit from the SA
B+-tree design, which is visualized in Figure 4.6 and summarized in
Table 4.6.

4.4 Mixed Workload With No Short Range Queries
(Hybrid Range Trees)

For a workload having point queries, long range queries, and no short
range queries, the combination of rules #1: range-prevalent and #2:
point-only give us a new hybrid design that employs range partitioning
at a coarse level and hashing within each partition. That way, point

76 From Workloads to Data Structures

Table 4.6: SA B+-trees

Global Data Organization: Range Partitioning
Global Searching: Search Tree + Filters + Zonemaps
Local Data Organization: Sorted
Local Searching: Sorted Search + Sorted Search + Scan
Modification Policy: Out-of-place
Batching Requests: Batching Modifications via

Global Buffering
Content Representation: Key-Record, Key-RowID

queries can be quickly answered following a shallow tree access (to
the relevant partition) and a hash search. Long-range queries can be
answered by accessing only the relevant partitions.

Since we assume only a moderate number of modifications, we use
a hashed local data organization following rule #5: modification-fre-
quent. Thus, the overall design maintains a hybrid range-partitioned
tree structure with a cheaper-to-update local data organization in the
face of modifications because entries are hashed in place. As a result,
this design also enjoys low space overhead.

hashing

range

hashing hashing hashing hashing

1
3

4 8 18 26 35 41

15 30 90 150

50

55 70 99 120 160 180

7
5

9
11

17
16

20
22

29
27

32
33

39
37

43
42

52
54

67
57

75
85

98
92

101
105

130
125

157
155

170
175

199
185

Figure 4.7: The bounded disorder access method employs a tree-based range
partitioning global organization with hashing for local data organization (top left).
Essentially, this design borrows the internals of a classical B+-tree with hash buckets
at the leaf level.

The Bounded Disorder Access Method Design. A design that
combines range and hash partitioning in this way is the bounded disorder
access method proposed by Litwin and Lomet (1986), which organizes

4.4. Mixed Workload With No Short Range Queries 77

Table 4.7: Bounded Disorder Access Method

Global Data Organization: Range partitioning
Global Searching: Indexing (Search Tree)
Local Data Organization: Hashing
Local Searching: Hashing
Modification Policy: In-place
Batching Requests: None
Content Representation: Key-Record, Key-RowID

keys in large range partitions, and within each partition, the keys
are hashed in a dense hash table. Thus, a point query is directed
to the appropriate range partition within which they can use direct
addressing (hashing). Range queries will consume the hashed partitions
in much the same way as they consume data in the case of pure range
partitioning. The bounded disorder access method offers better point
query performance and more efficient maintenance after modifications
than classical B+-trees, but worse support for short range queries. The
design is visualized in Figure 4.7 and summarized in Table 4.7.

logging

range

logging logging logging logging

1
3

4 8 18 26 35 41

15 30 90 150

50

55 70 99 120 160 180

7
5

9
11

17
16

20
22

29
27

32
33

39
37

43
42

52
54

67
57

75
85

98
92

101
105

130
125

157
155

170
175

199
185

Figure 4.8: The BF-Tree employs a tree-based range partitioning global organization
with logging for local data organization (top left). The design borrows the internals
of an insert-optimized B+-tree with the difference that each range partition typically
consists of multiple pages (as opposed to a single leaf page in B+-tree-variants). Each
page is equipped with a local Bloom filter, so at point query time, the vast majority
of accesses to unnecessary pages are avoided, while maintaining a significantly smaller
data structure.

78 From Workloads to Data Structures

Table 4.8: BF-Trees

Global Data Organization: Range partitioning
Global Searching: Indexing (Search Tree)
Local Data Organization: None/Logging
Local Searching: Scan/Bloom filters
Modification Policy: In-place
Batching Requests: None
Content Representation: Key-Record, Key-RowID

The BF-Tree Design. A variation of the bounded disorder access
method that allows the leaf nodes to have a lightweight local data
organization (none or logging) and can support similar workloads is the
Bloom filter tree (BF-Tree), proposed by Athanassoulis and Ailamaki
(2014). BF-Tree has the same range-partitioning as the bounded disorder
access method at the global level, however, the key-value pairs of
each partition are indexed in multiple Bloom filters, one per page of
the partition they belong. That way, a point query is directed to the
appropriate range partition, within which, they probe all Bloom filters
to find which pages contain the desired key. Long range queries consume
entire partitions and discard unnecessary entries at the first and last
partitions of the range. Like the bounded disorder access method, BF-
Trees do not target short range queries, but they offer efficient point
and long range queries, along with substantial space savings. The design
is visualized in Figure 4.8 and summarized in Table 4.8.

4.5 Mixed Workload, With Ever Increasing Data Size
(Radix Trees)

The access cost of a B+-tree depends on the total number of elements
inserted in the index. While this is a logarithmic cost, it still increases
with data size. As a result, when we have a mixed workload and we want
to decouple the access cost from data size, we can use the radix of the
domain to index the incoming entries following rule #4: size-agnostic
search. The mixed workload includes range queries implying that rule
#1: range-prevalent still applies. Because the data size exceeds RAM
size, following rule #3.a: small-RAM, one possible design is a tree based

4.6. Point Queries, Inserts, and Some Modifications 79

on radix partitioning that uses groups of several radix bits in each
interior tree node, leading to a high fanout.

sorted

radix

sorted sorted sorted sorted

1
3

rdx(4,5) rdx(4,5) rdx(4,5)

rdx(1,3) rdx(1,3)

rdx(0)

rdx(4,5) rdx(4,5) rdx(4,5)

5
7

9
11

16
17

24
26

28
30

36
37

41
42

44
47

128
129

133
134

137
138

176
178

185
186

189
191

225
226

234
235

237
239

0 1

key 133=0b10000101
rdx(0)=1
rdx(1,3)=000
rdx(4,5)=01

000 001 010 000 011 110

00 01 10 00 10 11 01 10 11 00 01 10 00 10 11 00 10 11

Figure 4.9: Radix trees employ a radix global data organization with sorted data
locally (top left). The internals of the tree use only parts of the binary representation
(radix) of the key. Consider key 133. Its binary representation is 0b10000101. In the
sample radix tree, the root node corresponds to the first bit of the key, while the
second level to the following three bits. Note that a node does not always have all
possible children since a subtree can be removed if no keys exist in that part of the
domain. The tree’s third level corresponds to the radix’s fourth and fifth bit. Overall,
following the arrows for rdx(0) = 1, rdx(1, 3) = 000, and rdx(4, 5) = 01, we arrive
at a leaf node that stores all 8-bit keys having a prefix of 100001, viz, 0b10000100
(132) through 0b10000111 (135).

The Radix Tree Design. Putting everything together, radix trees
use radix global partitioning and sorted local data organization. The
radix tree design is visualized in Figure 4.9 and summarized in Table
4.9. Masstree (Mao et al., 2012) and the adaptive radix tree (Leis et al.,
2013) are two such designs.

4.6 Point Queries, Inserts, and Some Modifications
(Static Hashing with Overflow Pages)

Since this workload has no range queries, hash partitioning at the global
level can be very effective (rule #2: point-only). In fact, for both point
queries and modifications, hash partitioning allows navigating directly
to the appropriate partition. Using hash partitioning is consistent with
rule #5: modification-frequent. Further, following the same rule, we

80 From Workloads to Data Structures

Table 4.9: Radix Trees

Global Data Organization: Radix partitioning
Global Searching: Indexing (Compressed Search Tree)
Local Data Organization: Sorted
Local Searching: Sorted Search
Modification Policy: In-place
Batching Requests: Batching Modifications via

Local Buffering
Content Representation: Key-Record, Key-RowID

employ a logged data organization when there is no space for in-place
modifications. This design allows for efficient point queries and insertion,
but point query latency may increase because of the need to search the
local logs.
The Static Hashing with Overflow Pages Design. Another alter-
native is a global organization based on hash partitioning. This creates
partitions of keys whose hash values are the same. A typical organization
of those partitions is simply to append items in the same bucket as they
arrive, effectively employing logging. This hybrid between hash parti-
tioning and logging is used by the textbook hash index having chained
overflow pages (Ramakrishnan and Gehrke, 2002). It is visualized in
Figure 4.10 and is summarized in Table 4.10.

logging logging logging logging logging

0 1 2 3 4 5 6 7 8 9 10 …

h(key)
for example, h(x) = x mod 31
h(165)=h(971)=10

●
●

●
● … 165

971 … ●
●

847
444

●
●

Figure 4.10: Static hashing with overflow pages uses hash partitioning for global
partitioning and logging for local partitioning (top left). Any insert or query uses
the selected hash function to find the corresponding bucket. Each read query reads
the appropriate chained bucket sequentially. Inserts are appended at the end of the
appropriate chain.

4.7. Read-mostly With Long Range Queries 81

Table 4.10: Static Hashing with Overflow Pages

Global Data Organization: Hash partitioning
Global Searching: Direct Addressing (via hashing)
Local Data Organization: Logging
Local Searching: Sequential
Modification Policy: In-place
Batching Requests: None
Content Representation: Key-Record, Key-RowID

4.7 Read-mostly With Long Range Queries
(Scans with Zonemaps)

Consider a workload consisting of many long range queries based on
time intervals and few modifications that mostly consist of appending
new data. Following rule #8: scan-only, we do not need to enforce
any key-based data organization. Inserts can simply be appended to a
linear data structure. In order to reduce the cost of large range searches,
order-based filter indexing, like Zonemaps, can help.
Scans with Zonemaps. Full scans and long range queries do not
benefit from classical indexing since they have to access most data
anyway (Kester et al., 2017; Selinger et al., 1979). Zonemaps help such
scans as lightweight metadata that help to skip some unnecessary pages
(Moerkotte, 1998). Such a design is frequent in systems for analytical
data processing both at the disk level (Francisco, 2011) and in memory
(Lang et al., 2016; Qin and Idreos, 2016). It is visualized in Figure 4.11
and summarized in Table 4.11.

Table 4.11: Scans with Zonemaps

Global Data Organization: None/Logging
Global Searching: Full Scan (Filter Indexing)
Local Data Organization: N/A
Local Searching: N/A
Modification Policy: In-place
Batching Requests: N/A
Content Representation: Key-Record

82 From Workloads to Data Structures

{47, 444, 971, 165, 138, 97, 22, 13} {125, 256, 111, 2, 77, 265, 243, 167} {78, 96, 121, 109, 55, 114, 198, 154} {5, 11, 25, 33, 19, 7, 31}

min: 13, max: 971 min: 2, max: 265 min: 55, max: 198 min: 5, max: 33

Figure 4.11: Zonemaps store the minimum and maximum key of a block of data
which can be at the granularity of a single page or several pages. They constitute a
low-cost method for reads to avoid reading a data block when there is no particular
global data organization in a data structure design. Zonemaps are especially attractive
when keys are sequential (i.e., later inserts have greater keys than earlier ones).

4.8 Modification-intensive With Point and Range Queries
(LSM-tree)

For a workload having many modifications, rule #5: modification-fre-
quent suggests employing partitioned logging, where each level partitions
the key space, but different levels may have keys in common. In addition,
rule #5.b: partitioned logging benefits from filters suggests employing
lightweight metadata within each level to avoid unnecessary data ac-
cesses. Finally, rule #1: range-prevalent suggests sorting every level
for the sake of read query performance. Overall, this design offers high
modification performance as modifications are immediately buffered
upon arrival. It does so at the expense of both query performance
(because even point queries may access blocks at different levels) and
space amplification. Both Bϵ-trees and LSM-trees buffer incoming data
globally and gradually push them towards a bottom layer of data (leaf)
nodes. A key difference lies in the fact that LSM-trees can select any
subset of the data to be propagated when a level is full, while Bϵ-tree
must select the data that correspond to the buffer that just became full,
thus reducing the flexibility allowed for performance optimizations.
The LSM-tree Design. Log-structured merge (LSM) based data
structures use buffering with periodic sorting and merging of potentially
overlapping levels (or, in some cases, partitions within a level). New
entries are logged to an in-memory structure and then spilled to disk
as needed. In order to offer competitive read performance, LSM-trees

4.8. Modification-intensive With Point and Range Queries 83

sorted sorted sorted sorted sorted

{1, 45, 95, 100} {105, 120, 125, 150}

1 - 100 105 - 150

{3, 5, 7, 9} {11, 15, 23, 36} {37, 39, 45, 48} {50, 65, 88, 97}

3 - 9 11 - 36 37 - 48 50 - 97

{2, 4, 5, 6} {8, 9, 11, 13} {14, 15, 23, 25} {31, 35, 41, 43} {46, 52, 59, 65} {69, 72, 82, 87} {89, 91, 95, 97} {102, 104, 132, 143}

2 - 6 8 - 13 14 - 25 31 - 43 46 - 65 69 - 87 89 - 97 102 - 143

Zonemaps

Filters

older files

buffer

Figure 4.12: LSM-trees employ partitioned logging for their global data organization
and each level is sorted. They also employ auxiliary data structures; Zonemaps to
help with range queries, and filters to help with point queries (top left). An LSM-tree
consists of multiple potentially overlapping sorted levels organized from newer data
at or near the root to older data farther down in the tree. A query starts from the
most recent data and uses the auxiliary data structures to skip unnecessary nodes.

organize the data that is spilled to disk in various ways, the simplest
being to sort the spilled data and then to store it as immutable files
(Luo and Carey, 2020; O’Neil et al., 1996). The design is visualized in
Figure 4.12 and summarized in Table 4.12.

Table 4.12: LSM-trees

Global Data Organization: Partitioned Logging
Global Searching: Filter Indexing (with index)
Local Data Organization: Sorted
Local Searching: Sorted Search
Modification Policy: Out-of-place
Batching Requests: Batching Modifications via

Global Buffering
Content Representation: Key-Record, Key-RowID

LSM-trees can be further optimized in orthogonal ways. For example,
various memory allocation strategies can change the read vs. update
performance tradeoff (Dayan et al., 2017; Dayan et al., 2018). Lazy
and eager merging of sorted runs can optimize for write-intensive or
read-intensive workloads respectively (Kuszmaul, 2014; Luo and Carey,
2020). Another approach, called lazy leveling, performs lazy merging

84 From Workloads to Data Structures

throughout the tree, except at the last level and uses additional memory
to reduce the read costs when needed (Dayan and Idreos, 2018). Finally, a
scheme with different merging frequency per level (doubly exponentially
increasing size ratios) allows LSM-trees to further reduce write costs
(Dayan and Idreos, 2019). Each of the above designs targets specific
workloads. Overall, they allow the LSM-tree data structure to navigate
a better performance front. For a more detailed discussion on the
variations of LSM designs and layouts, the interested reader is directed
to surveys, tutorials, and interactive demos by Sarkar et al. (2021),
Sarkar and Athanassoulis (2022), Sarkar et al. (2022), and Sarkar et al.
(2023).

4.9 Modification-intensive With Point Queries Only
(LSM-hash)

Similarly to the previous design, we employ partitioned logging following
rule #5: modification-frequent. In addition, since we have only point
queries, rule #2: point-only suggests that we should employ a hashed
local data organization.
The LSM-hash Design. To maintain efficient ingestion, we store
incoming data using a partitioned logging approach: each partition uses
hashing for its local data organization, and the updates are applied
out-of-place in the log of each partition. This approach can efficiently
support point queries – similarly to what hashing offers – but not range
queries, for which it will have to scan the entire data set. Note that
order-preserving hashing (e.g., a learned hash function as proposed by
Sabek et al., 2022) could help LSM-based data structures to efficiently
support range queries, too. However, such an approach has not been
fully worked out as of this writing. The derived design is termed LSM-
hash1 and has inspired a family of data structures (Andersen et al.,
2009; Badam et al., 2009; Chandramouli et al., 2018; Debnath et al.,
2010; Debnath et al., 2011; Sheehy and Smith, 2010; Wu et al., 2015).
The design is visualized in Figure 4.13 and summarized in Table 4.13.

1Some approaches use the term “LSM-trie” (Wu et al., 2015), however, the disk-
component data organization is hashing, so we denote this strategy as “LSM-hash”
to avoid confusion with radix partitioning.

4.10. When to Design Heterogeneous Data Structures 85

hashing hashing hashing hsahing hashing

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

● ●

Filters

older files

buffer

Figure 4.13: LSM-hash also employs partitioned logging as the global data orga-
nization, but since it targets only point queries, the local organization selected is
hashing with filters. The most recent modifications are at the root.

Table 4.13: LSM-hash

Global Data Organization: Partitioned Logging
Global Searching: Filter Indexing (with index)
Local Data Organization: Hashing
Local Searching: Hashing
Modification Policy: Out-of-place
Batching Requests: Batching Modifications via

Global Buffering
Content Representation: Key-Record, Key-RowID

4.10 When to Design Heterogeneous Data Structures

This chapter’s discussion until now has assumed the workload is uniform
across the data structure (i.e., across the key space). That would imply
that every partition should use the same local strategy. We now consider
workloads that differ on different partitions of the data.
Insert-heavy with point queries that target older data. Consider
a workload that is insert-heavy, but older data is read-only. If all queries
are point queries, the older data should be stored in a hash structure
(rule #2: point-only). For newly inserted data, however, we can employ
a simple logging approach to reduce the insertion cost.
Insert-heavy with range queries on older data and point queries
on recent data. In this case, we can further differentiate the decision
per partition. For example, the newest partition should employ a hash

86 From Workloads to Data Structures

local data organization to facilitate point queries (rule #2: point-only),
while older partitions can maintain the data sorted to answer range
queries (rule #1: range-prevalent).

In general, heterogeneous workloads suggest a system that makes
local decisions per partition and employs different indexing strategies
for different partitions. Extending the example above, one partition
may employ hashing, another partition may use a local B+-tree, a third
partition may be organized as a log to accept many inserts, and a
fourth partition may employ a local learned index because its data
distribution is roughly linear and seldom receives updates. Moreover,
any partition that supports sorted data can use a log buffer to amortize
data reorganization costs when encountering bursts of inserts (rule #7:
update-bursts). A system that supports such heterogeneity should also
have the mechanisms to decide which index to build in each partition
as proposed by Olma et al. (2020).

Note to the reader: Heterogeneity can be decided at design
time as discussed above. However, it can also be determined and
maintained dynamically if we allow the design to adapt using
incoming workload information as we discuss in Chapter 5.

4.11 Data Structures in Practice

Adoption by Production Systems. Many of the designs we present
in this chapter were first proposed as part of research efforts and were
later implemented in production systems.

• B+-trees were originally proposed by Bayer and McCreight (1970)
to store index pages for large random-access files. Today B+-trees
are part of virtually every relational database system. Systems like
PostgreSQL, MySQL, Oracle, IBM DB2, Microsoft SQL Server,
SQLite, and others all use B+-trees as one of the core data struc-
tures used for secondary indexing (Ramakrishnan and Gehrke,
2002). In addition to database systems, several file systems like
Apple’s HFS+ and APFS, Microsoft’s NTFS, and Linux’s Ext4
use B+-trees.

4.11. Data Structures in Practice 87

• The case for Learned Indexes was first made by Kraska et al.
(2018). As of this writing, learned indexes have attracted both
research and industrial interest, including that of large database
vendors like Google (Abu-Libdeh et al., 2020) and Microsoft (Ding
et al., 2020b).

• Insert-optimized B+-trees were developed as part of research
projects carried out by database system vendors like Microsoft
and HP (Chen et al., 2011; Levandoski et al., 2013).

• The Bϵ-tree design was proposed by Brodal and Fagerberg (2003)
as a theoretical result, and it was ultimately used as the core data
structure of TokuDB (Bender et al., 2015) and BetrFS (Jannen
et al., 2015).

• The bounded disorder access method was originally proposed by
Litwin and Lomet (1986), and it has inspired research in hybrid
data structures that combine different seemingly incompatible
data organization decisions.

• The radix tree design is one of the oldest and most widely used
designs (Morrison, 1968). Since its inception, it has been a core
data structure for file systems, database systems, and operating
systems.

• Hash indexing is also a core data structure ubiquitously used in
database systems to support point queries (Ramakrishnan and
Gehrke, 2002).

• Scans with Zonemaps was originally developed as a research
prototype by Moerkotte (1998) and has since been implemented
in virtually every column-store analytical data system (Abadi
et al., 2013).

• The LSM-tree design was proposed by O’Neil et al. (1996). Since
its inception it has been used as the core data structure of a variety
of production storage engines and systems, including Google’s
BigTable (Chang et al., 2006) and LevelDB2, Facebook’s RocksDB

2https://github.com/google/leveldb/

https://github.com/google/leveldb/

88 From Workloads to Data Structures

(Dong et al., 2021), Alibaba’s X-Engine (Huang et al., 2019),
Apache HBase3, Cassandra4, and AsterixDB (Alsubaiee et al.,
2014).

• The LSM-hash design was invented as part of various research
projects (Andersen et al., 2009; Badam et al., 2009). The LSM-
hash design has since been implemented in production environ-
ments, like GitHub’s metadata infrastructure at Microsoft (Chan-
dramouli et al., 2018).

Programming Language Support. In order to implement data struc-
tures for practical systems, we need programming language constructs
that allow for low-level control of memory and storage management.
Programming languages like C, C++, and Rust allow the developer to
make fine-grained decisions regarding memory allocation and layout,
so they are appropriate. By contrast, high-level languages like Python,
Java, and Go make memory and storage decisions for the developer,
so they are not appropriate. Even in low-level languages, libraries may
make different assumptions about and may even automate memory and
storage management, so they should be used with caution.

4.12 Chapter Summary

The design and implementation of data structures remains an art rather
than an “exact science”. However, this book, in general, and this chapter,
in particular, presents an effort to systematize data structure design
decisions, following the vision towards “a calculus of data structures”
by Tarjan (1978). The ultimate goal, elusive as of yet, is to build an
algebra of components that can be easily synthesized using a high-
level description while offering all the benefits of a carefully crafted
implementation with low-level optimization (Idreos et al., 2018b).

This chapter showed how state-of-the-art data structure designs for
particular workloads can be derived from the design dimensions and the
design guidelines. It also showed both the need and the design of hybrid

3https://hbase.apache.org/
4https://cassandra.apache.org/

https://hbase.apache.org/
https://cassandra.apache.org/

4.13. Questions 89

data structure designs given a heterogeneous workload description.
Hybrid designs are especially promising for the increasingly dynamic
workloads and hardware contexts on the cloud. Hybrid designs have
started to appear in the research literature (Chatterjee et al., 2022;
Huang and Ghandeharizadeh, 2021).

The next chapter introduces and analyzes adaptivity as a core design
dimension that spans the design space. The following chapter discusses
how the design considerations apply once a data structure becomes
part of a larger complex system. In that setting, performance is not
only about one data structure at a time but rather depends on how a
complex system’s numerous data structures interact with one another.

4.13 Questions

1. Why are Bloom filters particularly useful for LSM-trees in which
the global organization for the on-disk data is based on the order
of arrival? How useful are Bloom filters for B+-trees?
Answer Sketch: Consider searching for a key on such a structure.
The key could be on one or more of the many unchanging on-disk
pages. Bloom filters will help avoid accessing many such pages. At
another extreme, in a B+-tree, a given key may be found in only
one page, so Bloom filters might eliminate only one access, thus
will be less useful.

2. When might a radix tree work better than a B+-tree? And vice
versa?
Answer Sketch: For both structures, the data has a global sorted
organization. If the pages are laid out contiguously, then the radix
index can fit entirely within memory because the key leads directly
to the page. That works well if the data doesn’t change. If it does
change, then laying out the data contiguously is infeasible, so a
B+-tree would be better.

3. When might an interpolation-based method work better than a
B+-tree? And vice versa?
Answer Sketch: An interpolation-based method that locates keys
based on an assumed distribution uses far less space per internal

90 From Workloads to Data Structures

node than a B-tree (two or three values along with corresponding
pointers vs. thousands of separators), so an interpolation-based
method is likely to use less space. Further, almost all of the pointers
can be avoided if we assume fixed-sized entries and contiguous
levels. On the other hand, the interpolation-based method can lead
a search to an incorrect page, so that it may require more accesses
to slower memory. This inaccuracy problem is likely to become
worse if there are many inserts and deletes.

4. Suppose your data structure design keeps all key-value data at the
leaf pages of a tree-like design as in a B+-tree. Suppose further
that each leaf is sorted by fixed-length keys but varying-length
values. How might you lay data out in the leaves and adjust your
algorithm to do as few sorts as possible?
Answer Sketch: You might separate the keys and values within a
page so that the fixed-length keys are in one array and the values
are in the rest of the page. If you leave gaps in the key array,
then inserts have a good chance of occupying those gaps. Deletes
enlarge the gaps. Updates don’t affect the key array at all.

5. Suppose that a workload has a short burst of inserts followed by
a read-only period of point queries and that this pattern repeats.
What kind of data structure might you use?
Answer Sketch: You might use modification batching for the inserts
on top of a hash structure.

6. What kind of data structure might you want to use for a sequential
key (one that is monotonic with the time of insertion) in which
there is a mix of inserts and time-based range queries?
Answer Sketch: A B+-tree sorted by time in which nodes split
only when they are full. Alternatively, an append-only logging data
organization with Zonemaps would be able to efficiently answer
these range queries.

7. Which workloads would be well supported by LSM-trees that are
partitioned based on key range at each level of tree? In such a
setting, would Zonemaps or Bloom filters be more useful and why?

4.13. Questions 91

Answer Sketch: An insert-heavy workload with frequent range
queries. Zonemaps would be useful because the key range of each
page would be small, so Zonemaps would filter well.

8. Which workloads would be well supported by LSM-trees that are
partitioned based on a hash function? In such a setting, would
Zonemaps be useful and why?
Answer Sketch: Insert-heavy workloads with point queries. Zone-
maps would not be useful, because the range indicated by a Zonemap
for a given page would be large.

9. We have considered so far point queries, range queries, inserts,
deletes, and updates. Some other query types include prefix queries
(e.g., all names that start with ’Sm’) and extremal queries (e.g.,
minimum and maximum). Which local and global organizations
would work well for such queries?
Answer Sketch: Prefix queries and extremal queries benefit from
a sorted data structure organization. So, they benefit from any
structure that works well for range queries. Hashing (except for
order-preserving hashing) doesn’t help at all for prefix or extremal
queries.

10. Suppose we extend the set of operations to include occasional
time-travel queries. To support such queries, assume that we asso-
ciate each key-value pair (k, v) with the time when it was inserted
in the structure. A time-travel query might then ask what the
value associated with key k was at a certain time in the past. The
vast majority of queries, however, will be interested in the most
recent value associated with a given key (i.e., simple point queries).
Assume that the workload consists only of inserts, point queries,
and time-travel queries. What would be a good data structure for
such a workload?
Answer Sketch: We can support this workload by employing a
hashing global data organization which will always point us to
the collection of (k, v) pairs that have the same k and different
insertion timestamps. Note that if we physically maintain the pairs
ordered in descending order by timestamp, the hashing will always

92 From Workloads to Data Structures

point us to the most recent pair for key k, so normal point queries
will find their answer fast. Time-travel queries will have to tra-
verse (either sequentially, or via a sorted search on the timestamp)
the list of pairs with the same key until they find the pair that was
valid at the desired time.

Another approach is to use partitioned logging globally and hashing
for local data organization. Time-travel queries will first identify
the appropriate global partition based on time and then probe the
hash structure.

11. Now suppose the workload also includes “deep deletes” where
deepdelete(k) would physically remove all the pairs (k, vi) (over
all time) associated with a given key k in a pre-determined time
threshold. How would you design a data structure to support this
operation?
Answer Sketch: In order to perform deep deletes quickly, ideally
there would be one copy of each key, accessible by hash or a B+-
tree. On the other hand, if the ingestion rate is high and that leads
to a design in which modifications are buffered, then those buffers
should be mutated to remove invalid entries on a regular basis to
satisfy the timeliness requirements of deep deletes.

4.14 Further Readings

Surveys: Graefe (2011) surveyed different techniques used in B+-tree
designs. Lehman and Carey, 1986 surveyed index structures for main
memory. Vitter (2001) surveyed algorithms and data structures for
external memory (disk). Luo and Carey (2020) surveyed the variations
of LSM-trees, and Sarkar and Athanassoulis (2022) dissected the LSM
design space and their optimizations. Huang et al. (2022) surveyed
indexes for persistent memories. Zhang et al. (2015) surveyed in-
memory data management and indexing. These surveys and tutorials
will help the reader understand individual data structure designs and
properties.

5
Adaptivity: Evolving Data Structures to a

Workload

The core philosophy underlying adaptivity is that a data organization
should automatically evolve towards an organization that achieves the
best performance as the workload changes. By contrast, non-adaptive
designs fix a data organization and maintain it, regardless of the work-
load.

For example, a non-adaptive design of a B+-tree might require a
total order of the data in each node. This is a good design if the vast
majority of queries are reads including short range queries. By contrast,
an adaptive design may evolve to a partially sorted organization on part
of the tree to absorb workloads in which there are a substantial fraction
of modifications. A partially sorted organization is easier to maintain on
each such modification. For reads, an adaptive design that uses rough
partitioning of the data will be nearly as efficient as a B+-tree with
sorted nodes.

Overall, adaptivity leads to designs that evolve with the workload.
In this chapter, we will discuss past and current work that creates
data structures that are autonomously adaptive and reactive to every
key-value (read or write) operation.

93

94 Adaptivity: Evolving Data Structures to a Workload

The benefits of adaptivity include:

• Data structures require time to be built. For interactive workloads
on large data files that span the memory hierarchy, users may
need to query the data immediately upon load and before there
is enough time to build an index. An adaptive approach builds
the data structure incrementally as queries arrive. Thus, one
core performance benefit is that adaptivity allows data to be
queried immediately instead of waiting several minutes or hours
for traditional indexes to be built.

• Data structures, by definition, impose a particular organization
on the data that has to be maintained when the data changes in
any way, which may reduce the performance of workloads having
frequent updates. Adaptivity can help by creating data structures
that impose a rough (just enough) order on the data to reduce
the overhead of updates while still providing adequate support for
reads. In addition, organizations that may be slightly sub-optimal
for pure read workloads can substantially reduce the overhead
of concurrency control when there are more inserts than deletes
(Section 7.1). Thus, another core performance benefit is that
adaptivity can dynamically create bespoke data organizations that
fit the current workload with respect to the read/write balance.

• The workload may vary on different parts of a data structure. For
example, if the key is temporal (meaning the key is monotonic with
insertion time), then all insertions will touch only the rightmost
leaf of a B+-tree. This implies that different parts of a file may
benefit from different index structures (heterogeneity as discussed
in Section 4.10). Further, the workload on different parts of a
file may change over time. Adaptivity algorithms can monitor
access patterns on different parts of the file and incrementally
build appropriate indexes and discard unnecessary indexes as the
local workload demands. The decision of which index to build may
depend both on the access pattern for a given part of the data
and the storage platform for the index, e.g., a small fanout for fast
memory (node sizes of a cache line) and a large fanout for solid

95

state disks (node sizes of several kilobytes). Thus, another core
performance benefit is that adaptivity creates variable bespoke
data organizations that fit different workloads on different parts
of the structure. This may bring a very large speed-up (e.g., three
orders of magnitude in NoSQL systems as shown in Chatterjee
et al., 2022).

Adaptivity has gained in importance because (i) increasingly, appli-
cations create exploratory workloads (e.g., in data science and machine
learning), (ii) larger data sizes make it harder to index all data, (iii) ap-
plications have become more fluid in the sense that they might frequently
encounter different workloads, e.g., when introducing new features, and
(iv) one memory technology may work better with one data layout while
another memory technology may work better with another one (e.g., the
fanout example above), especially in a context where hardware evolves
rapidly.

The reasons above suggest that fixed data layout choices can limit
the performance of an application, while an adaptive approach can
improve performance by adjusting a data structure design as data,
queries, or hardware change.
Preliminary Observation: The Need for Deep Design Changes.
Trying to achieve adaptivity outside the data structure leads to im-
practical solutions. For example, if an adaptive method is designed
and implemented over a non-adaptive data structure, it would need to
observe the workload for some number of queries (or time) and then
perform a rewrite of all or part of the data structure. This will result
in infrequent and expensive transformations that do not satisfy the
agile needs of diverse, dynamically changing workloads. As such, the
design principles we will see below entail deeply embedding adaptivity
in the core design and implementation of a data structure with the goal
of changing the data structure efficiently and rapidly as the workload
changes.

96 Adaptivity: Evolving Data Structures to a Workload

5.1 Design Dimension: Reorganization Aggressiveness

Physical reorganization of the core data and index components of a data
structure are the main mechanisms of adaptivity. Performing aggressive
reorganization leading to significant changes in a data structure (e.g.,
completely sorting a partition that is so far unordered) may allow a
data structure to adapt more quickly to a new workload. On the other
hand, such an approach might require more work on the part of the
reorganization, which might slow down queries while the adaptation
happens. Aggressive adaptivity may also push data structures into a
state that may be hard to maintain (e.g., if many inserts arrive soon
after a node has been sorted).
Reorganization Triggers and Scheduling. At its core, aggressive-
ness can be measured based on two quantities:

1. how much reorganization is applied in every adaptivity step, and

2. how often reorganization is activated during a query workload.

Understanding what how much and how often mean depends on the
nature of the data structure and the workload. We discuss these with
examples below.

5.2 Adaptivity for Frequently Accessed Data

Data structures can keep the most frequently accessed data in fast
memory and require minimal read amplification. The rationale is that
data that has been frequently accessed will likely be accessed soon
again in the future. If we keep such data in a location that makes it
immediately accessible, that will likely improve future queries.

The Splay Tree (Sleator and Tarjan, 1985) was the first such design.
It is effectively a binary tree that moves recently accessed data to the
root of the tree. Doing so, however, comes with some cost: there are
tradeoffs across all PyRUMID metrics. For example, moving recently
accessed data to the top of the tree means that accessing other data
may become significantly slower as that data has been pushed away
from the root.

5.3. Adaptivity for Value-Organized Data 97

A similar adaptivity concept can apply to LSM-trees. LSM-trees,
by default, maintain the key-value pairs reflecting the most frequent
modifications near the root. This benefits queries on such keys but
pushes other keys farther from the root. Splay LSM-trees (Lively et
al., 2018) move frequently read keys towards the root. This can bring
significant benefits to skewed workloads where a small set of keys are
accessed repeatedly. While in other data structures the same effect can
be achieved with a cache that sits outside the data structure at the
system level, a Splay Tree or a Splay LSM-tree adapts to such workload
patterns directly without space amplification, by reorganizing existing
data along with new data, using a single data structure design.

Similarly, data structures that allow navigational flexibility can
adapt to workload hot spots. For example, a data structure may allow
multiple navigation paths to speed access to popular data items at
some cost in maintenance. This is illustrated in Skip Lists (Pugh, 1990),
which do not have a fixed navigation scheme, but rather allow access
to the same data via multiple paths. For example, Skip Lists can offer
short paths to frequently accessed data items, including those having
large keys.
Adaptivity side-effects. As we have discussed several times in this
book, there is no free lunch with respect to data structure design
decisions. Every design decision can bring certain benefits but can
also engender performance costs depending on the workload. The case
of adaptivity in LSM-trees as described above illustrates such a cost-
benefit tradeoff. While splayed LSM-trees can boost skewed workloads
by keeping recently accessed data high in the tree, they also entail
forcing data to go through a merge process multiple times, increasing
both computation and I/O costs.

Whether this design decision is a “good” one or not depends on the
application properties and requirements. Adaptivity simply enables a
workload-dependent extension to the design space.

5.3 Adaptivity for Value-Organized Data

When data needs to be organized by value, adaptively moving data
around as described above may violate that order. We cannot just move

98 Adaptivity: Evolving Data Structures to a Workload

the qualifying data to a new physical location without affecting the rest
of the data organization. For example, if data is currently sorted, then
arbitrary data moves would often destroy the sort order.

Further, there is no good way to treat adaptivity as an additional
step that happens only after resolving a query. For example, suppose
we start with an unordered array and the goal is to end with a sorted
array. A strategy might be to scan all data to answer, say, a point query.
Then, in a second pass, re-scan the data to impose a new order. This
implies the requirement of going through (nearly) all the data twice, a
high overhead.

For the above reasons, adaptive approaches change the organization
of the data as part of query processing with the goal of gradually
evolving towards the desired key-ordering. We describe below state-of-
the-art approaches which we order with respect to how aggressively
they organize data.
Aggressiveness of Adaptivity during Querying. A lightweight
approach to adaptivity is to reorganize key-value pairs based on each
query. For example, assume a node is currently an array of unordered
integer keys and the goal is to end up with a sorted array. If a query
asks for all keys less than 15, an adaptive approach can reorganize
all data such that all keys smaller than 15 are at the first part of
the array. If another query then asks for all keys less than 90, the
adaptive approach will split the larger partition in two partitions as
shown in the middle part of Figure 5.1. Finally, assume that a third
query asks for keys between 10 and 30. This query can exploit the
existing partitioning (and skip the last partition altogether), and it can
also split the two overlapping partitions at the query range ends as
shown the last part of Figure 5.1. Every subsequent query can utilize
this incremental but useful range-partitioned information to focus on
only the relevant partition(s).

The above description is how Database Cracking works (Idreos et al.,
2007a). Further, every future query will improve the organization of the
data by refining the partitioning. For example, if a later range query
seeks all key-value pairs for keys between 20-40, then Database Cracking
will choose to partition the first part of the array into three subparts.

5.3. Adaptivity for Value-Organized Data 99

11

6

12

32

19

55

78

123

11

6

12

32

19

123

55

78

32

19

11

6

123

55

12

78

search < 15

< 15

search < 90

< 15

> 90

6

11

12

19

32

55

78

123

> 10 & < 30

< 15

> 90

> 10

< 30

Figure 5.1: A basic adaptivity approach uses the executed queries as hints on how
to physically partition the data incrementally. Gradually the data organization is
approaching a sorted array.

For efficiency, everything is done in a single pass, meaning once the
reorganization is done, the qualifying data is all in a continuous area of
the array. Short range queries will touch small portions the array while
the pieces become increasingly smaller as more queries arrive due to
the additional partitioning on the “hot” area of the data.

In this way, performance steadily improves as more queries arrive in
a way that is adaptive to the incoming queries. For example, using this
approach in its extended version for multi-column cracking (Idreos et al.,
2009) adaptivity can bring a significant benefit by matching the results
of a perfect index created manually for all TPC-H queries for Scale
Factor 1 using MonetDB. However, in order to create the perfect index
for each query, we need to have full and accurate workload knowledge
that this type of query is an important one for the workload, and we
also need to invest time in constructing the index. In the experiments
by Idreos et al. (2009) it takes up to 30 minutes to create all indexes
needed for TPC-H while with adaptivity enabled MonetDB could finish
processing all queries in a matter of milliseconds and quickly converged
to the optimal response times automatically without human database
administrator intervention.
Increasing Aggressiveness for Robustness. The basic approach
described above, where adaptivity uses only the query range to guide
reorganization, may result in a data structure that behaves poorly
as it depends on the details of the past workload. This can happen

100 Adaptivity: Evolving Data Structures to a Workload

when cracked queries do not change the data structure in a useful way.
For example, if we have a billion data items and a query results in
creating two partitions, one with two items and one with all others,
subsequent queries will still likely have to go through the massive
partition.

To improve the robustness of an adaptive data structure for such
workloads, Stochastic Cracking (Halim et al., 2012) performs random
reorganization operations as it processes the data to apply the reorga-
nization based on the range requested by the query. For example, a
random reorganization operation picks a random pivot to partition a
subset of the data instead of using only the value range requested by the
query. These additional random operations “balance” the partitioning
of the array allowing future queries to access increasingly smaller data
parts, achieving good adaptive properties. Progressive and Predictive
Indexing allows for further control on how much investment in reorgani-
zation to apply along with every query (Holanda et al., 2019; Teixeira
et al., 2018).
Exploiting Hardware Properties to Increase Aggressiveness.
Modern hardware offers the ability to run numerous operations in
parallel with multi-core CPUs, some of which may be idle. Holistic
Indexing (Petraki et al., 2015) monitors CPU cycles and increases the
number of random reorganization operations when there are CPU cycles
to spare. Effectively, the system is executing a series of “fake queries with
random select operators” to trigger reorganization operations which
improve the index for the sake of real workload queries to come.

5.4 Aggressiveness of Adaptivity during Initialization

The first few reorganization operations after initialization (i.e., when
data is first loaded) are critical for two reasons. First, they are likely to
be the most expensive reorganizations since they are partitioning larger
segments of data. Second, from the point of view of user experience, these
operations may lead to query response times that are slow not only com-
pared to an optimal design but even compared to a full scan of the data.
Thus, it is crucial for the first few queries and reorganization operations
to be as efficient as possible and ideally not worse than a full scan.

5.5. Partial Adaptive Indexing 101

Parallelize Reorganization to Match Fast Scans. The first tech-
nique to accelerate the first reorganizations is to parallelize them. This
entails making maximum use of modern multi-core hardware and SIMD
capabilities (Petraki et al., 2015). This strategy takes advantage of data
and processing parallelism in every step of the reorganization algorithm
with the result that the first reorganization incurs the same cost as
a highly optimized multi-core scan. The foundational insight is that
effectively a reorganization operation is very similar to a scan operation
as it needs to go through all data linearly and do a series of comparisons
per value. Thus, the techniques for advanced parallel scans can be
modified slightly to apply to reorganization operations.
Balance Reorganization Investment/Benefits. The second tech-
nique is to make the most of the time investment in reorganizing data.
Graefe and Kuno (2010a) first observed that early adaptive indexing
strategies read numerous data pages from the disk, then apply a single
reorganization operation, and then wrote all pages back to the disk to
store the new organization. Because computation is much cheaper than
reading and writing data, the original adaptive indexing techniques
incurred a massive data movement cost. Graefe and Kuno proposed a
new technique where every page that is brought from disk to memory
is fully sorted in memory before being written back to disk, making
maximum use of the data movement investment.

Subsequent work has observed that there is a spectrum of reor-
ganization choices the first few queries can do. Different amounts of
reorganization yield different system performance properties. The spec-
trum of aggressiveness ranges from a full sorting of individual pages
at the most aggressive to a much less aggressive series of incremental
partitioning steps (Idreos et al., 2011; Schuhknecht et al., 2018).

5.5 Partial Adaptive Indexing

All adaptive designs described so far apply partitioning over all relevant
data. For example, if a query over a data set of a key A asks for
10 < A < 30, adaptive indexing techniques will go ahead and apply
reorganization operations across all of A. However, what if the future
workload never asks for data A > 30 or for data 10 > A? The net result
would be a lot of wasted work and memory resources.

102 Adaptivity: Evolving Data Structures to a Workload

Partial adaptive indexing, such as partial database cracking (Idreos
et al., 2009), avoids these problems by creating an adaptive index only
on the portion of the data that is relevant to the workload. That is,
not only does the organization of the data structure evolve over time
as queries arrive, but also the contents of the data structure evolve by
discarding data from the index (but keeping it in the base data) when
that data becomes irrelevant to queries. The result is to reduce both
the work and the storage overhead of the adaptively maintained index.
In fact, with partial adaptive indexing, it is possible to fix a storage
budget. Whenever the footprint of the index exceeds the budget, certain
contents of the index can be discarded to make space for new content
based on a policy that considers access frequency.

5.6 Adaptive Modifications

Until now we have discussed adaptive indexing techniques for read
queries: as read queries arrive, we apply physical reorganization opera-
tions, ideally focusing the reorganization operations on the data relevant
to the query only. A complementary strategy can apply to modifications.
That is, an adaptive data structure should do as little work as possible
to process a modification until a read query asks for this data. Specifi-
cally, when a write (insert, delete, or update) arrives, it can be logged
“outside” the core data structure as a pending write. This concept is
similar to local buffering of modifications (discussed in Section 3.7.3)
but with one important difference. In non-adaptive data structures,
pending modifications are merged when certain “structural” conditions
are met, e.g., when K pending modifications have been batched. By
contrast, in adaptive indexing, modifications are merged only when and
if relevant read queries arrive. That is, modifications could be left as
pending forever if no relevant query arrives (Idreos et al., 2007b).

In addition, adaptive indexing does not need to ensure all data is
fully structured. This gives a lot of room for flexibility in how merges are
designed. In particular, adaptive indexing techniques for modifications
will move data from the main data structure to the pending modifica-
tions area to make space for “hot” modifications that have been queried
recently. This allows adaptive indexing to absorb/merge new modifica-

5.7. Adaptivity and Concurrency 103

tions using local physical reorganization operations without affecting
the rest of the data structure. For example, if two specific pending
inserts need to be placed in a particular partition of a contiguous array,
a pending technique can move two “non-hot” values to the pending
modifications area to make space for the hot ones. When data is stored
as a contiguous array, this greatly reduces the reorganization overhead
while still preserving the benefits of keeping the data contiguous for
read queries.

A special case of this idea is to require that the data items that
adaptivity moves from the base structure to the pending modifications
area have greater keys than the keys that are merged in. This ensures
that the pending modifications area will tend to become smaller because,
eventually, all data items will be merged into the main structure (Idreos
et al., 2007b). This property follows from the fact that merging two
ordered sequences works from smaller to bigger keys. An open topic is
to allow for bi-directional merges of pending modifications, which can
result in less data movement and can be done in parallel. Bi-directional
means that data could be merged both from smaller to bigger keys and
from bigger to smaller keys depending on which direction results in less
data movement for each merge operation.

5.7 Adaptivity and Concurrency

Because adaptivity entails reorganization, it gives rise to concurrency
control issues. A modification that merely appends data requires only
local concurrency control. However, read operations may change several
data parts as a side-effect of data reorganization. This would require
concurrency control protocols to exclusively lock large portions of the
data. Fortunately, this is not the case.

For example, concurrency control has been studied in the context
of adaptivity in column-stores (Graefe et al., 2012) with the main
idea being to distinguish between data changes and structure changes
while still ensuring concurrent correctness. Data changes require full
concurrency control as normally done in a database system. However,
reorganization operations following a read query do not change the
content of a data structure. They change only the organization. For
that reason, such changes can be protected with short-term latches

104 Adaptivity: Evolving Data Structures to a Workload

instead of full database locks. These observations allow for techniques
that allow high concurrency during adaptation.

5.8 Adaptivity Metrics

Measuring the cost and benefits of an adaptive data structure requires
observing PyRUMID metrics as they evolve over time. The reason is
that the performance of adaptive data structures evolves as the workload
evolves. For this reason, measuring the performance of any PyRUMID
metric becomes a function of “when” the measurement takes place in
the life-cycle of a workload. That is, it depends on which and how
many operations have appeared before the current operation. By con-
trast, regardless of timing, non-adaptive data structures have the same
PyRUMID costs. Benchmarks created for adaptive data structures use
such evolution patterns of the PyRUMID metrics to compare adaptive
designs (Graefe et al., 2010; Halim et al., 2012).

Furthermore, adaptive data structures require the following addi-
tional metrics which summarize properties with respect to performance
behavior during workload evolution (Graefe et al., 2010):

1. Data to query time: This metric defines how much time is needed
from when the data is loaded until the first query can return results.
For example, if no data structure is created and the processing
method is to simply scan all data, then the data to query time
is close to zero as we can access the data immediately. If any
structure needs to be put in place, though, then the data to query
time includes this construction cost. Ideally, a query is processed
as soon as it arrives (whether the data structure exists or not at
that point) and returns results as quickly as possible.

2. Convergence to optimal: The second time-based metric is how
long it takes to converge to the optimal organization for the sake
of subsequent query performance. Optimal query performance is
defined as the performance of the fully adapted data structure to
the whole workload. For example, if the ideal data structure for a
given workload is for all the data to be sorted, then converge-to-
optimal measures the number of queries that have to be processed

5.9. Open Topics 105

until all the data is fully sorted. Since each query in an adaptive
data structure performs small, incremental changes to the data,
it takes potentially many queries to reach the optimal state. At
the same time, precisely because an adaptive data structure does
not perform expensive reconstruction steps, queries are processed
faster end-to-end. Ideally, the total cost over all queries performing
adaptive reorganization of converging to the optimal is not larger
than the cost of constructing a fully organized data structure and
then processing all queries.

3. Number of queries slower than scan: The third time-based metric
is a measure of how long it takes until queries return results with a
response time that is better than a full scan. The rationale of this
metric is that a full scan would be the default option if no index
were present. By contrast, queries that support adaptivity incur
some cost to reorganize data to benefit future queries. Ideally, the
number of queries slower than a scan is zero. In practice, this is
not possible if an application needs immediate access to the data.
In these cases, a good adaptive data structure will minimize the
number of queries slower than a scan as well as the amount of
extra time they take.

5.9 Open Topics

There are numerous open research opportunities in the design of adaptive
data structures.

First, the design principles of adaptivity have not been applied
broadly to all classes of data structures, leaving an opportunity to
improve those structures. For example, in LSM-trees, adaptivity can be
applied to one level of the tree at a time or even across levels, affecting
how and when data moves across levels.

Second, regarding the larger goal of tailoring adaptivity to a given
workload, one can ask how much organization is the right amount. For
example, if the modification load is high, a constrained organization
(such as fully sorted) entails significant overhead per modification to
ensure that the organization conforms to that constraint. With such

106 Adaptivity: Evolving Data Structures to a Workload

a workload, it may never be good to fully sort all data because of the
overhead on future modifications to maintain that organization. By
contrast, it may be useful to have rough partitions. An exciting goal
of future work would be to automatically decide the most appropriate
level of organization an adaptive design should aim for on the data
such that the overall balance of read and write cost is within acceptable
user bounds for a projected workload. Existing designs aggressively
follow the workload and do create custom designs, e.g., with rough
partitions instead of sorting, but do not do so by taking into account
the projected workload. Instead, they continuously adapt. This means
that they can get trapped into suboptimal intermediate states or they
can cycle between designs but without necessarily reaping the benefits
of each intermediate design as the next reorganization might occur
too soon. Thus an overall promising direction for future approaches
is to more holistically take into account workload samples and to
invest in predicting the workload (e.g., with machine learning enhanced
approaches).

5.10 Chapter Summary

This chapter has described strategies that have been invented to help ac-
cess methods adapt to workloads as they change. The fundamental ideas
are (i) to design read operations to perform some data reorganization
to make subsequent operations faster and (ii) to buffer modifications
in order to defer reorganization costs to when they are needed. Adap-
tivity is a nearly continuous design dimension in that it can be done
aggressively or not. The optimal aggressiveness should be determined
largely by the frequency, as well as the spatial and temporal locality of
modifications.

Adaptivity has become increasingly relevant due to the more dy-
namic nature of modern data-intensive applications. Open-source sys-
tems such as MonetDB ship with adaptive techniques, which can be
enabled through optimizer knobs. In addition, industrial research is
increasingly moving in the direction of adaptive data layouts (Ding
et al., 2021) and overall adaptive behavior. Cloud systems are a natural
environment for adaptivity to flourish due both to the diverse hardware

5.11. Questions 107

and the diverse workloads employed. Recent research on cloud systems
is moving in this direction with adaptive layouts (Chatterjee et al., 2022;
Huang and Ghandeharizadeh, 2021). Overall, we expect adaptivity to
be pervasive in future system stacks, creating opportunities for novel
designs and concepts.

5.11 Questions

1. Consider a workflow consisting of a repeated pattern of bursts of
inserts followed by periods of range queries. Suppose that these
patterns differ on different parts of the value domain. What would
be a good adaptive approach to use?
Answer Sketch: Buffering the inserts would keep up with the high
insert traffic. Instead of sorting before the range queries appear,
cracking the page would be better, thus creating non-overlapping
sub-partitions that are unordered within the sub-partitions. Over
the course of several queries, the page will likely approach a sorted
ordering.

2. Compare your adaptive approach to the previous question with a
non-adaptive B+-tree in which (a) leaf nodes are never sorted, or,
by contrast, (b) leaf nodes are always sorted.
Answer Sketch: If the leaf nodes are never sorted, then inserts
can be placed directly in the nodes without buffering, but short
range queries might be slow because they would have to read the
entire node. If leaf nodes are always sorted, then every insert could
require substantial data movement within the page.

3. Suppose the workload consists mostly of point reads and range
queries but with, say, 20% modifications. One possible organization
is a rough partitioning, another is cracking, and another still is
a fully sorted organization along with buffered modifications.
Please experiment to determine which is best in terms of total
execution latency. In order to explain your observations you can
use additional metrics including CPU utilization, and memory or
disk bandwidth utilized.
Answer Sketch: This is a programming assignment.

108 Adaptivity: Evolving Data Structures to a Workload

4. Describe how you might use adaptivity in a workload without
range queries, i.e., point queries, interspersed with bursts of inserts,
deletes, and updates. Start with a hash structure having many
buckets.
Answer Sketch: If the insert/delete/update traffic is particularly
heavy, then each such modification might require an access to slow
memory on a conventional hash structure. It might therefore be
better to buffer the modifications in memory and then periodically
to move them into hash data buckets.

5. Consider a data structure of stock trades that maps a composite
key of day and stockid to a time-ordered vector of trades for a
given day. The insert workload consists of trades entering for the
current day. There are no (or very few) modifications to trades
from previous days. Queries ask about one or more trades of a
given stock over one or more days including the current day. How
would you design an adaptive structure for such a workload?
Answer Sketch: The historical (not including the current day)
global organization is sorted or hashed based on stockid. The or-
ganization for the current day could be an LSM-tree with hash
partitioning at the non-root levels based on stockid.

6
Data Structures for Specific Application Domains

This book has so far focused on the design of individual data structures.
In this chapter, we discuss data structures as components of complex
real-world systems. A complex system in general may contain numerous
data structures to support the diverse set of functionalities that the
system’s application requires. In addition, systems often offer multiple
data structure options to support the same functionality (e.g., B+-trees
and binary search trees to support search on sorted data). Workload
considerations may suggest one data structure rather than another. In
such a setting, the design of each individual data structure and how
each data structure contributes to end-to-end system performance are
both important.

The examples we present in this chapter come from systems that
require secondary memory: database systems, file systems, and machine
learning pipelines.

6.1 Data Structures in Relational Database Systems

Relational database systems must make several decisions around the
data structures they employ, regarding (i) how to represent tabular
data, (ii) how to index data to accelerate data access and which index a

109

110 Data Structures for Specific Application Domains

given query should use, (iii) how to store intermediate results of queries,
and (iv) how to adapt to fluctuating workloads.

6.1.1 Data Structure Design for Base Data Organization

The relational model organizes data into tables (or relations). Such
tables are conventionally laid out row-by-row (or record-by-record), a
so-called row-oriented organization. An index might map a key (such
as a social security number) to a value (such as an employee record).
The rows may be partitioned into different locations, a technique called
horizontal partitioning, while maintaining this basic key-to-record data
structure.

An alternative is to partition the table by column. For example, if
the access pattern of a read query requires accessing a few columns of
a relational table (e.g., only the employee salary column to calculate
the average) and each column is separately stored, then scans need
to access only the columns required by that query. A table that is
column-partitioned is said to follow a column-store or columnar data
organization.

Applications of column-store approaches came to the fore in the
1980s when analytical scenarios led to the creation of wide relational
tables (i.e., tables with many columns) in which queries accessed only a
few columns (Copeland and Khoshafian, 1985) at a time. This led to
the development of columnar data system architectures (Abadi et al.,
2013; Boncz et al., 2005; Färber et al., 2011; Färber et al., 2012; French,
1995; French, 1997; Idreos et al., 2012; Kemper and Neumann, 2011;
Lamb et al., 2012; MacNicol and French, 2004; Stonebraker et al., 2005;
Zukowski and Boncz, 2012) (as had already been present in vector
languages like APL (Falkoff and Iverson, 1973) since their invention).
Using a columnar instead of a row-oriented layout in data management
systems is a data organization decision that has been extensively studied
(Barber et al., 2012; Barber et al., 2015; Lahiri et al., 2015; Larson
et al., 2011; Larson et al., 2012; Larson et al., 2015; Larson et al., 2013;
Ramamurthy et al., 2002; Ramamurthy et al., 2003; Raman et al., 2013).

In addition to pure column-store organizations, one can store groups
of columns together. For example, one can store the age and the salary of

6.1. Data Structures in Relational Database Systems 111

an employee together, because queries may want to calculate the average
salary per age bracket. Various hybrid approaches may offer benefits
depending on the workload: (i) by nesting columnar data organization
within data pages (Ailamaki et al., 2002; Ailamaki et al., 2001), and (ii)
by grouping multiple columns and offering specialized code for accessing
groups of columns (Alagiannis et al., 2014; Dittrich and Jindal, 2011;
Färber et al., 2011; Färber et al., 2012; Grund et al., 2010; Kemper and
Neumann, 2011).

Overall, the column-store design works better for analytical queries
each of which depends on a few columns (say five to ten) of tables
having many columns (hundreds or thousands). By contrast, the row-
store design works well for queries that require all or most fields of each
row. A columnar data organization enjoys an administrative benefit
because it makes schema changes easier: columns can be added to or
removed from a table without affecting the rest of the data. In a row-
store, by contrast, dropping or adding a column would normally entail
reading and rewriting the whole table.

Finally, a common design approach is to replicate the data where
each replicate has a different data structure design. For example, systems
that need to support streaming data along with analytical queries may
employ (i) an LSM-tree row-based design to absorb data quickly and
(ii) a second copy in a columnar layout. This supports diverse workload
patterns at the expense of additional storage costs and some delay in
moving updates from the insert-optimized copy to the analytical copy.

6.1.2 Data Structure Design for Access Path Selection

While indexing entails the overhead of metadata, it is beneficial for the
majority of selective queries that access a small fraction of the data.
The choice of when to use an index is the topic of access path selection
(Kester et al., 2017; Selinger et al., 1979), which weighs multiple factors
including query selectivity (the fraction of the entries retrieved by a
query), whether data is sorted by key, the number of keys per page, and
the difference in cost between sequential and random access.

If the underlying data is sorted by the same key as an index, then
the index should be used regardless of the selectivity.

112 Data Structures for Specific Application Domains

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 2 4 8 16 32 64 128 256

Br
ea

k-
ev

en
 S

el
ec

tiv
ity

B (entries per disk page)

Scan/Index Break-even Query Selectivity
1-rnd-1-seq 1-rnd-10-seq 1-rnd-100-seq 1-rnd-1000-seq

Scan is better

Index is better

Figure 6.1: When comparing indexing vs. scanning when the base data is not
organized based on the key, the number of entries per disk page B plays a central role.
If random and sequential accesses have the same cost, then the break-even selectivity
is 1/B. For example, if a selection will match 1/1000 of the records and there are
100 records per page (B), then only about 1/10th of the pages will be accessed
when using an index, so the index is helpful. On the other hand, if there are 10, 000
records per page, then the index will access nearly every page, roughly 10 times
each, so scanning would be better. For devices for which random access is slower
than sequential access by a factor of R, the break-even selectivity is further reduced,
being equal to 1

B·R . For example, if the system can transfer 10 pages sequentially in
the time it takes to read one page randomly (dotted line) and there are 128 entries
per page, and at least 1/1000 (1.E-03 on the vertical axis) of the records match a
query, then a scan is at least as fast as an index search. In the figure, different line
textures indicate different R values.

When the data is not organized based on the key of the index, there
will be one disk access for each qualifying entry (Ramakrishnan and
Gehrke, 2002). Figure 6.1 shows the relative benefits of scanning and
index probing as a function of (i) query selectivity and (ii) the degree to
which sequential search is faster than random search. The figure shows
several comparison points for the considered parameters.

For example, if B = 1 (every page contains only one entry) and a
random access is as efficient as a sequential access, then we should always
employ an index (break-even selectivity is 100%). By contrast, the larger
the cost difference between random and sequential access (shown by
the different lines), the less advantageous is indexing. The reason is

6.1. Data Structures in Relational Database Systems 113

that for a non-clustering index, indexing entails random accesses while
scanning is sequential. For example, if scanning 100 pages costs the
same as accessing one page randomly and the query will return more
than 1/100th of the data, then scanning will be better.
When to Sort the Output of an Index. When using an index
to access base data, the query plan often assumes (or specifies) that
the index returns the data sorted based on this indexed attribute. For
example, a query plan may use an index to select a subset of the rows
and then calculate a group by. The group by operator might rely on
receiving the rows in sorted order based on the grouping attribute to
give the correct answers. If, however, the overall plan for a query does
not require the entries to be sorted based on the indexed attribute
(e.g., it performs a selection and then calculates the average), repeated
accesses to the same page can be avoided by sorting the entries based
on their row ID instead. This ensures that each physical data page will
be accessed only once, potentially making the use of an index much
more attractive compared to a scan.
Adaptive Data Structure Selection. If it is not possible to sort the
output of an index based on the rowID then it may be that using an
index is actually worse in terms of performance compared to scanning
all data as discussed by Borovica-Gajic et al. (2015). This effect may
seem counter-intuitive at first, however, it is due to data movement. If
the system is trying to access data given an unordered set of rowIDs,
then it will end up moving the same page multiple times to access this
data in the proper order. In that case, the index access can be multiple
times slower than a full scan. The smooth scan operator proposed by
Borovica-Gajic et al. (2015) solves this problem by adaptively switching
from an index-based access to a scan-based access as it processes any
given query. The core idea is that in each step of an index access, when
the system brings in a data page, it will check not just for one rowID,
but will instead “scan” the whole page for all relevant rowIDs.
Shared Scans vs Indexes. Finally, advanced scan algorithms may
enjoy an advantage over indexes if several queries can be answered in
a single scan pass as this can dramatically reduce data movement as
shown by Psaroudakis et al. (2013), Giannikis et al. (2013), Candea et al.

114 Data Structures for Specific Application Domains

(2011), and Zukowski et al. (2007). However, advanced data structures
can still provide benefits for highly selective queries even in memory.
Compared to more traditional approaches, modern optimizers take into
account not only selectivity but also query concurrency to make the
best possible decision on which access path to select for each query (or
set of queries) as discussed by Kester et al. (2017).

6.1.3 Data Structure Design for Intermediate Results

When using a single data structure we typically perform a single key-
value access at a time. Queries in a relational database system, however,
might perform millions of data accesses to one or more tables. The
output of one operation in a query plan may be the input to one or more
other operations in the plan. When systems process big data, these
intermediate results tend to be of substantial size. Thus, reading and
writing that data becomes a critical part of the overall cost of executing
a query. As a result, in relational data systems, it is not only important
to choose data structures to store the base tables but also to decide
how intermediate results should be stored and accessed, as these two
decisions interact.

For example, the intermediate results in columnar systems must
identify which rows of the data have survived at least some of the
query’s filters (e.g., conditions such as A = 5 and B < 5). Representing
the surviving rows can be done in at least two ways.

First, one might use a position list, which is a dense array in which
each value represents an offset to the base table data. When many rows
qualify, a position list must store and move one value per row which for
bigger data can be a significant overhead. A second design is to use a
bitvector in which every row of the base table is associated with a “0”
or “1” depending on whether it qualifies or not. Such a representation
stores one bit per row of the original base table as opposed to the
worst-case scenario for position lists which is one integer (e.g., 64 bits)
for each row that has survived the filter. Roughly speaking, if fewer than
1/64th of the rows qualify, position lists will perform better than bit
vectors (when each position is encoded as a 64-bit integer)1. Otherwise,

1The calculation goes as follows. Assuming N rows, the bitvector will have 1 bit

6.1. Data Structures in Relational Database Systems 115

bit vectors are better. Both approaches implement a version of late
materialization (Abadi et al., 2007) that allows the system to minimize
the data movement until it is absolutely necessary.

In summary, relational data systems need to make dynamic data
structure design decisions that depend on the context of a particular
query and the overall state of the system.

6.1.4 Data Structure Design for Adaptivity in Data Systems

Data layouts have a large influence on the performance of queries. For
that reason, allowing data layouts to adapt to workloads may offer some
benefits.

For example, consider a columnar database system where every
column of a relational table is stored as a dense fixed-width array.
To accelerate queries on specific attributes, conventional column-store
systems create projections. Each projection replicates all or a subset of
the columns of a table, organized in the sorted order of a single or a
few columns of that subset. The sorted column(s) that is (are) said to
be leading.

This is the standard design of all column-stores and results in
substantial storage and update overhead because it may require a
column-store projection for every single column (as the leading column).
Alternatively, a designer might fix a certain selection of k column-store
projections and replicate the data once for each such projection.

Reorganizing just the columns of interest to a given query would
cause columns to be out of alignment with one another (i.e., the ith
element of one column would not belong to the same logical row as
the ith element of another column). In such a setting, maintaining
the logical row structure of different columns can be done by holding
positional references in every single column. That is, every column is
augmented with what is effectively an additional column to hold the
position of each value in a common reference position across all table
columns (e.g., the first value in this column corresponds to row 13,

ber row, hence, N overall bits. The size of the position list is N · s% · 64 bits where
s% is the selectivity of the filter. In order for the position lists to be better we need
N · s% · 64 < N ⇒ s% < 1/64.

116 Data Structures for Specific Application Domains

the second to row 2954, etc). The problem with this approach is that
it causes a lot of random access for the common case of queries that
express conditions on several attributes.

Idreos et al. (2009) address this problem with sideways cracking by
gradually propagating the reorganization actions (e.g., a sort) performed
on a single column across the other columns of the table as shown in
Figure 6.2. Once the propagation is complete, position i of one column
will correspond to the same logical row as position i of any other column.
This eliminates the need for positional references and random access.

To avoid overburdening an individual cracking query with the task
of reorganizing multiple columns, sideways cracking does this propa-
gation adaptively. Assume a relational table consists of 100 attributes
C1, C2, ..., C100. If a query arrives with a selection on C1 and an aggre-
gation C2, adaptive indexing will reorganize C1 based on the selection
(cracking) and propagate this order on C2 but it will not touch the other
98 columns. If future queries with a (potentially different) selection on
C1 need to utilize one or more of the other columns, they will then
create a copy of these other columns to propagate the revised order.
In order to achieve this incremental organization, sideways cracking
maintains the history of reorganization operations for every column in
a table, so these operations can be “replayed” in the future as needed.
Replaying operations means that exactly the same data reorganization
operations are applied in the new columns and in exactly the same
order as the columns already reorganized. Overall, this design adaptively
builds column-store projections and achieves the performance impact of
a well-tuned column-store projection but without the need for a priori
workload knowledge about which column should be the leading one and
without expending too much time or storage.

Finally, adaptivity has been utilized to organize the base data layout
of database systems by dynamically creating data layouts that are
hybrids of row-stores and column-stores to bridge the requirements of
different queries. Alagiannis et al. (2014) and Arulraj et al. (2016) use
queries as hints on how data should be stored. Then those hints are
realized through incremental reorganization actions.

6.2. File Systems & Memory Management 117

12
3
5
9
8

22
7

26
4
2
7

9
2
6

10
7
11
16
2
5
8
3

A B

select_create_bv(A,3,10,B,4,8)

2
3
5
9
8
7
7
4

26
12
22

8
2
6

10
7
3

16
5
2
9
11

MAB

v<=3

v>3

v>=10

1
0
1
0
0
1

Bit
vector bv

3
6
2
1
6
9

12
2
11
17
3

C

select_refine_bv(A,3,10,C,1,7,bv)

2
3
5
9
8
7
7
4

26
12
22

17
6
2
1
6
3

12
11
2
3
9

v<=3

v>3

v>=10

1
0
1
0
0
0

Bit
vector bv

9
4
2

10
12
19
3
6
5
8
1

D

reconstruct(A,3,10,D,bv)

2
3
5
9
8
7
7
4

26
12
22

8
4
2

10
12
1
3
5
6
9

19

v<=3

v>3

v>=10

2
12

 Result

MAC MAD

select D from R where 3<A<10 and 4<B<8 and 1<C<7

Initial stateQuery

1
0
1
0
0
0

Bit
vector bv

Query execution

Figure 6.2: Example of sideways cracking: adaptively reorganizing pairs of columns
by using incoming queries as advice on how data should be stored to incrementally
improve data access speed.

6.2 File Systems & Memory Management

A file system offers an application programming interface (API) that
operating systems use to store and access data. File systems take care
of data management under the hood to make sure that data can be
accessed as fast as possible in a hardware-conscious way as well as to
ensure that data is consistent (i.e., accesses to a file appear to execute
in a serial fashion consistent with their order of arrival). File systems
deal with massive amounts of data and the performance properties they
offer impact any application running on top of operating systems.

File system access patterns typically involve dealing with pages of
data, e.g., storing or retrieving pages from a file. When reading file
pages the combination of an fseek and an fread command finds the
location of interest in the file and then reads a contiguous blob of bytes.
Note that the actual file pages may not be contiguous on the storage
medium, hence the core access pattern in file systems may be point or
range queries, much as in a database system.

118 Data Structures for Specific Application Domains

File systems have traditionally relied on B+-tree data structures.
As discussed in Chapter 4, B+-trees provide a good balance between
point query, range query, and update requests, thus, several file systems
including Ext3, ZFS, and ResierFS use B+-trees to represent files and
directories (Menon et al., 2003; Rodeh, 2008; Sweeney et al., 1996).

Another class of file systems includes log-structured-based systems
which were designed over LSM-tree-like data structures. The motiva-
tion is that most applications must support frequent insertions and
mostly need to access recent data. LSM-tree style designs work well for
such applications. In fact, the similarity between journaling, LSM-tree
compaction, and garbage collection, has led to the development of ap-
proaches that embed the LSM design within the physical device (Dayan
et al., 2021; Kang et al., 2019).

Managing memory requires various data structures to efficiently
maintain and retrieve resources, e.g., via memory address translations.
For example, the page cache and the translation lookaside buffer (TLB)
traditionally employ a radix tree to index all the translations from
logical to physical memory addresses (Bovet and Cesati, 2005).

New data structures can benefit the internals of operating systems
either in terms of performance or space utilization. For example, Mar-
garitov et al. (2018) suggested that a learned tree index can replace
radix trees and increase the space efficiency of the translation index.

6.3 Data Structures in Machine Learning Pipelines

All modern machine learning pipelines entail storing, moving, and ana-
lyzing large amounts of data. As such, data structures, their performance
properties, and tradeoffs are crucial to the overall efficiency and even
feasibility of machine learning pipelines.

Typically, a machine learning pipeline consists of several sub-systems,
each corresponding to a single pipeline step. Sub-systems include systems
to handle data injection, cleaning, transformations, labeling, modeling,
serving, monitoring, and caching. Each one of those sub-systems needs
to deal with large amounts of data and so each one of those subsystems
needs to make data structure design decisions.

6.3. Data Structures in Machine Learning Pipelines 119

In many applications, machine learning is applied to structured re-
lational data. The reason is that most businesses and scientific research
groups manage their data using relational data systems. In addition,
most modern machine learning libraries store data in a column-store.
The operations performed in machine learning pipelines are a superset
of those performed in relational systems, but the data structure consid-
erations are largely the same: caching and management of intermediate
results (Wasay et al., 2017), compressing data to improve data move-
ment (Jain et al., 2018), sharing execution of complex computations
over the same data (Wasay et al., 2020), and utilizing parallelism and
memory management when data is large (Narayanan et al., 2021).

When the input is not in relational form, state-of-the-art machine
learning libraries nevertheless use columnar storage for the underlying
data representations as this is often more efficient in terms of performing
operations on individual data entities. Complex data types such as
images or text are also transformed into arrays/columns for efficient
processing. The reason is that Machine Learning algorithms typically
take as input arrays or matrixes of floating point numbers with the task
of performing a series of mathematical operations to discover possible
patterns in these input numbers. Thus, before utilizing a given ML
algorithm (e.g., from a specific library), a data scientist first transforms
their input data into a standard numerical form as an array or matrix or
set of matrices of floating point numbers. The underlying representation
to store arrays and matrices in most libraries (e.g., Pandas) is column-
oriented as this provides the most flexibility.

In addition to using a columnar layout, many applications require
fast data ingestion. Sometimes, high-volume incoming data needs to
trigger the execution of machine learning models. In these “streaming”
cases, incoming data is pushed onto an LSM-based storage engine. From
there the machine learning pipeline will extract the relevant features for
the models that need to be triggered. For these reasons, LSM-trees play
an important role in the inference response time of machine learning
pipelines.

In addition to other tree data structures, decision trees represent a
large portion of machine learning models used in practice due to the
simplicity of interpreting their results. This happens as follows: every

120 Data Structures for Specific Application Domains

node of a decision tree represents a decision based on a feature of the
model. The fanout of a node represents the possible values for this
feature. Performing a prediction based on a tree model means traversing
the tree starting from the root and ending at the leaf. The leaf represents
the suggested prediction (e.g., the predicted class of an object such as
the price range of a requested taxi ride or the risk range of a mortgage
request). For complex problems, machine learning pipelines use tens,
hundreds, or even thousands of decision trees in a random forest. The
final prediction result for a given query is based on averaging the results
of all trees in the forest. In such applications, machine learning pipelines
traverse numerous decision trees for every single prediction request.

Overall, data structures play a dominant role during numerous
phases of machine learning pipelines. They influence performance and
they are also at the center of critical open challenges in the field.
For example, how do we maintain end-to-end model properties during
data and model drift (Yuan et al., 2023), how do we maintain high-
performance inference during phases of high data injection rates, and
how can we include additional features in a model to improve quality
without significantly increasing inference and retraining time? For all
those challenges, efficient and application-tailored data structures are
critical, especially since the quality of Machine Learning models requires
ever larger data.

6.4 Cross-System Design Considerations and Tradeoffs

Even though each system class has its own design elements, there are
also certain design considerations and tradeoffs that are common across
system classes.

For example, most systems have some form of cache. The cache
should ideally be used to store recently used data pages or individual
data entries to minimize access to the disk or remote machines. Because
the cache consumes memory, this implies that caching gives rise to a
performance tradeoff: how much memory should be given to the cache
and how much to the various data structures of the system? In fact, this
is an open research problem across all forms of systems. As of now, all
systems expose the size of the cache as a tuning parameter and then use

6.5. Chapter Summary 121

what is left for internal data structures. However, given a workload, one
could co-design the cache size and the overall design of the numerous
data structure of the system to achieve a given performance goal.

Another design consideration that creates tradeoffs across multiple
system components is how to utilize multiple processing cores. For
example, multiple cores may perform independent processing on different
data parts, but that will make those CPU cycles unavailable for other
purposes.

Hardware-sensitive design must also consider the high cost of ac-
cessing data on remote sites. This may inspire strategies such as adding
filtering data structures on local sites (similar to the filters discussed in
Section 3.3.2) to avoid accessing a remote site. Another strategy may
be to keep an index on a local site to data on a remote site in order
to minimize the number of accesses to that site. Such design decisions
need to consider the ever-evolving underlying hardware. For example,
as RDMA (Remote Data Memory Access) becomes more prevalent,
accessing remote data will be less costly. This changes overall system
and data structure design considerations. For example, this may suggest
distributing large indexes as the cost of data movement decreases.

Overall, there are numerous open design tradeoffs that, combined
with application requirements, influence data structure design decisions.
An open research challenge is to automate such decisions across the
entire tradeoff space.

6.5 Chapter Summary

This chapter describes how data structure design considerations change
when designing systems for diverse applications, ranging from rela-
tional databases to machine learning. Each such application can be
characterized by a family of workloads. The workloads and hardware
considerations suggest design choices for data structures. Because any
design entails tradeoffs, system designers need to consider the end-to-
end impact of each data structure design decision on overall system
performance.

122 Data Structures for Specific Application Domains

6.6 Questions

1. Consider a network application in which each router must forward
messages towards their destinations at high speed and collect
monitoring information such as the number of messages passing
through that router, the sizes of those messages, and the lengths
of delays. Each of the routing and monitoring functionalities might
need one or more data structures. Try to identify them. Which
ones should be kept in memory?
Answer Sketch: The routing tables map a destination node to the
next node (or nodes) to send to. These would be well served by
an in-memory hash structure. The monitoring information such
as the aggregate size of messages passing through the router does
not need any special data structure. If one wanted to keep track of
sender-destination pairs and messages between them, then a hash
structure whose keys are sender id-destination id pairs and whose
values are message information would be appropriate. This could
be an on-disk structure.

2. Consider a forecasting application for stock market data that must
collect streaming time-ordered trade data of the form (stockid,
quantity, price) and perform per-stock price forecasting over the
next few seconds. The per-stock forecasting could use any standard
univariate (history per stock id) forecasting method. What would
be an appropriate data structure for this application?
Answer Sketch: Because the forecasting is per stock id, a hash
structure per stock id with values stored in time-sorted order would
work well.

3. In many machine learning applications, there is a preliminary
step known as feature selection in which only a (possibly small)
subset of possible features are considered in a machine learning
task. How might feature selection influence data organization?
Answer Sketch: A feature is an attribute of some entity, corre-
sponding to a column in a relational model. When only a few will
be needed, a columnar store will enable access to exactly the data
from the features that are needed.

6.7. Further Readings 123

6.7 Further Readings

System Surveys: Every system category comes with a lot of design
complexity rooted to the particular class of design or application.
Surveys that go into greater detail on particular systems classes can
be very useful to further understand design implications of data
structures in these systems. Examples of further readings include
surveys and tutorials on: relational database systems (Hellerstein et
al., 2007), columnar database systems (Abadi et al., 2013), in-memory
data systems (Idreos et al., 2012; Faerber et al., 2017), hardware
conscious analytical system (Barber et al., 2012), key-value store
systems (Idreos and Callaghan, 2020), LSM-based systems (Luo and
Carey, 2020; Sarkar and Athanassoulis, 2022).

Data Systems Grammar: As we discussed in this section, systems
consist of numerous data structures. An approach to overall system
design is to create a grammar that supports the co-design of all data
structures with respect to the desired end-to-end system performance
behavior. Such a grammar has been devised for the Cosine Systems
Calculator (Chatterjee et al., 2022) for key-value storage engines.
It consists of design principles and rules for design which allow for
1036 unique system designs. The overall design space is much larger
as it consists of numerous data structures, but it has been reduced
dramatically thanks to the construction of the design continuum
(Idreos et al., 2019a), which allows fast search over the best possible
designs.

7
Challenging Design Considerations

A recurring theme of this book is that there are one or more points in the
space defined by the design dimensions that can satisfy a given workload.
We have also discussed methods that allow heterogeneous treatment of
different parts of a data structure (e.g., if the key is sequential, do not
split the rightmost leaf of a B+-tree in half; instead, let that node be full
and simply introduce a new empty node for further inserts). We have
also described adaption strategies as the workload changes. Though
the design space so far shown is rich, there are still other dimensions
that research to date has explored in isolation, but not as part of an
integrated design method. For this reason, we believe these dimensions
require further research.

• How to design concurrency control mechanisms for each option
of the design dimensions? How does concurrency control interact
with those dimensions?

• How to support data structures that span a set of processing
nodes across a distributed system?

• How to make a data structure adapt to new workloads?

124

7.1. Concurrency 125

• How should data structure design exploit hardware features?

• What is the interplay between caching and data structure design?

7.1 Concurrency

Preliminaries. In this brief discussion about concurrency, we use the
notion of locks that protect the access of an object (e.g., an index node,
or a file page) when this object is altered. We assume two types of locks:
a read lock that allows for multiple readers but no writers, and a write
lock that allows for one writer and no readers.

To understand how concurrency might interact with the other di-
mensions of data structure design, consider the problem of maintaining
a sorted order among the keys of a node.

An incorrect approach would allow the sort to execute while searches
and perhaps even modifications execute concurrently. This can lead to
modifications being missed and to searches incorrectly returning that
keys are not found.

A naive correct solution might be to exclusively lock the node during
each insert or delete in order to establish a sorted order. However, if
that node is accessed by many concurrent threads, those other threads
must wait until the sort completes.

A better correct solution might be to simply put the inserts or
deletes into a buffer associated with the node, e.g., see the work of
Levandoski et al. (2013), discussed in Section 4.3. Then, each subsequent
operation would look first at the buffer and then at the node whose keys
are sorted. Periodically, preferably when there are few accesses to the
node, the node would be locked and re-sorted using the modifications
from the buffer. Thus, we see that buffering (Section 3.7) increases
possible concurrency because write locking the whole node occurs only
during the relatively rare full reorganizations.

Another interaction of concurrency control and design has to do
with concurrency control in hierarchical structures. Holding a lock,
especially a write lock, on an interior node m of a B+-tree interferes
with other operations far more than holding a lock on a leaf n, because
any operation that needs to access a leaf below m would be blocked. For

126 Challenging Design Considerations

that reason, it is important that locks on interior nodes be held for a short
time, during which time locked nodes should be in memory (Kornacker
et al., 1997; Lehman and Yao, 1981; Lomet and Salzberg, 1992; Sagiv,
1986; Shasha and Goodman, 1988). If that is not possible, one might
consider data structure designs that have no internal nodes such as
order-preserving hashing. Thus, concurrency control considerations can
suggest new data structure designs.

Concurrency considerations might even suggest changing existing
algorithms to reduce reorganization overhead, and therefore concurrency
bottlenecks. For example, and as we have observed in Chapters 3 and
4, in virtually any setting where there are more inserts than deletes,
merging B+-tree nodes when they become less than half full (merge-at-
half) hurts performance, because merges will soon be followed by splits.
Such a merge-then-soon-split pattern entails substantial reorganization
overhead and causes concurrency control-induced delays. Instead, it is
better to allow a node to become empty before freeing it. When there are
more inserts than deletes, free-at-empty achieves page utilization nearly
as high as merge-at-half (Johnson and Shasha, 1989) while increasing
throughput.

The possibility of concurrency bottlenecks also suggests using highly
concurrent data structure algorithms, some of which have been automat-
ically verified (Krishna et al., 2021). Some authors have suggested using
lock-free algorithms often inspired by the text The art of multiprocessor
programming (Herlihy et al., 2020). Lock-free algorithms allow searches
to proceed while nodes are reorganized, thus greatly reducing block-
ing overhead, but such algorithms often do speculative work followed
by a compare-and-swap operation. When the compare-and-swap fails,
the speculative work has been wasted. Nevertheless, a combination of
minimal locking approaches and lock-freedom has shown great promise
(Levandoski et al., 2013).

Another promising avenue is to avoid the need for locking by de-
signing approaches that take advantage of naturally serialized machine
instructions as done, for example, in Masstree by Mao et al. (2012).

As multi-threaded systems are now commonplace, workloads are
getting increasingly complex and hybrid, systems support more users,
and new data systems architectures are proposed, much more research is

7.2. Distributed Systems 127

needed to understand the interactions of concurrency with other aspects
of data structure design.

7.2 Distributed Systems

In a distributed system, a data structure may be partitioned and
even partly replicated over many processing sites. Since accessing a
local site is much less expensive than accessing a remote one, the
replication/partitioning choice can have a big influence on performance.
This was recognized in some of the earliest distributed data structures
which targeted both point queries with hash-based approaches (Litwin,
1980; Litwin et al., 1996) and range queries (Litwin et al., 1994).

To understand these issues, consider a distributed and partially
replicated B+-tree. The root will rarely be modified. For that reason, it
might be worthwhile to replicate the root and perhaps other high-level
nodes across the processing sites. This might be particularly attractive
in a shared-nothing architecture. In that way, a search or modification
can always start at the local site before being forced to go to a remote
site. Ideally, only the leaf access may entail an access to a remote site.

Replicating information comes at the cost of having to modify all
the replicas when any one is modified. This in turn affects concurrent
operations.

A second issue for a distributed data structure is how to balance
the load when one site’s portion of the data structure receives a high
workload or when a new processing site is introduced (Karger et al.,
1997). A further question is how often to rebalance the load with all
the concurrent overhead that implies (Luo and Carey, 2022).

7.3 Emerging Workload Types

In Section 2.4 we introduce seven workload operations1 that data struc-
tures frequently have to serve. As new applications and new (legal)
requirements emerge a set of new workload operations also emerges
(Athanassoulis et al., 2016; Kennedy and Ziarek, 2015).

1Point queries, short range queries, long range queries, full scans, inserts, deletes,
and updates.

128 Challenging Design Considerations

We have seen recently the emergence of “Deep Deletes” that require a
deletion to provide guarantees that the data has been completely erased
to protect an individual’s privacy (Sarkar et al., 2020; Athanassoulis
et al., 2022). Similarly, we can consider a “Deep Update” which can
be thought of, functionally, as a deep delete followed by an insert. In
addition, both deep delete and update may be associated with a deadline
by which time the purging of the older data has to be completed. In
addition to deep deletes, many systems also employ a deletion of older
data or an “Aged Delete” mainly for storage and cost reasons. Last
but not least, many applications require “Time-travel queries” for both
application and compliance reasons. This rich set of new workload
operations is largely unexplored and requires more research.

7.4 Hardware Considerations in Data Structure Implementation

Implementation-related optimizations require intimate knowledge of the
computing hardware and the facilities of the underlying processor(s).

Even after the global and local design of a data structure has been
established, the overall efficiency of a data structure depends on the
quality of its implementation. Good implementation can take advantage
of many hardware features. Here are some of the main examples:

• Exploit SIMD instructions to group multiple accesses on consecu-
tive memory locations (Polychroniou et al., 2015; Raman et al.,
2008; Willhalm et al., 2009).

• Employ cache-aware designs that access portions of memory equal
to one (or a few) cache-lines at a time. There is no benefit in
accessing fewer bytes than the entire cache-line because the unit
of transfer from the main memory to the cache is a full cache-line
(Ailamaki et al., 2002; Boncz et al., 2005; Rao and Ross, 2000).

• Prefetch memory chunks when the chunks that will be accessed are
known. A prefetch request can be concurrent with the execution
of some other logic (Chen et al., 2001; Chen et al., 2002; Smith,
1978).

7.5. Chapter Summary 129

• When we have consecutive condition checks (for example, in a
sequential scan that selects a subset of the data), we can re-
write the code in a way that avoids if statements by employing
predication, which reduces the cost of branch mispredictions from
the processor (Ross, 2021).

• Exploit NUMA (non-uniform memory accesses) which is now
commonplace in production servers by careful placement of data in
computing units (sockets) forming performance islands (Ailamaki
et al., 2014; Ailamaki et al., 2017; Porobic et al., 2014).

7.5 Chapter Summary

The eight design dimensions of Chapter 3 constitute the major choices a
data structure designer must make given an application (workload). This
chapter discusses considerations on the frontier of current research that
are important when designing practical data structures: concurrency,
scaling out to distributed settings, new workloads, and the evolution of
hardware.

7.6 Questions

1. When there are frequent inserts on a globally sorted organiza-
tion that is continually maintained, in the absence of batching,
which of these two organizations would incur the most concurrent
contention: (i) sorted local organization or (ii) hashed local orga-
nization?
Answer Sketch: Local sorting would suffer from the most con-
tention, because each insert would lock the whole partition.

2. How might batching modifications onto a buffering array mitigate
the concurrent contention that a locally sorted organization would
otherwise suffer?
Answer Sketch: Each modification would perform a very local
lock (or even a lock-free compare-and-swap) in order to add a
description of that modification to the buffering array. Thus, each
modification would not conflict with searches. By contrast, sorting

130 Challenging Design Considerations

for each modification would conflict with searches. Of course,
processing the batches will disrupt searches, but only once per
batch as opposed to once per modification.

3. What considerations might influence the design of an adaptive
distributed B+-tree that determines how many of the top levels of
the tree to replicate across processing nodes to benefit searches at
the cost of invalidation when nodes in those top levels are updated
(say due to a split)?
Answer Sketch: Intuitively, if each of the distributed sites is re-
sponsible for some portion of the key space, then the replicated part
of the B+-tree should guide the search to the correct site. Provided
the replicated part is seldom invalidated, the benefit of replication
outweighs the cost of relatively rare invalidations. Thus, the overall
consideration for what to replicate is based on an estimate of the
frequency and cost of invalidation versus the benefit to searches
of replication.

4. What would be a good local organization of an LSM-tree that
should support time-travel queries for particular keys, but no
range queries?
Answer Sketch: Because there are point but no range queries, local
hashing will work better than a sorted data structure. So, hash at
each non-root level. In order to support time travel, no key-value
pairs can be deleted, so the hash structures of non-root nodes won’t
be modified unless nodes are merged.

7.7 Further Readings

Data-series and Multi-dimensional Data Structures. The
book you’re currently reading focuses on data structures having
a uni-dimensional key. These are prevalent in almost any type of
computing system. Building data structures for multi-dimensional
data and data (and time) series face the same challenges plus the
additional challenge of the curse of dimensionality (Chen, 2009).

7.7. Further Readings 131

The interested reader can read more about spatial multi-dimensional
indexes (Lu and Ooi, 1993; Ooi et al., 1993) including their recent
learned counterparts (Al-Mamun et al., 2020), and separately data
series indexing and management (Jensen et al., 2017; Zoumpatianos
and Palpanas, 2018).

8
Summary

This book has decomposed the art of key-value data structure design
into a set of dimensions having to do with global organization, local
organization, batching, and placement of modifications. Each dimension
has a set of possible values (e.g., hash-, range-, radix-partitioning for
global organization). Certain combinations of dimension decisions work
well for some workloads and less well for others.

Given a workload, this book has provided a set of guidelines on how
to create data structures that support this workload by suggesting the
values for each dimension. The ability to think about the design process
as a set of design dimensions supports (i) choosing among well-known
data structures and (ii) exploring new designs that emerge as possible
combinations of various design dimension values.

Because the workload can vary both in time and on different parts of
the key space, a good design may incorporate various kinds of adaptivity:
(i) Different parts of the data structure may reflect different dimension
decisions because, for example, modifications hit only one part of the
data structure. (ii) Temporal variations in the workload may cause parts
of the data structure to be less organized because modifications are fre-
quent, whereas other parts are sorted to support point and range queries.

132

133

In addition to discussing individual data structures, we discuss
(Chapter 6) how different data-intensive applications (e.g., databases,
file systems, and machine learning systems) use multiple data structures
for storage and workflow processing.

We also discuss issues that impact data structure design but have
been so far studied more or less in isolation (Chapter 7). These issues
influence the design space in a still-to-be-researched way.

Data structure design remains an art. We hope a deeper understand-
ing of its dimensions will make the new data structures you design both
beautiful and efficient.

Acknowledgments

The authors would like to thank the anonymous reviewers of the now
publishers’ Foundations and Trends in Databases publication, Alberto
Lerner, and Viktor Sanca, for their careful reading and their insightful
feedback. We also thank Zhehu Yuan, Konstantinos Karatsenidis, Jinqi
Lu, and all BU DiSC lab members for their careful proofreading. The
authors would also like to thank the following funding bodies for their
financial support:

(Athanassoulis): U.S. National Science Foundation grant 2144547, a
Facebook Faculty Research Award, a Meta gift, and a Red Hat Research
Incubation Award.

(Idreos): U.S. Department of Energy Early Career Award grant DE-
SC0020200.

(Shasha): U.S. National Science Foundation grants 1840761 A002,
1934388, 1840761, U.S. National Institutes of Health 1R01GM121753-
01A1, and NYU Wireless.

134

References

Abadi, D. J., P. A. Boncz, S. Harizopoulos, S. Idreos, and S. Mad-
den. (2013). “The Design and Implementation of Modern Column-
Oriented Database Systems”. Foundations and Trends in Databases.
5(3): 197–280. doi: 10.1561/1900000024.

Abadi, D. J., D. S. Myers, D. J. DeWitt, and S. R. Madden. (2007).
“Materialization Strategies in a Column-Oriented DBMS”. In: Pro-
ceedings of the IEEE International Conference on Data Engineering
(ICDE). 466–475. url: http://ieeexplore.ieee.org/xpls/abs_all.jsp
?arnumber=4221695.

Abu-Libdeh, H., D. Altınbüken, A. Beutel, E. H. Chi, L. Doshi, T.
Kraska, Xiaozhou, Li, A. Ly, and C. Olston. (2020). “Learned
Indexes for a Google-scale Disk-based Database”. In: Proceedings of
the Workshop on ML for Systems at NeurIPS. url: http://mlforsys
tems.org/assets/papers/neurips2020/learned_abu-libdeh_2020.p
df.

Adelson-Velsky, G. and E. Landis. (1962). “An algorithm for the or-
ganization of information”. Proceedings of the USSR Academy of
Sciences. 146: 263–266.

Aggarwal, A. and J. S. Vitter. (1988). “The Input/Output Complexity
of Sorting and Related Problems”. Communications of the ACM.
31(9): 1116–1127. doi: 10.1145/48529.48535.

135

https://doi.org/10.1561/1900000024
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4221695
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4221695
http://mlforsystems.org/assets/papers/neurips2020/learned_abu-libdeh_2020.pdf
http://mlforsystems.org/assets/papers/neurips2020/learned_abu-libdeh_2020.pdf
http://mlforsystems.org/assets/papers/neurips2020/learned_abu-libdeh_2020.pdf
https://doi.org/10.1145/48529.48535

136 References

Ailamaki, A., D. J. DeWitt, M. D. Hill, and M. Skounakis. (2001).
“Weaving Relations for Cache Performance”. In: Proceedings of the
International Conference on Very Large Data Bases (VLDB). 169–
180. url: http://dl.acm.org/citation.cfm?id=645927.672367.

Ailamaki, A., D. J. DeWitt, M. D. Hill, and D. A. Wood. (1999).
“DBMSs on a modern processor: Where does time go?” In: Pro-
ceedings of the International Conference on Very Large Data Bases
(VLDB). 266–277. url: http://128.105.2.28/pub/techreports/1999
/TR1394.pdf.

Ailamaki, A., E. Liarou, P. Tözün, D. Porobic, and I. Psaroudakis.
(2014). “How to stop under-utilization and love multicores”. In: Pro-
ceedings of the IEEE International Conference on Data Engineering
(ICDE). 189–192. doi: 10.1109/ICDE.2015.7113419.

Ailamaki, A., E. Liarou, P. Tözün, D. Porobic, and I. Psaroudakis.
(2017). Databases on Modern Hardware: How to Stop Underutiliza-
tion and Love Multicores. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers. doi: 10.2200/S00774ED1V01Y2017
04DTM045.

Ailamaki, A., D. J. DeWitt, and M. D. Hill. (2002). “Data Page Layouts
for Relational Databases on Deep Memory Hierarchies”. The VLDB
Journal. 11(3): 198–215. doi: 10.1007/s00778-002-0074-9.

Alagiannis, I., S. Idreos, and A. Ailamaki. (2014). “H2O: A Hands-free
Adaptive Store”. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data. 1103–1114. doi: 10.1145/2588
555.2610502.

Alsubaiee, S., Y. Altowim, H. Altwaijry, A. Behm, V. R. Borkar, Y. Bu,
M. J. Carey, I. Cetindil, M. Cheelangi, K. Faraaz, E. Gabrielova,
R. Grover, Z. Heilbron, Y.-S. Kim, C. Li, G. Li, J. M. Ok, N. Onose,
P. Pirzadeh, V. J. Tsotras, R. Vernica, J. Wen, and T. Westmann.
(2014). “AsterixDB: A Scalable, Open Source BDMS”. Proceedings
of the VLDB Endowment. 7(14): 1905–1916. doi: 10.14778/2733085
.2733096.

Andersen, D. G., J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and
V. Vasudevan. (2009). “FAWN: A Fast Array of Wimpy Nodes”. In:
Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP). 1–14. doi: 10.1145/1629575.1629577.

http://dl.acm.org/citation.cfm?id=645927.672367
http://128.105.2.28/pub/techreports/1999/TR1394.pdf
http://128.105.2.28/pub/techreports/1999/TR1394.pdf
https://doi.org/10.1109/ICDE.2015.7113419
https://doi.org/10.2200/S00774ED1V01Y201704DTM045
https://doi.org/10.2200/S00774ED1V01Y201704DTM045
https://doi.org/10.1007/s00778-002-0074-9
https://doi.org/10.1145/2588555.2610502
https://doi.org/10.1145/2588555.2610502
https://doi.org/10.14778/2733085.2733096
https://doi.org/10.14778/2733085.2733096
https://doi.org/10.1145/1629575.1629577

References 137

Antoshenkov, G. (1995). “Byte-aligned Bitmap Compression”. In: Pro-
ceedings of the Conference on Data Compression (DCC). 476–476.
url: http://dl.acm.org/citation.cfm?id=874051.874730.

Arulraj, J., A. Pavlo, and P. Menon. (2016). “Bridging the Archipelago
between Row-Stores and Column-Stores for Hybrid Workloads”.
In: Proceedings of the ACM SIGMOD International Conference on
Management of Data. 583–598. doi: 10.1145/2882903.2915231.

Arumugam, S., A. Dobra, C. M. Jermaine, N. Pansare, and L. Perez.
(2010). “The DataPath System: A Data-centric Analytic Processing
Engine for Large Data Warehouses”. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data. 519–
530. url: http://dl.acm.org/citation.cfm?id=1807167.1807224.

Athanassoulis, M. (2014). “Solid-State Storage and Work Sharing for
Efficient Scaleup Data Analytics”. PhD thesis. EPFL. doi: http://d
x.doi.org/10.5075/epfl-thesis-6032.

Athanassoulis, M. and A. Ailamaki. (2014). “BF-Tree: Approximate Tree
Indexing”. Proceedings of the VLDB Endowment. 7(14): 1881–1892.
url: http://www.vldb.org/pvldb/vol7/p1881-athanassoulis.pdf.

Athanassoulis, M., A. Ailamaki, S. Chen, P. B. Gibbons, and R. Stoica.
(2010). “Flash in a DBMS: Where and How?” IEEE Data Engineer-
ing Bulletin. 33(4): 28–34. url: http://sites.computer.org/debull
/A10dec/athanassoulis.pdf.

Athanassoulis, M., S. Chen, A. Ailamaki, P. B. Gibbons, and R. Stoica.
(2015). “Online Updates on Data Warehouses via Judicious Use
of Solid-State Storage”. ACM Transactions on Database Systems
(TODS). 40(1).

Athanassoulis, M. and S. Idreos. (2016). “Design Tradeoffs of Data Ac-
cess Methods”. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, Tutorial.

Athanassoulis, M., M. S. Kester, L. M. Maas, R. Stoica, S. Idreos, A.
Ailamaki, and M. Callaghan. (2016). “Designing Access Methods:
The RUM Conjecture”. In: Proceedings of the International Con-
ference on Extending Database Technology (EDBT). 461–466. url:
http://dx.doi.org/10.5441/002/edbt.2016.42.

http://dl.acm.org/citation.cfm?id=874051.874730
https://doi.org/10.1145/2882903.2915231
http://dl.acm.org/citation.cfm?id=1807167.1807224
https://doi.org/http://dx.doi.org/10.5075/epfl-thesis-6032
https://doi.org/http://dx.doi.org/10.5075/epfl-thesis-6032
http://www.vldb.org/pvldb/vol7/p1881-athanassoulis.pdf
http://sites.computer.org/debull/A10dec/athanassoulis.pdf
http://sites.computer.org/debull/A10dec/athanassoulis.pdf
http://dx.doi.org/10.5441/002/edbt.2016.42

138 References

Athanassoulis, M., S. Sarkar, T. I. Papon, Z. Zhu, and D. Staratzis.
(2022). “Building Deletion-Compliant Data Systems”. In: IEEE Data
Engineering Bulletin. 21–36.

Badam, A., K. Park, V. S. Pai, and L. L. Peterson. (2009). “Hash-
Cache: Cache Storage for the Next Billion”. In: Proceedings of the
USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI). 123–136. url: http://dl.acm.org/citation.cfm?id=1
558977.1558986.

Barber, R., P. Bendel, M. Czech, O. Draese, F. Ho, N. Hrle, S. Idreos,
M.-S. Kim, O. Koeth, J.-G. Lee, T. T. Li, G. M. Lohman, K. Morfo-
nios, R. Müller, K. Murthy, I. Pandis, L. Qiao, V. Raman, R. Sidle,
K. Stolze, and S. Szabo. (2012). “Business Analytics in (a) Blink”.
IEEE Data Engineering Bulletin. 35(1): 9–14. url: http://sites.co
mputer.org/debull/A12mar/blink.pdf.

Barber, R., G. M. Lohman, V. Raman, R. Sidle, S. Lightstone, and
B. Schiefer. (2015). “In-Memory BLU Acceleration in IBM’s DB2
and dashDB: Optimized for Modern Workloads and Hardware Ar-
chitectures”. In: Proceedings of the IEEE International Conference
on Data Engineering (ICDE).

Bayer, R. (1972). “Symmetric Binary B-Trees: Data Structure and
Maintenance Algorithms”. Acta Informatica. 1: 290–306. doi: 10.10
07/BF00289509.

Bayer, R. and E. M. McCreight. (1970). “Organization and Maintenance
of Large Ordered Indices”. In: Proceedings of the ACM SIGFIDET
Workshop on Data Description and Access. 107–141. doi: 10.1007
/BF00288683.

Bayer, R. and E. M. McCreight. (1972). “Organization and Maintenance
of Large Ordered Indices”. Acta Informatica. 1(3): 173–189. doi:
10.1007/BF00288683.

Becker, B., S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. (1996).
“An Asymptotically Optimal Multiversion B-Tree”. The VLDB
Journal. 5(4): 264–275. doi: 10.1007/s007780050028.

Bender, M. A., M. Farach-Colton, W. Jannen, R. Johnson, B. C. Kusz-
maul, D. E. Porter, J. Yuan, and Y. Zhan. (2015). “An Introduction
to Bϵ-trees and Write-Optimization”. White Paper. url: http://su
pertech.csail.mit.edu/papers/BenderFaJa15.pdf.

http://dl.acm.org/citation.cfm?id=1558977.1558986
http://dl.acm.org/citation.cfm?id=1558977.1558986
http://sites.computer.org/debull/A12mar/blink.pdf
http://sites.computer.org/debull/A12mar/blink.pdf
https://doi.org/10.1007/BF00289509
https://doi.org/10.1007/BF00289509
https://doi.org/10.1007/BF00288683
https://doi.org/10.1007/BF00288683
https://doi.org/10.1007/BF00288683
https://doi.org/10.1007/s007780050028
http://supertech.csail.mit.edu/papers/BenderFaJa15.pdf
http://supertech.csail.mit.edu/papers/BenderFaJa15.pdf

References 139

Bender, M. A., M. Farach-Colton, R. Johnson, R. Kraner, B. C. Kusz-
maul, D. Medjedovic, P. Montes, P. Shetty, R. P. Spillane, and
E. Zadok. (2012). “Don’t Thrash: How to Cache Your Hash on
Flash”. Proceedings of the VLDB Endowment. 5(11): 1627–1637.
url: http://dl.acm.org/citation.cfm?id=2350229.2350275.

Bentley, J. L. (1979). “Decomposable Searching Problems”. Information
Processing Letters. 8(5): 244–251. doi: 10.1016/0020-0190(79)90117-
0.

Bentley, J. L. and J. B. Saxe. (1980). “Decomposable Searching Problems
I: Static-to-Dynamic Transformation”. Journal of Algorithms. 1(4):
301–358. doi: 10.1016/0196-6774(80)90015-2.

Bentley, J. L. and A. C.-C. Yao. (1976). “An Almost Optimal Algorithm
for Unbounded Searching”. Information Processing Letters. 5(3):
82–87. doi: 10.1016/0020-0190(76)90071-5.

Bernstein, P. A., V. Hadzilacos, and N. Goodman. (1987). Concurrency
Control and Recovery in Database Systems. Addison-Wesley.

Bhat, W. A. (2018). “Bridging data-capacity gap in big data storage”.
Future Generation Computer Systems. doi: https://doi.org/10.1016
/j.future.2017.12.066.

Bloom, B. H. (1970). “Space/Time Trade-offs in Hash Coding with
Allowable Errors”. Communications of the ACM. 13(7): 422–426.
url: http://dl.acm.org/citation.cfm?id=362686.362692.

Boncz, P. A., M. L. Kersten, and S. Manegold. (2008). “Breaking the
Memory Wall in MonetDB”. Communications of the ACM. 51(12):
77–85. doi: 10.1145/1409360.1409380.

Boncz, P. A., S. Manegold, and M. L. Kersten. (1999). “Database
architecture optimized for the new bottleneck: Memory access”. In:
Proceedings of the International Conference on Very Large Data
Bases (VLDB). 54–65. url: http://www.vldb.org/conf/1999/P5.pd
f.

Boncz, P. A., M. Zukowski, and N. J. Nes. (2005). “MonetDB/X100:
Hyper-Pipelining Query Execution”. In: Proceedings of the Biennial
Conference on Innovative Data Systems Research (CIDR).

http://dl.acm.org/citation.cfm?id=2350229.2350275
https://doi.org/10.1016/0020-0190(79)90117-0
https://doi.org/10.1016/0020-0190(79)90117-0
https://doi.org/10.1016/0196-6774(80)90015-2
https://doi.org/10.1016/0020-0190(76)90071-5
https://doi.org/https://doi.org/10.1016/j.future.2017.12.066
https://doi.org/https://doi.org/10.1016/j.future.2017.12.066
http://dl.acm.org/citation.cfm?id=362686.362692
https://doi.org/10.1145/1409360.1409380
http://www.vldb.org/conf/1999/P5.pdf
http://www.vldb.org/conf/1999/P5.pdf

140 References

Borovica-Gajic, R., S. Idreos, A. Ailamaki, M. Zukowski, and C. Fraser.
(2015). “Smooth Scan: Statistics-Oblivious Access Paths”. In: Pro-
ceedings of the IEEE International Conference on Data Engineering
(ICDE). 315–326. doi: 10.1109/ICDE.2015.7113294.

Bovet, D. P. and M. Cesati. (2005). Understanding the Linux Kernel.
3rd Editio. O’Reilly Media, Inc.

Breslow, A. and N. Jayasena. (2018). “Morton Filters: Faster, Space-
Efficient Cuckoo Filters via Biasing, Compression, and Decoupled
Logical Sparsity”. Proceedings of the VLDB Endowment. 11(9):
1041–1055. doi: 10.14778/3213880.3213884.

Brodal, G. S. and R. Fagerberg. (2003). “Lower Bounds for External
Memory Dictionaries”. In: Proceedings of the Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). 546–554. url: http:
//dl.acm.org/citation.cfm?id=644108.644201%20http://www.cs.a
u.dk/~gerth/papers/alcomft-tr-03-75.pdf.

Candea, G., N. Polyzotis, and R. Vingralek. (2009). “A scalable, pre-
dictable join operator for highly concurrent data warehouses”. Pro-
ceedings of the VLDB Endowment. 2(1): 277–288. url: http://dl.ac
m.org/citation.cfm?id=1687627.1687659.

Candea, G., N. Polyzotis, and R. Vingralek. (2011). “Predictable Per-
formance and High Query Concurrency for Data Analytics”. The
VLDB Journal. 20(2): 227–248. url: http://dl.acm.org/citation.cf
m?id=1969331.1969355.

Chan, C. Y., B. C. Ooi, and H. Lu. (1992). “Extensible Buffer Manage-
ment of Indexes”. In: Proceedings of the International Conference
on Very Large Data Bases (VLDB). 444–454. url: http://www.vld
b.org/conf/1992/P444.PDF.

Chan, C.-Y. and Y. E. Ioannidis. (1998). “Bitmap index design and
evaluation”. ACM SIGMOD Record. 27(2): 355–366. doi: 10.1145/2
76305.276336.

Chan, C.-Y. and Y. E. Ioannidis. (1999). “An efficient bitmap encoding
scheme for selection queries”. ACM SIGMOD Record. 28(2): 215–226.
doi: 10.1145/304181.304201.

https://doi.org/10.1109/ICDE.2015.7113294
https://doi.org/10.14778/3213880.3213884
http://dl.acm.org/citation.cfm?id=644108.644201%20http://www.cs.au.dk/~gerth/papers/alcomft-tr-03-75.pdf
http://dl.acm.org/citation.cfm?id=644108.644201%20http://www.cs.au.dk/~gerth/papers/alcomft-tr-03-75.pdf
http://dl.acm.org/citation.cfm?id=644108.644201%20http://www.cs.au.dk/~gerth/papers/alcomft-tr-03-75.pdf
http://dl.acm.org/citation.cfm?id=1687627.1687659
http://dl.acm.org/citation.cfm?id=1687627.1687659
http://dl.acm.org/citation.cfm?id=1969331.1969355
http://dl.acm.org/citation.cfm?id=1969331.1969355
http://www.vldb.org/conf/1992/P444.PDF
http://www.vldb.org/conf/1992/P444.PDF
https://doi.org/10.1145/276305.276336
https://doi.org/10.1145/276305.276336
https://doi.org/10.1145/304181.304201

References 141

Chandramouli, B., G. Prasaad, D. Kossmann, J. J. Levandoski, J.
Hunter, and M. Barnett. (2018). “FASTER: A Concurrent Key-
Value Store with In-Place Updates”. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data. 275–
290. doi: 10.1145/3183713.3196898.

Chang, F., J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M.
Burrows, T. Chandra, A. Fikes, and R. E. Gruber. (2006). “Bigtable:
A Distributed Storage System for Structured Data”. In: Proceedings
of the USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI). 205–218. url: http://dl.acm.org/citation.cf
m?id=1267308.1267323.

Chatterjee, S., M. Jagadeesan, W. Qin, and S. Idreos. (2022). “Cosine:
A Cloud-Cost Optimized Self-Designing Key-Value Storage Engine”.
In: In Proceedings of the Very Large Databases Endowment. doi:
10.14778/3485450.3485461.

Chazelle, B. and L. J. Guibas. (1985). “Fractional Cascading: A Data
Structuring Technique with Geometric Applications”. In: Proceed-
ings of the International Colloquium on Automata, Languages and
Programming (ICALP). 90–100. doi: 10.1007/BFb0015734.

Chen, L. (2009). “Curse of Dimensionality”. In: Encyclopedia of Database
Systems. Ed. by L. Liu and T. Özsu. Boston, MA: Springer US. 545–
546. doi: 10.1007/978-0-387-39940-9{_}133.

Chen, S., P. B. Gibbons, and T. C. Mowry. (2001). “Improving Index
Performance through Prefetching”. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data. 235–
246. doi: 10.1145/375663.375688.

Chen, S., P. B. Gibbons, T. C. Mowry, and G. Valentin. (2002). “Frac-
tal Prefetching B+-Trees: Optimizing Both Cache and Disk Per-
formance”. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data. 157–168. url: http://dl.acm.o
rg/citation.cfm?id=564691.564710.

Chen, S., P. B. Gibbons, and S. Nath. (2011). “Rethinking Database Al-
gorithms for Phase Change Memory”. In: Proceedings of the Biennial
Conference on Innovative Data Systems Research (CIDR).

https://doi.org/10.1145/3183713.3196898
http://dl.acm.org/citation.cfm?id=1267308.1267323
http://dl.acm.org/citation.cfm?id=1267308.1267323
https://doi.org/10.14778/3485450.3485461
https://doi.org/10.1007/BFb0015734
https://doi.org/10.1007/978-0-387-39940-9{_}133
https://doi.org/10.1145/375663.375688
http://dl.acm.org/citation.cfm?id=564691.564710
http://dl.acm.org/citation.cfm?id=564691.564710

142 References

Colantonio, A. and R. Di Pietro. (2010). “Concise: Compressed ’N’
Composable Integer Set”. Information Processing Letters. 110(16):
644–650. doi: 10.1016/j.ipl.2010.05.018.

Comer, D. (1979). “The Ubiquitous B-Tree”. ACM Computing Surveys.
11(2): 121–137. doi: 10.1145/356770.356776.

Copeland, G. P. and S. Khoshafian. (1985). “A Decomposition Storage
Model”. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data. 268–279. url: http://dl.acm.org
/citation.cfm?id=318898.318923.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein. (2009).
Introduction to Algorithms, 3rd Edition. MIT Press. url: http://mi
tpress.mit.edu/books/introduction-algorithms.

Dayan, N., M. Athanassoulis, and S. Idreos. (2017). “Monkey: Optimal
Navigable Key-Value Store”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data. 79–94. doi: 10.1
145/3035918.3064054.

Dayan, N., M. Athanassoulis, and S. Idreos. (2018). “Optimal Bloom
Filters and Adaptive Merging for LSM-Trees”. ACM Transactions
on Database Systems (TODS). 43(4): 1–16. doi: 10.1145/3276980.

Dayan, N. and S. Idreos. (2018). “Dostoevsky: Better Space-Time Trade-
Offs for LSM-Tree Based Key-Value Stores via Adaptive Removal
of Superfluous Merging”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data. 505–520. doi:
10.1145/3183713.3196927.

Dayan, N. and S. Idreos. (2019). “The Log-Structured Merge-Bush
& the Wacky Continuum”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD). 449–
466. doi: 10.1145/3299869.3319903.

Dayan, N., Y. Rochman, I. Naiss, S. Dashevsky, N. Rabinovich, E.
Bortnikov, I. Maly, O. Frishman, I. B. Zion, Avraham, M. Twitto, U.
Beitler, E. Ginzburg, and M. Mokryn. (2021). “The End of Moore’s
Law and the Rise of The Data Processor”. Proceedings of the VLDB
Endowment. 14(12): 2932–2944. url: http://www.vldb.org/pvldb
/vol14/p2932-dayan.pdf.

https://doi.org/10.1016/j.ipl.2010.05.018
https://doi.org/10.1145/356770.356776
http://dl.acm.org/citation.cfm?id=318898.318923
http://dl.acm.org/citation.cfm?id=318898.318923
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1145/3035918.3064054
https://doi.org/10.1145/3035918.3064054
https://doi.org/10.1145/3276980
https://doi.org/10.1145/3183713.3196927
https://doi.org/10.1145/3299869.3319903
http://www.vldb.org/pvldb/vol14/p2932-dayan.pdf
http://www.vldb.org/pvldb/vol14/p2932-dayan.pdf

References 143

Debnath, B., S. Sengupta, and J. Li. (2010). “FlashStore: high through-
put persistent key-value store”. Proceedings of the VLDB Endow-
ment. 3(1-2): 1414–1425. url: http://dl.acm.org/citation.cfm?id=1
920841.1921015.

Debnath, B., S. Sengupta, and J. Li. (2011). “SkimpyStash: RAM space
skimpy key-value store on flash-based storage”. In: Proceedings of
the ACM SIGMOD International Conference on Management of
Data. 25–36. doi: 10.1145/1989323.1989327.

Deeds, K., B. Hentschel, and S. Idreos. (2020). “Stacked Filters: Learning
to Filter by Structure”. Proceedings of the VLDB Endowment. 14(4):
600–612. doi: 10.14778/3436905.3436919.

Deliège, F. and T. B. Pedersen. (2010). “Position list word aligned hybrid:
optimizing space and performance for compressed bitmaps”. In:
Proceedings of the International Conference on Extending Database
Technology (EDBT). 228–239. doi: 10.1145/1739041.1739071.

Ding, B., S. Chaudhuri, and V. R. Narasayya. (2020a). “Bitvector-aware
Query Optimization for Decision Support Queries”. In: Proceedings
of the ACM SIGMOD International Conference on Management of
Data. 2011–2026. doi: 10.1145/3318464.3389769.

Ding, J., U. F. Minhas, B. Chandramouli, C. Wang, Y. Li, Y. Li, D.
Kossmann, J. Gehrke, and T. Kraska. (2021). “Instance-Optimized
Data Layouts for Cloud Analytics Workloads”. In: Proceedings of
the ACM SIGMOD International Conference on Management of
Data. 418–431. doi: 10.1145/3448016.3457270.

Ding, J., U. F. Minhas, J. Yu, C. Wang, J. Do, Y. Li, H. Zhang,
B. Chandramouli, J. Gehrke, D. Kossmann, D. B. Lomet, and T.
Kraska. (2020b). “ALEX: An Updatable Adaptive Learned Index”.
In: Proceedings of the ACM SIGMOD International Conference on
Management of Data. 969–984. doi: 10.1145/3318464.3389711.

Dittrich, J. and A. Jindal. (2011). “Towards a One Size Fits All Database
Architecture”. In: Proceedings of the Biennial Conference on Inno-
vative Data Systems Research (CIDR). 195–198. url: http://cidrdb
.org/cidr2011/Papers/CIDR11_Paper25.pdf.

http://dl.acm.org/citation.cfm?id=1920841.1921015
http://dl.acm.org/citation.cfm?id=1920841.1921015
https://doi.org/10.1145/1989323.1989327
https://doi.org/10.14778/3436905.3436919
https://doi.org/10.1145/1739041.1739071
https://doi.org/10.1145 / 3318464.3389769
https://doi.org/10.1145/3448016.3457270
https://doi.org/10.1145/3318464.3389711
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper25.pdf
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper25.pdf

144 References

Dong, J. and R. Hull. (1982). “Applying Approximate Order Dependency
to Reduce Indexing Space”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data. 119–127. doi:
10.1145/582353.582375.

Dong, S., M. Callaghan, L. Galanis, D. Borthakur, T. Savor, and M.
Strum. (2017). “Optimizing Space Amplification in RocksDB”. In:
Proceedings of the Biennial Conference on Innovative Data Systems
Research (CIDR). url: http://cidrdb.org/cidr2017/papers/p82-don
g-cidr17.pdf.

Dong, S., A. Kryczka, Y. Jin, and M. Stumm. (2021). “RocksDB:
Evolution of Development Priorities in a Key-value Store Serving
Large-scale Applications”. ACM Transactions on Storage (TOS).
17(4): 26:1–26:32. doi: 10.1145/3483840.

Faerber, F., A. Kemper, P.-Å. Larson, J. J. Levandoski, T. Neumann,
and A. Pavlo. (2017). “Main Memory Database Systems”. Founda-
tions and Trends in Databases. 8(1-2): 1–130. doi: 10.1561/1900000
058.

Falkoff, A. D. and K. E. Iverson. (1973). “The Design of APL”. IBM
Journal of Research and Development. 17(5): 324–334. doi: 10.1147
/rd.174.0324.

Fan, B., D. G. Andersen, M. Kaminsky, and M. Mitzenmacher. (2014).
“Cuckoo Filter: Practically Better Than Bloom”. In: Proceedings
of the ACM International on Conference on emerging Networking
Experiments and Technologies (CoNEXT). 75–88. doi: 10.1145/267
4005.2674994.

Fang, J., Y. T. B. Mulder, J. Hidders, J. Lee, and H. P. Hofstee. (2020).
“In-memory database acceleration on FPGAs: a survey”. The VLDB
Journal. 29(1): 33–59. doi: 10.1007/s00778-019-00581-w.

Färber, F., S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner.
(2011). “SAP HANA Database: Data Management for Modern Busi-
ness Applications”. ACM SIGMOD Record. 40(4): 45–51. doi: 10.11
45/2094114.2094126.

Färber, F., N. May, W. Lehner, P. Große, I. Müller, H. Rauhe, and
J. Dees. (2012). “The SAP HANA Database – An Architecture
Overview”. IEEE Data Engineering Bulletin. 35(1): 28–33. url:
http://sites.computer.org/debull/A12mar/hana.pdf.

https://doi.org/10.1145/582353.582375
http://cidrdb.org/cidr2017/papers/p82-dong-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p82-dong-cidr17.pdf
https://doi.org/10.1145/3483840
https://doi.org/10.1561/1900000058
https://doi.org/10.1561/1900000058
https://doi.org/10.1147/rd.174.0324
https://doi.org/10.1147/rd.174.0324
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1007/s00778-019-00581-w
https://doi.org/10.1145/2094114.2094126
https://doi.org/10.1145/2094114.2094126
http://sites.computer.org/debull/A12mar/hana.pdf

References 145

Ferragina, P. and G. Vinciguerra. (2020). “The PGM-index: a fully-
dynamic compressed learned index with provable worst-case bounds”.
Proceedings of the VLDB Endowment. 13(8): 1162–1175. doi: 10.14
778/3389133.3389135.

Fox, E. A., Q. F. Chen, A. M. Daoud, and L. S. Heath. (1991). “Order-
Preserving Minimal Perfect Hash Functions and Information Re-
trieval”. ACM Transactions on Information Systems (TOIS). 9(3):
281–308. doi: 10.1145/125187.125200.

Francisco, P. (2011). “The Netezza Data Appliance Architecture: A
Platform for High Performance Data Warehousing and Analytics”.
IBM Redbooks. url: http://www.redbooks.ibm.com/redpapers/pdf
s/redp4725.pdf.

French, C. D. (1995). ““One size fits all” database architectures do
not work for DSS”. ACM SIGMOD Record. 24(2): 449–450. doi:
10.1145/568271.223871.

French, C. D. (1997). “Teaching an OLTP Database Kernel Advanced
Data Warehousing Techniques”. In: Proceedings of the IEEE Inter-
national Conference on Data Engineering (ICDE). 194–198. url:
http://dl.acm.org/citation.cfm?id=645482.653422.

Galakatos, A., M. Markovitch, C. Binnig, R. Fonseca, and T. Kraska.
(2019). “FITing-Tree: A Data-aware Index Structure”. In: Proceed-
ings of the ACM SIGMOD International Conference on Management
of Data. 1189–1206. doi: 10.1145/3299869.3319860.

Giannikis, G., G. Alonso, and D. Kossmann. (2012). “SharedDB: Killing
One Thousand Queries with One Stone”. Proceedings of the VLDB
Endowment. 5(6): 526–537. url: http://dl.acm.org/citation.cfm?id
=2168651.2168654.

Giannikis, G., D. Makreshanski, G. Alonso, and D. Kossmann. (2013).
“Workload optimization using SharedDB”. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data.
1045–1048. doi: 10.1145/2463676.2463678.

Gottstein, R., R. Goyal, S. Hardock, I. Petrov, and A. P. Buchmann.
(2014). “MV-IDX: indexing in multi-version databases”. In: Proceed-
ings of the Symposium on International Database Engineering &
Applications (IDEAS). 142–148. doi: 10.1145/2628194.2628911.

https://doi.org/10.14778/3389133.3389135
https://doi.org/10.14778/3389133.3389135
https://doi.org/10.1145/125187.125200
http://www.redbooks.ibm.com/redpapers/pdfs/redp4725.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp4725.pdf
https://doi.org/10.1145/568271.223871
http://dl.acm.org/citation.cfm?id=645482.653422
https://doi.org/10.1145/3299869.3319860
http://dl.acm.org/citation.cfm?id=2168651.2168654
http://dl.acm.org/citation.cfm?id=2168651.2168654
https://doi.org/10.1145/2463676.2463678
https://doi.org/10.1145/2628194.2628911

146 References

Graefe, G. (2003). “Sorting And Indexing With Partitioned B-Trees”. In:
Proceedings of the Biennial Conference on Innovative Data Systems
Research (CIDR). url: http://www-db.cs.wisc.edu/cidr/cidr2003
/program/p1.pdf.

Graefe, G. (2011). “Modern B-Tree Techniques”. Foundations and
Trends in Databases. 3(4): 203–402. url: http://dx.doi.org/10
.1561/1900000028.

Graefe, G., F. Halim, S. Idreos, H. Kuno, and S. Manegold. (2012).
“Concurrency control for adaptive indexing”. Proceedings of the
VLDB Endowment. 5(7): 656–667. url: http://dl.acm.org/citation
.cfm?id=2180918.

Graefe, G., S. Idreos, H. Kuno, and S. Manegold. (2010). “Benchmarking
adaptive indexing”. In: Proceedings of the TPC Technology Confer-
ence on Performance Evaluation, Measurement and Characterization
of Complex Systems (TPCTC). 169–184. url: http://dl.acm.org/ci
tation.cfm?id=1946050.1946063.

Graefe, G. and H. Kuno. (2010a). “Self-selecting, self-tuning, incre-
mentally optimized indexes”. In: Proceedings of the International
Conference on Extending Database Technology (EDBT). 371–381.
url: http://dl.acm.org/citation.cfm?id=1739041.1739087.

Graefe, G. and H. A. Kuno. (2010b). “Adaptive indexing for relational
keys”. In: Proceedings of the IEEE International Conference on Data
Engineering Workshops (ICDEW). 69–74.

Graefe, G., H. Volos, H. Kimura, H. A. Kuno, J. Tucek, M. Lillibridge,
and A. C. Veitch. (2014). “In-Memory Performance for Big Data”.
Proceedings of the VLDB Endowment. 8(1): 37–48. doi: 10.14778/2
735461.2735465.

Gray, J. and F. Putzolu. (1986). “The 5 Minute Rule for Trading
Memory for Disc Accesses and the 5 Byte Rule for Trading Memory
for CPU Time”. Tandem Computers - Technical Report. url: http:
//db.cs.berkeley.edu/cs286/papers/fiveminute-tr1986.pdf.

Grund, M., J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and
S. Madden. (2010). “HYRISE: A Main Memory Hybrid Storage
Engine”. Proceedings of the VLDB Endowment. 4(2): 105–116. doi:
10.14778/1921071.1921077.

http://www-db.cs.wisc.edu/cidr/cidr2003/program/p1.pdf
http://www-db.cs.wisc.edu/cidr/cidr2003/program/p1.pdf
http://dx.doi.org/10.1561/1900000028
http://dx.doi.org/10.1561/1900000028
http://dl.acm.org/citation.cfm?id=2180918
http://dl.acm.org/citation.cfm?id=2180918
http://dl.acm.org/citation.cfm?id=1946050.1946063
http://dl.acm.org/citation.cfm?id=1946050.1946063
http://dl.acm.org/citation.cfm?id=1739041.1739087
https://doi.org/10.14778/2735461.2735465
https://doi.org/10.14778/2735461.2735465
http://db.cs.berkeley.edu/cs286/papers/fiveminute-tr1986.pdf
http://db.cs.berkeley.edu/cs286/papers/fiveminute-tr1986.pdf
https://doi.org/10.14778/1921071.1921077

References 147

Guttman, A. (1984). “R-Trees: A Dynamic Index Structure for Spatial
Searching”. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data. 47–57. doi: 10.1145/602259.60
2266.

Haeupler, B., S. Sen, and R. E. Tarjan. (2015). “Rank-Balanced Trees”.
ACM Transactions on Algorithms (TALG). 11(4): 30:1–30:26. doi:
10.1145/2689412.

Halim, F., S. Idreos, P. Karras, and R. H. C. Yap. (2012). “Stochastic
Database Cracking: Towards Robust Adaptive Indexing in Main-
Memory Column-Stores.” Proceedings of the VLDB Endowment.
5(6): 502–513. url: http://vldb.org/pvldb/vol5/p502_felixhalim
_vldb2012.pdf.

Harizopoulos, S. and A. Ailamaki. (2003). “A Case for Staged Database
Systems”. In: Proceedings of the Biennial Conference on Innovative
Data Systems Research (CIDR).

Harizopoulos, S., V. Shkapenyuk, and A. Ailamaki. (2005). “QPipe: A
Simultaneously Pipelined Relational Query Engine”. In: Proceedings
of the ACM SIGMOD International Conference on Management of
Data. 383–394. url: http://dl.acm.org/citation.cfm?id=1066157.10
66201.

Hellerstein, J. M., E. Koutsoupias, D. P. Miranker, C. H. Papadimitriou,
and V. Samoladas. (2002). “On a Model of Indexability and Its
Bounds for Range Queries”. Journal of the ACM. 49(1): 35–55. doi:
10.1145/505241.505244.

Hellerstein, J. M., E. Koutsoupias, and C. H. Papadimitriou. (1997).
“On the Analysis of Indexing Schemes”. In: Proceedings of the ACM
Symposium on Principles of Database Systems (PODS). 249–256.
doi: 10.1145/263661.263688.

Hellerstein, J. M., J. F. Naughton, and A. Pfeffer. (1995). “Generalized
Search Trees for Database Systems”. In: Proceedings of the Inter-
national Conference on Very Large Data Bases (VLDB). 562–573.
url: http://dl.acm.org/citation.cfm?id=645921.673145.

Hellerstein, J. M., M. Stonebraker, and J. R. Hamilton. (2007). “Archi-
tecture of a Database System”. Foundations and Trends in Databases.
1(2): 141–259. doi: 10.1561/1900000002.

https://doi.org/10.1145/602259.602266
https://doi.org/10.1145/602259.602266
https://doi.org/10.1145/2689412
http://vldb.org/pvldb/vol5/p502_felixhalim_vldb2012.pdf
http://vldb.org/pvldb/vol5/p502_felixhalim_vldb2012.pdf
http://dl.acm.org/citation.cfm?id=1066157.1066201
http://dl.acm.org/citation.cfm?id=1066157.1066201
https://doi.org/10.1145/505241.505244
https://doi.org/10.1145/263661.263688
http://dl.acm.org/citation.cfm?id=645921.673145
https://doi.org/10.1561/1900000002

148 References

Héman, S., M. Zukowski, and N. J. Nes. (2010). “Positional Update
Handling in Column Stores”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data. 543–554. url:
http://dl.acm.org/citation.cfm?id=1807167.1807227.

Herlihy, M., N. Shavit, V. Luchangco, and M. Spear. (2020). The Art of
Multiprocessor Programming (Second Edition). Morgan Kaufmann.
doi: 10.1016/C2011-0-06993-4.

Hilbert, M. and P. López. (2011). “The World’s Technological Capac-
ity to Store, Communicate, and Compute Information”. Science.
332(6025): 60–65. doi: 10.1126/science.1200970.

Holanda, P., S. Manegold, H. Mühleisen, and M. Raasveldt. (2019).
“Progressive Indexes: Indexing for Interactive Data Analysis”. Pro-
ceedings of the VLDB Endowment. 12(13): 2366–2378. url: http:
//www.vldb.org/pvldb/vol12/p2366-holanda.pdf.

Huang, G., X. Cheng, J. Wang, Y. Wang, D. He, T. Zhang, F. Li,
S. Wang, W. Cao, and Q. Li. (2019). “X-Engine: An Optimized
Storage Engine for Large-scale E-commerce Transaction Processing”.
In: Proceedings of the ACM SIGMOD International Conference on
Management of Data. 651–665. doi: 10.1145/3299869.3314041.

Huang, H. and S. Ghandeharizadeh. (2021). “Nova-LSM: A Distributed,
Component-based LSM-tree Key-value Store”. In: Proceedings of
the ACM SIGMOD International Conference on Management of
Data. 749–763. doi: 10.1145/3448016.3457297.

Huang, K., Y. He, and T. Wang. (2022). “The Past, Present and
Future of Indexing on Persistent Memory”. Proceedings of the VLDB
Endowment. 15(12): 3774–3777. url: https://www.vldb.org/pvldb
/vol15/p3774-wang.pdf%20https://www2.cs.sfu.ca/~tzwang/pme
m-index-tutorial-slides.pdf.

Hughes, J. (2013). “Revolutions in Storage”. In: IEEE Conference on
Massive Data Storage. Long Beach, CA. url: http://storageconfere
nce.us/2013/Presentations/Hughes.pdf.

Hutflesz, A., H.-W. Six, and P. Widmayer. (1988). “Globally Order
Preserving Multidimensional Linear Hashing”. In: Proceedings of
the IEEE International Conference on Data Engineering (ICDE).
572–579. doi: 10.1109/ICDE.1988.105505.

http://dl.acm.org/citation.cfm?id=1807167.1807227
https://doi.org/10.1016/C2011-0-06993-4
https://doi.org/10.1126/science.1200970
http://www.vldb.org/pvldb/vol12/p2366-holanda.pdf
http://www.vldb.org/pvldb/vol12/p2366-holanda.pdf
https://doi.org/10.1145/3299869.3314041
https://doi.org/10.1145/3448016.3457297
https://www.vldb.org/pvldb/vol15/p3774-wang.pdf%20https://www2.cs.sfu.ca/~tzwang/pmem-index-tutorial-slides.pdf
https://www.vldb.org/pvldb/vol15/p3774-wang.pdf%20https://www2.cs.sfu.ca/~tzwang/pmem-index-tutorial-slides.pdf
https://www.vldb.org/pvldb/vol15/p3774-wang.pdf%20https://www2.cs.sfu.ca/~tzwang/pmem-index-tutorial-slides.pdf
http://storageconference.us/2013/Presentations/Hughes.pdf
http://storageconference.us/2013/Presentations/Hughes.pdf
https://doi.org/10.1109/ICDE.1988.105505

References 149

Idreos, S. and M. Callaghan. (2020). “Key-Value Storage Engines”.
In: Proceedings of the ACM SIGMOD International Conference on
Management of Data. 2667–2672. doi: 10.1145/3318464.3383133.

Idreos, S., N. Dayan, W. Qin, M. Akmanalp, S. Hilgard, A. Ross, J.
Lennon, V. Jain, H. Gupta, D. Li, and Z. Zhu. (2019a). “Design
Continuums and the Path Toward Self-Designing Key-Value Stores
that Know and Learn”. In: Proceedings of the Biennial Conference
on Innovative Data Systems Research (CIDR).

Idreos, S., F. Groffen, N. Nes, S. Manegold, K. S. Mullender, and M. L.
Kersten. (2012). “MonetDB: Two Decades of Research in Column-
oriented Database Architectures”. IEEE Data Engineering Bulletin.
35(1): 40–45. url: http://sites.computer.org/debull/A12mar/mone
tdb.pdf.

Idreos, S., M. L. Kersten, and S. Manegold. (2007a). “Database Crack-
ing”. In: Proceedings of the Biennial Conference on Innovative Data
Systems Research (CIDR).

Idreos, S., M. L. Kersten, and S. Manegold. (2007b). “Updating a
Cracked Database”. In: Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data. 413–424. doi: 10.1145/1
247480.1247527.

Idreos, S., M. L. Kersten, and S. Manegold. (2009). “Self-organizing
Tuple Reconstruction in Column-Stores”. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data.
297–308. doi: 10.1145/1559845.1559878.

Idreos, S., S. Manegold, H. Kuno, and G. Graefe. (2011). “Merging
What’s Cracked, Cracking What’s Merged: Adaptive Indexing in
Main-Memory Column-Stores”. Proceedings of the VLDB Endow-
ment. 4(9): 586–597. url: https://www.vldb.org/pvldb/vol4/p586-i
dreos.pdf.

Idreos, S., K. Zoumpatianos, M. Athanassoulis, N. Dayan, B. Hentschel,
M. S. Kester, D. Guo, L. M. Maas, W. Qin, A. Wasay, and Y.
Sun. (2018a). “The Periodic Table of Data Structures”. IEEE Data
Engineering Bulletin. 41(3): 64–75. url: http://sites.computer.org
/debull/A18sept/p64.pdf.

https://doi.org/10.1145/3318464.3383133
http://sites.computer.org/debull/A12mar/monetdb.pdf
http://sites.computer.org/debull/A12mar/monetdb.pdf
https://doi.org/10.1145/1247480.1247527
https://doi.org/10.1145/1247480.1247527
https://doi.org/10.1145/1559845.1559878
https://www.vldb.org/pvldb/vol4/p586-idreos.pdf
https://www.vldb.org/pvldb/vol4/p586-idreos.pdf
http://sites.computer.org/debull/A18sept/p64.pdf
http://sites.computer.org/debull/A18sept/p64.pdf

150 References

Idreos, S., K. Zoumpatianos, S. Chatterjee, W. Qin, A. Wasay, B.
Hentschel, M. S. Kester, N. Dayan, D. Guo, M. Kang, and Y.
Sun. (2019b). “Learning Data Structure Alchemy”. IEEE Data
Engineering Bulletin. 42(2): 47–58. url: http://sites.computer.org
/debull/A19june/p47.pdf.

Idreos, S., K. Zoumpatianos, B. Hentschel, M. S. Kester, and D. Guo.
(2018b). “The Data Calculator: Data Structure Design and Cost Syn-
thesis from First Principles and Learned Cost Models”. In: Proceed-
ings of the ACM SIGMOD International Conference on Management
of Data. 535–550. doi: 10.1145/3183713.3199671.

István, Z., K. Kara, and D. Sidler. (2020). “FPGA-Accelerated Ana-
lytics: From Single Nodes to Clusters”. Foundations and Trends in
Databases. 9(2): 101–208. doi: 10.1561/1900000072.

Jain, A., A. Phanishayee, J. Mars, L. Tang, and G. Pekhimenko. (2018).
“Gist: Efficient Data Encoding for Deep Neural Network Training”.
In: Proceedings of the ACM/IEEE Annual International Symposium
on Computer Architecture (ISCA). 776–789. doi: 10.1109/ISCA.201
8.00070.

Jannen, W., J. Yuan, Y. Zhan, A. Akshintala, J. Esmet, Y. Jiao, A. Mit-
tal, P. Pandey, P. Reddy, L. Walsh, M. A. Bender, M. Farach-Colton,
R. Johnson, B. C. Kuszmaul, and D. E. Porter. (2015). “BetrFS: A
Right-optimized Write-optimized File System”. In: Proceedings of
the USENIX Conference on File and Storage Technologies (FAST).
301–315. url: http://dl.acm.org/citation.cfm?id=2750482.2750505.

Jensen, S. K., T. B. Pedersen, and C. Thomsen. (2017). “Time Series
Management Systems: A Survey”. IEEE Transactions on Knowledge
and Data Engineering (TKDE). 29(11): 2581–2600. doi: 10.1109
/TKDE.2017.2740932.

Jin, R., S. J. Kwon, and T.-S. Chung. (2011). “FlashB-tree: A Novel
B-tree Inex Scheme for Solid State Drives”. In: Proceedings of the
ACM Symposium on Research in Applied Computation (RACS).
50–55. doi: 10.1145/2103380.2103390.

http://sites.computer.org/debull/A19june/p47.pdf
http://sites.computer.org/debull/A19june/p47.pdf
https://doi.org/10.1145/3183713.3199671
https://doi.org/10.1561/1900000072
https://doi.org/10.1109/ISCA.2018.00070
https://doi.org/10.1109/ISCA.2018.00070
http://dl.acm.org/citation.cfm?id=2750482.2750505
https://doi.org/10.1109/TKDE.2017.2740932
https://doi.org/10.1109/TKDE.2017.2740932
https://doi.org/10.1145/2103380.2103390

References 151

Johnson, R., S. Harizopoulos, N. Hardavellas, K. Sabirli, I. Pandis, A.
Ailamaki, N. G. Mancheril, and B. Falsafi. (2007). “To Share or Not
to Share?” In: Proceedings of the International Conference on Very
Large Data Bases (VLDB). 351–362. url: http://dl.acm.org/citatio
n.cfm?id=1325851.1325894.

Johnson, R., I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi.
(2009). “Shore-MT: a scalable storage manager for the multicore
era”. In: Proceedings of the International Conference on Extending
Database Technology (EDBT). 24–35. url: http://dl.acm.org/citati
on.cfm?id=1516360.1516365.

Johnson, T. and D. Shasha. (1989). “Utilization of B-trees with Inserts,
Deletes and Modifies”. In: Proceedings of the ACM Symposium on
Principles of Database Systems (PODS). 235–246. doi: 10.1145/737
21.73745.

Johnson, T. and D. Shasha. (1994). “2Q: A Low Overhead High Perfor-
mance Buffer Management Replacement Algorithm”. In: Proceedings
of the International Conference on Very Large Data Bases (VLDB).
439–450. url: http://dl.acm.org/citation.cfm?id=645920.672996.

Kang, D., D. Jung, J.-U. Kang, and J.-S. Kim. (2007). “mu-tree: an
ordered index structure for NAND flash memory”. In: Proceedings
of the ACM/IEEE International Conference on Embedded Software
(EMSOFT). 144–153. url: http://dl.acm.org/citation.cfm?doid=12
89927.1289953.

Kang, Y., R. Pitchumani, P. Mishra, Y.-S. Kee, F. Londono, S. Oh, J.
Lee, and D. D. G. Lee. (2019). “Towards building a high-performance,
scale-in key-value storage system”. In: Proceedings of the ACM
International Conference on Systems and Storage (SYSTOR). 144–
154. doi: 10.1145/3319647.3325831.

Karger, D. R., E. Lehman, F. T. Leighton, R. Panigrahy, M. S. Levine,
and D. Lewin. (1997). “Consistent Hashing and Random Trees:
Distributed Caching Protocols for Relieving Hot Spots on the World
Wide Web”. In: Proceedings of the Annual ACM Symposium on the
Theory of Computing (STOC). 654–663. doi: 10.1145/258533.25866
0.

http://dl.acm.org/citation.cfm?id=1325851.1325894
http://dl.acm.org/citation.cfm?id=1325851.1325894
http://dl.acm.org/citation.cfm?id=1516360.1516365
http://dl.acm.org/citation.cfm?id=1516360.1516365
https://doi.org/10.1145/73721.73745
https://doi.org/10.1145/73721.73745
http://dl.acm.org/citation.cfm?id=645920.672996
http://dl.acm.org/citation.cfm?doid=1289927.1289953
http://dl.acm.org/citation.cfm?doid=1289927.1289953
https://doi.org/10.1145/3319647.3325831
https://doi.org/10.1145/258533.258660
https://doi.org/10.1145/258533.258660

152 References

Kemper, A. and T. Neumann. (2011). “HyPer: A Hybrid OLTP &
OLAP Main Memory Database System Based on Virtual Memory
Snapshots”. In: Proceedings of the IEEE International Conference
on Data Engineering (ICDE). 195–206. doi: 10.1109/ICDE.2011.57
67867.

Kennedy, O. and L. Ziarek. (2015). “Just-In-Time Data Structures”. In:
Proceedings of the Biennial Conference on Innovative Data Systems
Research (CIDR). url: http://www.cidrdb.org/cidr2015/Papers
/CIDR15_Paper9.pdf.

Kester, M. S., M. Athanassoulis, and S. Idreos. (2017). “Access Path
Selection in Main-Memory Optimized Data Systems: Should I Scan
or Should I Probe?” In: Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data. 715–730. doi: 10.1145/3
035918.3064049.

Kim, W., K.-C. Kim, and A. G. Dale. (1989). “Indexing Techniques for
Object-Oriented Databases”. In: Object-Oriented Concepts, Data-
bases, and Applications. ACM Press and Addison-Wesley. 371–394.

Koltsidas, I. and S. D. Viglas. (2011). “Data management over flash
memory”. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data. 1209–1212. doi: 10.1145/1989323
.1989455.

Kornacker, M., C. Mohan, and J. M. Hellerstein. (1997). “Concurrency
and Recovery in Generalized Search Trees”. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data.
62–72. doi: 10.1145/253260.253272.

Kraska, T., A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. (2018).
“The Case for Learned Index Structures”. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data.
489–504. doi: 10.1145/3183713.3196909.

Krishna, S., N. Patel, D. Shasha, and T. Wies. (2021). “Automated
Verification of Concurrent Search Structures”. Synthesis Lectures
on Computer Science. 9(1): 1–188. doi: 10.2200/S01089ED1V01Y2
02104CSL013.

Kuszmaul, B. C. (2014). “A Comparison of Fractal Trees to Log-
Structured Merge (LSM) Trees”. Tokutek White Paper.

https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1109/ICDE.2011.5767867
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper9.pdf
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper9.pdf
https://doi.org/10.1145/3035918.3064049
https://doi.org/10.1145/3035918.3064049
https://doi.org/10.1145/1989323.1989455
https://doi.org/10.1145/1989323.1989455
https://doi.org/10.1145/253260.253272
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.2200/S01089ED1V01Y202104CSL013
https://doi.org/10.2200/S01089ED1V01Y202104CSL013

References 153

Lahiri, T., S. Chavan, M. Colgan, D. Das, A. Ganesh, M. Gleeson, S.
Hase, A. Holloway, J. Kamp, T.-H. Lee, J. Loaiza, N. Macnaughton,
V. Marwah, N. Mukherjee, A. Mullick, S. Muthulingam, V. Raja,
M. Roth, E. Soylemez, and M. Zait. (2015). “Oracle Database In-
Memory: A Dual Format In-Memory Database”. In: Proceedings of
the IEEE International Conference on Data Engineering (ICDE).

Lam, M. S., E. E. Rothberg, and M. E. Wolf. (1991). “The Cache
Performance and Optimizations of Blocked Algorithms”. In: Pro-
ceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 63–74.
doi: 10.1145/106972.106981.

Lamb, A., M. Fuller, and R. Varadarajan. (2012). “The Vertica Ana-
lytic Database: C-Store 7 Years Later”. Proceedings of the VLDB
Endowment. 5(12): 1790–1801. url: http://dl.acm.org/citation.cfm
?id=2367518.

Lang, H., T. Mühlbauer, F. Funke, P. A. Boncz, T. Neumann, and
A. Kemper. (2016). “Data Blocks: Hybrid OLTP and OLAP on
Compressed Storage using both Vectorization and Compilation”.
In: Proceedings of the ACM SIGMOD International Conference on
Management of Data. doi: 10.1145/2882903.2882925.

Lang, H., T. Neumann, A. Kemper, and P. A. Boncz. (2019). “Perfor-
mance-Optimal Filtering: Bloom overtakes Cuckoo at High-Through-
put”. Proceedings of the VLDB Endowment. 12(5): 502–515.

Larson, P.-A., C. Clinciu, E. N. Hanson, A. Oks, S. L. Price, S. Ran-
garajan, A. Surna, and Q. Zhou. (2011). “SQL server column store
indexes”. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data. 1177–1184. doi: 10.1145/1989323
.1989448.

Larson, P.-A., E. N. Hanson, and S. L. Price. (2012). “Columnar Storage
in SQL Server 2012”. IEEE Data Engineering Bulletin. 35(1): 15–20.
url: http://sites.computer.org/debull/A12mar/apollo.pdf.

Larson, P.-A., E. N. Hanson, and M. Zwilling. (2015). “Evolving the
Architecture of SQL Server for Modern Hardware Trends”. In: Pro-
ceedings of the IEEE International Conference on Data Engineering
(ICDE).

https://doi.org/10.1145/106972.106981
http://dl.acm.org/citation.cfm?id=2367518
http://dl.acm.org/citation.cfm?id=2367518
https://doi.org/10.1145/2882903.2882925
https://doi.org/10.1145/1989323.1989448
https://doi.org/10.1145/1989323.1989448
http://sites.computer.org/debull/A12mar/apollo.pdf

154 References

Larson, P.-A., R. Rusanu, M. Saubhasik, C. Clinciu, C. Fraser, E. N. Han-
son, M. Mokhtar, M. Nowakiewicz, V. Papadimos, S. L. Price, and S.
Rangarajan. (2013). “Enhancements to SQL server column stores”.
In: Proceedings of the ACM SIGMOD International Conference on
Management of Data. 1159–1168. doi: 10.1145/2463676.2463708.

Leeuwen, J. van and M. H. Overmars. (1981). “The Art of Dynamizing”.
In: Proceedings of Mathematical Foundations of Computer Science.
121–131. doi: 10.1007/3-540-10856-4{_}78.

Leeuwen, J. van and D. Wood. (1980). “Dynamization of Decomposable
Searching Problems”. Information Processing Letters. 10(2): 51–56.
doi: 10.1016/S0020-0190(80)90073-3.

Lehman, P. L. and S. B. Yao. (1981). “Efficient Locking for Concurrent
Operations on B-Trees”. ACM Transactions on Database Systems
(TODS). 6(4): 650–670. doi: 10.1145/319628.319663.

Lehman, T. J. and M. J. Carey. (1986). “A Study of Index Structures
for Main Memory Database Management Systems”. In: Proceedings
of the International Conference on Very Large Data Bases (VLDB).
294–303. url: http://www.vldb.org/conf/1986/P294.PDF.

Leis, V., A. Kemper, and T. Neumann. (2013). “The Adaptive Radix
Tree: ARTful Indexing for Main-Memory Databases”. In: Proceedings
of the IEEE International Conference on Data Engineering (ICDE).
38–49. doi: 10.1109/ICDE.2013.6544812.

Lerner, A. and P. Bonnet. (2021). “Not your Grandpa’s SSD: The Era of
Co-Designed Storage Devices”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data. 2852–2858. doi:
10.1145/3448016.3457540.

Levandoski, J. J., D. B. Lomet, and S. Sengupta. (2013). “The Bw-Tree:
A B-tree for New Hardware Platforms”. In: Proceedings of the IEEE
International Conference on Data Engineering (ICDE). 302–313.
doi: 10.1109/ICDE.2013.6544834.

Li, Y., B. He, J. Yang, Q. Luo, K. Yi, and R. J. Yang. (2010). “Tree
Indexing on Solid State Drives”. Proceedings of the VLDB Endow-
ment. 3(1-2): 1195–1206. url: http://dl.acm.org/citation.cfm?id=1
920841.1920990.

https://doi.org/10.1145/2463676.2463708
https://doi.org/10.1007/3-540-10856-4{_}78
https://doi.org/10.1016/S0020-0190(80)90073-3
https://doi.org/10.1145/319628.319663
http://www.vldb.org/conf/1986/P294.PDF
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1145/3448016.3457540
https://doi.org/10.1109/ICDE.2013.6544834
http://dl.acm.org/citation.cfm?id=1920841.1920990
http://dl.acm.org/citation.cfm?id=1920841.1920990

References 155

Lim, H., B. Fan, D. G. Andersen, and M. Kaminsky. (2011). “SILT:
A Memory-Efficient, High-Performance Key-Value Store”. In: Pro-
ceedings of the ACM Symposium on Operating Systems Principles
(SOSP). 1–13. url: http://dl.acm.org/citation.cfm?id=2043556.20
43558.

Lin, K.-I., H. V. Jagadish, and C. Faloutsos. (1994). “The TV-Tree: An
Index Structure for High-Dimensional Data”. The VLDB Journal.
3(4): 517–542. url: http://www.vldb.org/journal/VLDBJ3/P517.p
df.

Litwin, W. (1980). “Linear Hashing: A New Tool for File and Table
Addressing”. In: Proceedings of the International Conference on
Very Large Data Bases (VLDB). 212–223.

Litwin, W. and D. B. Lomet. (1986). “The Bounded Disorder Access
Method”. In: Proceedings of the IEEE International Conference on
Data Engineering (ICDE). 38–48. url: http://dl.acm.org/citation.c
fm?id=645471.655390.

Litwin, W., M.-A. Neimat, and D. A. Schneider. (1994). “RP*: A
Family of Order Preserving Scalable Distributed Data Structures”.
In: Proceedings of the International Conference on Very Large Data
Bases (VLDB). 342–353. url: http://www.vldb.org/conf/1994/P3
42.PDF.

Litwin, W., M.-A. Neimat, and D. A. Schneider. (1996). “LH* - A Scal-
able, Distributed Data Structure”. ACM Transactions on Database
Systems (TODS). 21(4): 480–525. doi: 10.1145/236711.236713.

Lively, T., L. Schroeder, and C. Mendizábal. (2018). “Splaying Log-
Structured Merge-Trees”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data. 1839–1841. doi:
10.1145/3183713.3183723.

Lomet, D. B. and B. Salzberg. (1990). “The hB-Tree: A Multiattribute
Indexing Method with Good Guaranteed Performance”. ACM Trans-
actions on Database Systems (TODS). 15(4): 625–658. doi: 10.1145
/99935.99949.

Lomet, D. B. and B. Salzberg. (1992). “Access Method Concurrency
with Recovery”. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data. 351–360. doi: 10.1145/130283
.130336.

http://dl.acm.org/citation.cfm?id=2043556.2043558
http://dl.acm.org/citation.cfm?id=2043556.2043558
http://www.vldb.org/journal/VLDBJ3/P517.pdf
http://www.vldb.org/journal/VLDBJ3/P517.pdf
http://dl.acm.org/citation.cfm?id=645471.655390
http://dl.acm.org/citation.cfm?id=645471.655390
http://www.vldb.org/conf/1994/P342.PDF
http://www.vldb.org/conf/1994/P342.PDF
https://doi.org/10.1145/236711.236713
https://doi.org/10.1145/3183713.3183723
https://doi.org/10.1145/99935.99949
https://doi.org/10.1145/99935.99949
https://doi.org/10.1145/130283.130336
https://doi.org/10.1145/130283.130336

156 References

Lu, H. and B. C. Ooi. (1993). “Spatial Indexing: Past and Future”.
IEEE Data Engineering Bulletin. 16(3): 16–21. url: http://sites.co
mputer.org/debull/93SEP-CD.pdf.

Lu, L., T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
(2016). “WiscKey: Separating Keys from Values in SSD-conscious
Storage”. In: Proceedings of the USENIX Conference on File and
Storage Technologies (FAST). 133–148. url: https://www.usenix.or
g/conference/fast16/technical-sessions/presentation/lu.

Luo, C. and M. J. Carey. (2022). “DynaHash: Efficient Data Rebalancing
in Apache AsterixDB”. In: Proceedings of the IEEE International
Conference on Data Engineering (ICDE). 485–497. doi: 10.1109
/ICDE53745.2022.00041.

Luo, C. and M. J. Carey. (2020). “LSM-based Storage Techniques: A
Survey”. The VLDB Journal. 29(1): 393–418. doi: 10.1007/s00778-
019-00555-y.

Ma, S., T. Ma, K. Chen, and Y. Wu. (2022). “A Survey of Storage
Systems in the RDMA Era”. IEEE Transactions on Parallel and
Distributed Systems. 33(12): 4395–4409. doi: 10.1109/TPDS.2022.3
188656.

MacNicol, R. and B. French. (2004). “Sybase IQ Multiplex - Designed
For Analytics”. In: Proceedings of the International Conference on
Very Large Data Bases (VLDB). 1227–1230. url: http://www.vldb
.org/conf/2004/IND8P3.PDF.

Al-Mamun, A., H. Wu, and W. G. Aref. (2020). “A Tutorial on Learned
Multi-dimensional Indexes”. In: Proceedings of the International
Conference on Advances in Geographic Information Systems (SIG-
SPATIAL). 1–4. doi: 10.1145/3397536.3426358.

Manegold, S. (2009). “Memory Hierarchy”. In: Encyclopedia of Database
Systems. Ed. by L. Liu and T. Özsu. Boston, MA: Springer US. 1707–
1713. doi: 10.1007/978-0-387-39940-9{_}657.

Manegold, S., P. A. Boncz, and M. L. Kersten. (2002a). “Generic
Database Cost Models for Hierarchical Memory Systems”. In: Pro-
ceedings of the International Conference on Very Large Data Bases
(VLDB). 191–202. url: http://dl.acm.org/citation.cfm?id=1287369
.1287387.

http://sites.computer.org/debull/93SEP-CD.pdf
http://sites.computer.org/debull/93SEP-CD.pdf
https://www.usenix.org/conference/fast16/technical-sessions/presentation/lu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/lu
https://doi.org/10.1109/ICDE53745.2022.00041
https://doi.org/10.1109/ICDE53745.2022.00041
https://doi.org/10.1007/s00778-019-00555-y
https://doi.org/10.1007/s00778-019-00555-y
https://doi.org/10.1109/TPDS.2022.3188656
https://doi.org/10.1109/TPDS.2022.3188656
http://www.vldb.org/conf/2004/IND8P3.PDF
http://www.vldb.org/conf/2004/IND8P3.PDF
https://doi.org/10.1145/3397536.3426358
https://doi.org/10.1007/978-0-387-39940-9{_}657
http://dl.acm.org/citation.cfm?id=1287369.1287387
http://dl.acm.org/citation.cfm?id=1287369.1287387

References 157

Manegold, S., P. A. Boncz, and M. L. Kersten. (2002b). “Optimizing
Main-Memory Join on Modern Hardware”. IEEE Transactions on
Knowledge and Data Engineering (TKDE). 14(4): 709–730. doi:
10.1109/TKDE.2002.1019210.

Manegold, S., P. A. Boncz, and N. Nes. (2004). “Cache-Conscious
Radix-Decluster Projections”. In: Proceedings of the International
Conference on Very Large Data Bases (VLDB). 684–695. url: http:
//www.vldb.org/conf/2004/RS18P3.PDF.

Manolopoulos, Y., A. Nanopoulos, A. N. Papadopoulos, and Y. Theodor-
idis. (2006). R-Trees: Theory and Applications. Advanced Informa-
tion and Knowledge Processing. Springer. doi: 10.1007/978-1-84628-
293-5.

Mao, Y., E. Kohler, and R. T. Morris. (2012). “Cache Craftiness for
Fast Multicore Key-value Storage”. In: Proceedings of the ACM
European Conference on Computer Systems (EuroSys). 183–196.
doi: 10.1145/2168836.2168855.

Margaritov, A., D. Ustiugov, E. Bugnion, and B. Grot. (2018). “Virtual
Address Translation via Learned Page Table Indexes”. In: Pro-
ceedings of the Workshop on ML for Systems at NeurIPS. url:
http://mlforsystems.org/assets/papers/neurips2018/virtual_mar
garitov_2018.pdf.

Mediano, M. R., M. A. Casanova, and M. Dreux. (1994). “V-Trees -
A Storage Method for Long Vector Data”. In: Proceedings of the
International Conference on Very Large Data Bases (VLDB). 321–
330. url: http://www.vldb.org/conf/1994/P321.PDF.

Megiddo, N. and D. S. Modha. (2004). “Outperforming LRU with an
Adaptive Replacement Cache Algorithm”. Computer. 37(4): 58–65.
doi: 10.1109/MC.2004.1297303.

Mehta, M., V. Soloviev, and D. J. DeWitt. (1993). “Batch Scheduling
in Parallel Database Systems”. In: Proceedings of the IEEE Inter-
national Conference on Data Engineering (ICDE). 400–410. url:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber
=344041.

https://doi.org/10.1109/TKDE.2002.1019210
http://www.vldb.org/conf/2004/RS18P3.PDF
http://www.vldb.org/conf/2004/RS18P3.PDF
https://doi.org/10.1007/978-1-84628-293-5
https://doi.org/10.1007/978-1-84628-293-5
https://doi.org/10.1145/2168836.2168855
http://mlforsystems.org/assets/papers/neurips2018/virtual_margaritov_2018.pdf
http://mlforsystems.org/assets/papers/neurips2018/virtual_margaritov_2018.pdf
http://www.vldb.org/conf/1994/P321.PDF
https://doi.org/10.1109/MC.2004.1297303
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=344041
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=344041

158 References

Menon, J., D. A. Pease, R. M. Rees, L. Duyanovich, and B. L. Hillsberg.
(2003). “IBM Storage Tank - A heterogeneous scalable SAN file
system”. IBM Systems Journal. 42(2): 250–267. doi: 10.1147/sj.422
.0250.

Milojicic, D. S. and T. Roscoe. (2016). “Outlook on Operating Systems”.
IEEE Computer. 49(1): 43–51. doi: 10.1109/MC.2016.19.

Moerkotte, G. (1998). “Small Materialized Aggregates: A Light Weight
Index Structure for Data Warehousing”. In: Proceedings of the In-
ternational Conference on Very Large Data Bases (VLDB). 476–487.
url: http://dl.acm.org/citation.cfm?id=645924.671173.

Mohan, C. (2014). “Tutorial: An In-Depth Look at Modern Database
Systems”. In: Proceedings of the International Conference on Ex-
tending Database Technology (EDBT). 674. doi: 10.5441/002/edbt
.2014.72.

Morrison, D. R. (1968). “PATRICIA - Practical Algorithm To Retrieve
Information Coded in Alphanumeric”. Journal of the ACM. 15(4):
514–534. doi: 10.1145/321479.321481.

Muth, P., P. E. O’Neil, A. Pick, and G. Weikum. (2000). “The LHAM
Log-structured History Data Access Method”. The VLDB Journal.
8(3-4): 199–221.

Na, G.-J., B. Moon, and S.-W. Lee. (2011). “IPLB+-tree for Flash
Memory Database Systems”. Journal of Information Science and
Engineering (JISE). 27(1): 111–127. url: http://www.iis.sinica.edu
.tw/page/jise/2011/201101_08.html.

Narayanan, D., A. Phanishayee, K. Shi, X. Chen, and M. Zaharia. (2021).
“Memory-Efficient Pipeline-Parallel DNN Training”. In: Proceed-
ings of the International Conference on Machine Learning (ICML).
Vol. 139. Proceedings of Machine Learning Research. 7937–7947.
url: http://proceedings.mlr.press/v139/narayanan21a.html.

Nath, S. and A. Kansal. (2007). “FlashDB: dynamic self-tuning database
for NAND flash”. Proceedings of the International Symposium on
Information Processing in Sensor Networks (IPSN).

O’Neil, E. J., P. E. O’Neil, and G. Weikum. (1993). “The LRU-K page
replacement algorithm for database disk buffering”. In: Proceedings
of the ACM SIGMOD International Conference on Management of
Data. 297–306. doi: 10.1145/170035.170081.

https://doi.org/10.1147/sj.422.0250
https://doi.org/10.1147/sj.422.0250
https://doi.org/10.1109/MC.2016.19
http://dl.acm.org/citation.cfm?id=645924.671173
https://doi.org/10.5441/002/edbt.2014.72
https://doi.org/10.5441/002/edbt.2014.72
https://doi.org/10.1145/321479.321481
http://www.iis.sinica.edu.tw/page/jise/2011/201101_08.html
http://www.iis.sinica.edu.tw/page/jise/2011/201101_08.html
http://proceedings.mlr.press/v139/narayanan21a.html
https://doi.org/10.1145/170035.170081

References 159

O’Neil, P. E., E. Cheng, D. Gawlick, and E. J. O’Neil. (1996). “The
log-structured merge-tree (LSM-tree)”. Acta Informatica. 33(4): 351–
385. url: http://dl.acm.org/citation.cfm?id=230823.230826.

Olma, M., M. Karpathiotakis, I. Alagiannis, M. Athanassoulis, and
A. Ailamaki. (2020). “Adaptive partitioning and indexing for in
situ query processing”. The VLDB Journal. 29(1): 569–591. url:
https://doi.org/10.1007/s00778-019-00580-x.

Ooi, B. C., R. Sacks-Davis, and J. Han. (1993). “Indexing in Spatial
Databases”. Tech. rep.

Overmars, M. H. and J. van Leeuwen. (1981). “Worst-Case Optimal
Insertion and Deletion Methods for Decomposable Searching Prob-
lems”. Information Processing Letters. 12(4): 168–173. doi: 10.1016
/0020-0190(81)90093-4.

Pandey, P., A. Conway, J. Durie, M. A. Bender, M. Farach-Colton,
and R. Johnson. (2021). “Vector Quotient Filters: Overcoming the
Time/Space Trade-Off in Filter Design”. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data. 1386–
1399. doi: 10.1145/3448016.3452841.

Papon, T. I. and M. Athanassoulis. (2021a). “A Parametric I/O Model
for Modern Storage Devices”. In: Proceedings of the International
Workshop on Data Management on New Hardware (DAMON).

Papon, T. I. and M. Athanassoulis. (2021b). “The Need for a New I/O
Model”. In: Proceedings of the Biennial Conference on Innovative
Data Systems Research (CIDR).

Papon, T. I. and M. Athanassoulis. (2023). “ACEing the Bufferpool
Management Paradigm for Modern Storage Devices”. In: Proceedings
of the IEEE International Conference on Data Engineering (ICDE).

Paul, J., S. Lu, and B. He. (2021). “Database Systems on GPUs”.
Foundations and Trends in Databases. 11(1): 1–108. doi: 10.1561/1
900000076.

Perl, Y., A. Itai, and H. Avni. (1978). “Interpolation Search—A log
logN Search”. Communications of the ACM. 21(7): 550–553. url:
http://dl.acm.org/citation.cfm?id=359545.359557.

Petraki, E., S. Idreos, and S. Manegold. (2015). “Holistic Indexing in
Main-memory Column-stores”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data.

http://dl.acm.org/citation.cfm?id=230823.230826
https://doi.org/10.1007/s00778-019-00580-x
https://doi.org/10.1016/0020-0190(81)90093-4
https://doi.org/10.1016/0020-0190(81)90093-4
https://doi.org/10.1145/3448016.3452841
https://doi.org/10.1561/1900000076
https://doi.org/10.1561/1900000076
http://dl.acm.org/citation.cfm?id=359545.359557

160 References

Pohl, C., K.-U. Sattler, and G. Graefe. (2020). “Joins on high-bandwidth
memory: a new level in the memory hierarchy”. The VLDB Journal.
29(2-3): 797–817. doi: 10.1007/s00778-019-00546-z.

Polychroniou, O., A. Raghavan, and K. A. Ross. (2015). “Rethinking
SIMD Vectorization for In-Memory Databases”. In: Proceedings of
the ACM SIGMOD International Conference on Management of
Data. 1493–1508. doi: 10.1145/2723372.2747645.

Porobic, D., E. Liarou, P. Tözün, and A. Ailamaki. (2014). “ATraPos:
Adaptive transaction processing on hardware Islands”. In: Proceed-
ings of the IEEE International Conference on Data Engineering
(ICDE). 688–699. doi: 10.1109/ICDE.2014.6816692.

Psaroudakis, I., M. Athanassoulis, and A. Ailamaki. (2013). “Sharing
Data and Work Across Concurrent Analytical Queries”. Proceedings
of the VLDB Endowment. 6(9): 637–648. url: http://dl.acm.org/ci
tation.cfm?id=2536360.2536364.

Pugh, W. (1990). “Skip Lists: A Probabilistic Alternative to Balanced
Trees”. Communications of the ACM. 33(6): 668–676. url: http://d
l.acm.org/citation.cfm?id=78977.

Qiao, L., V. Raman, F. Reiss, P. J. Haas, and G. M. Lohman. (2008).
“Main-memory Scan Sharing for Multi-core CPUs”. Proceedings of
the VLDB Endowment. 1(1): 610–621. url: http://dl.acm.org/citat
ion.cfm?id=1453856.1453924.

Qin, W. and S. Idreos. (2016). “Adaptive Data Skipping in Main-Memory
Systems”. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data. 2255–2256. doi: 10.1145/2882903
.2914836.

Ramakrishnan, R. and J. Gehrke. (2002). Database Management Sys-
tems. McGraw-Hill Higher Education, 3rd edition.

Ramamurthy, R., D. J. DeWitt, and Q. Su. (2002). “A Case for Fractured
Mirrors”. In: Proceedings of the International Conference on Very
Large Data Bases (VLDB). 430–441. doi: 10.1007/s00778-003-0093-
1.

Ramamurthy, R., D. J. DeWitt, and Q. Su. (2003). “A Case for Fractured
Mirrors”. The VLDB Journal. 12(2): 89–101. doi: 10.1007/s00778-0
03-0093-1.

https://doi.org/10.1007/s00778-019-00546-z
https://doi.org/10.1145/2723372.2747645
https://doi.org/10.1109/ICDE.2014.6816692
http://dl.acm.org/citation.cfm?id=2536360.2536364
http://dl.acm.org/citation.cfm?id=2536360.2536364
http://dl.acm.org/citation.cfm?id=78977
http://dl.acm.org/citation.cfm?id=78977
http://dl.acm.org/citation.cfm?id=1453856.1453924
http://dl.acm.org/citation.cfm?id=1453856.1453924
https://doi.org/10.1145/2882903.2914836
https://doi.org/10.1145/2882903.2914836
https://doi.org/10.1007/s00778-003-0093-1
https://doi.org/10.1007/s00778-003-0093-1
https://doi.org/10.1007/s00778-003-0093-1
https://doi.org/10.1007/s00778-003-0093-1

References 161

Raman, A., S. Sarkar, M. Olma, and M. Athanassoulis. (2023). “Indexing
for Near-Sorted Data”. In: Proceedings of the IEEE International
Conference on Data Engineering (ICDE).

Raman, V., G. M. Lohman, T. Malkemus, R. Mueller, I. Pandis, B.
Schiefer, D. Sharpe, R. Sidle, A. Storm, L. Zhang, G. K. Attaluri,
R. Barber, N. Chainani, D. Kalmuk, V. KulandaiSamy, J. Leenstra,
S. Lightstone, and S. Liu. (2013). “DB2 with BLU Acceleration: So
Much More Than Just a Column Store”. Proceedings of the VLDB
Endowment. 6(11): 1080–1091. doi: 10.14778/2536222.2536233.

Raman, V., G. Swart, L. Qiao, F. Reiss, V. Dialani, D. Kossmann,
I. Narang, and R. Sidle. (2008). “Constant-Time Query Process-
ing”. In: Proceedings of the IEEE International Conference on Data
Engineering (ICDE). 60–69. doi: 10.1109/ICDE.2008.4497414.

Rao, J. and K. A. Ross. (2000). “Making B+-trees Cache Conscious in
Main Memory”. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data. 475–486. doi: 10.1145/342009
.335449.

Riegger, C., T. Vinçon, R. Gottstein, and I. Petrov. (2020). “MV-
PBT: Multi-Version Indexing for Large Datasets and HTAP Work-
loads”. In: Proceedings of the International Conference on Extending
Database Technology (EDBT). 217–228. doi: 10.5441/002/edbt.202
0.20.

Riegger, C., T. Vinçon, and I. Petrov. (2017). “Multi-version indexing
and modern hardware technologies: a survey of present indexing
approaches”. In: Proceedings of the International Conference on
Information Integration and Web-based Applications & Services
(iiWAS). 266–275. doi: 10.1145/3151759.3151779.

Riegger, C., T. Vinçon, and I. Petrov. (2019). “Indexing large updatable
datasets in multi-version database management systems”. In: Pro-
ceedings of the Symposium on International Database Engineering
& Applications (IDEAS). 36:1–36:5. doi: 10.1145/3331076.3331118.

Robinson, J. T. (1981). “The K-D-B-Tree: A Search Structure For Large
Multidimensional Dynamic Indexes”. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data. 10–18.
doi: 10.1145/582318.582321.

https://doi.org/10.14778/2536222.2536233
https://doi.org/10.1109/ICDE.2008.4497414
https://doi.org/10.1145/342009.335449
https://doi.org/10.1145/342009.335449
https://doi.org/10.5441/002/edbt.2020.20
https://doi.org/10.5441/002/edbt.2020.20
https://doi.org/10.1145/3151759.3151779
https://doi.org/10.1145/3331076.3331118
https://doi.org/10.1145/582318.582321

162 References

Robinson, J. T. (1986). “Order Preserving Linear Hashing Using Dy-
namic Key Statistics”. In: Proceedings of the Fifth ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems, March
24-26, 1986, Cambridge, Massachusetts, USA. 91–99. doi: 10.1145
/6012.6014.

Rodeh, O. (2008). “B-trees, shadowing, and clones”. ACM Transactions
on Storage. 3(4): 2:1–2:27. doi: 10.1145/1326542.1326544.

Roh, H., S. Park, S. Kim, M. Shin, and S.-W. Lee. (2011). “B+-Tree
Index Optimization by Exploiting Internal Parallelism of Flash-based
Solid State Drives”. Proceedings of the VLDB Endowment. 5(4):
286–297. url: http://dl.acm.org/citation.cfm?id=2095686.2095688.

Ross, K. A. (2021). “Utilizing (and Designing) Modern Hardware for
Data-Intensive Computations: The Role of Abstraction”. In: Proceed-
ings of the ACM SIGMOD International Conference on Management
of Data. 1. doi: 10.1145/3448016.3460535.

Ross, K. A. (2004). “Selection Conditions in Main Memory”. ACM
Transactions on Database Systems (TODS). 29: 132–161. doi: 10.11
45/974750.974755.

Sabek, I., K. Vaidya, D. Horn, A. Kipf, M. Mitzenmacher, and T. Kraska.
(2022). “Can Learned Models Replace Hash Functions?” Proceedings
of the VLDB Endowment. 16(3): 532–545. url: https://www.vldb.o
rg/pvldb/vol16/p532-sabek.pdf.

Sacco, G. M. (1987). “Index Access with a Finite Buffer”. In: Proceedings
of the International Conference on Very Large Data Bases (VLDB).
301–309. url: http://www.vldb.org/conf/1987/P301.PDF.

Sagiv, Y. (1986). “Concurrent Operations on B*-Trees with Overtaking”.
Journal of Computer and System Sciences (JCSS). 33(2): 275–296.
doi: 10.1016/0022-0000(86)90021-8.

Sarkar, S. and M. Athanassoulis. (2022). “Dissecting, Designing, and
Optimizing LSM-based Data Stores”. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data. 2489–
2497. doi: 10.1145/3514221.3522563.

Sarkar, S., K. Chen, Z. Zhu, and M. Athanassoulis. (2022). “Com-
pactionary: A Dictionary for LSM Compactions”. In: Proceedings
of the ACM SIGMOD International Conference on Management of
Data. 2429–2432. doi: 10.1145/3514221.3520169.

https://doi.org/10.1145/6012.6014
https://doi.org/10.1145/6012.6014
https://doi.org/10.1145/1326542.1326544
http://dl.acm.org/citation.cfm?id=2095686.2095688
https://doi.org/10.1145/3448016.3460535
https://doi.org/10.1145/974750.974755
https://doi.org/10.1145/974750.974755
https://www.vldb.org/pvldb/vol16/p532-sabek.pdf
https://www.vldb.org/pvldb/vol16/p532-sabek.pdf
http://www.vldb.org/conf/1987/P301.PDF
https://doi.org/10.1016/0022-0000(86)90021-8
https://doi.org/10.1145/3514221.3522563
https://doi.org/10.1145/3514221.3520169

References 163

Sarkar, S., N. Dayan, and M. Athanassoulis. (2023). “The LSM Design
Space and its Read Optimizations”. In: Proceedings of the IEEE
International Conference on Data Engineering (ICDE).

Sarkar, S., T. I. Papon, D. Staratzis, and M. Athanassoulis. (2020).
“Lethe: A Tunable Delete-Aware LSM Engine”. In: Proceedings of
the ACM SIGMOD International Conference on Management of
Data. 893–908. doi: 10.1145/3318464.3389757.

Sarkar, S., D. Staratzis, Z. Zhu, and M. Athanassoulis. (2021). “Con-
structing and Analyzing the LSM Compaction Design Space”. Pro-
ceedings of the VLDB Endowment. 14(11): 2216–2229. url: http:
//vldb.org/pvldb/vol14/p2216-sarkar.pdf.

Schlegel, B., R. Gemulla, and W. Lehner. (2009). “k-ary search on
modern processors”. In: Proceedings of the International Workshop
on Data Management on New Hardware (DAMON). 52–60. doi:
10.1145/1565694.1565705.

Scholten, H. W. and M. H. Overmars. (1989). “General Methods for
Adding Range Restrictions to Decomposable Searching Problems”.
Journal of Symbolic Computation. 7(1): 1–10. doi: 10.1016/S0747-7
171(89)80002-1.

Schuhknecht, F. M., J. Dittrich, and L. Linden. (2018). “Adaptive Adap-
tive Indexing”. In: Proceedings of the IEEE International Conference
on Data Engineering (ICDE). 665–676. doi: 10.1109/ICDE.2018.00
066.

Sears, R. and R. Ramakrishnan. (2012). “bLSM: A General Purpose
Log Structured Merge Tree”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data. 217–228. doi:
10.1145/2213836.2213862.

Sedgewick, R. (1983). “Balanced Trees”. In: Algorithms. Addison-Wesley.
Selinger, P. G., M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and

T. G. Price. (1979). “Access Path Selection in a Relational Database
Management System”. In: Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data. 23–34. doi: 10.1145
/582095.582099.

https://doi.org/10.1145/3318464.3389757
http://vldb.org/pvldb/vol14/p2216-sarkar.pdf
http://vldb.org/pvldb/vol14/p2216-sarkar.pdf
https://doi.org/10.1145/1565694.1565705
https://doi.org/10.1016/S0747-7171(89)80002-1
https://doi.org/10.1016/S0747-7171(89)80002-1
https://doi.org/10.1109/ICDE.2018.00066
https://doi.org/10.1109/ICDE.2018.00066
https://doi.org/10.1145/2213836.2213862
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/582095.582099

164 References

Severance, D. G. and G. M. Lohman. (1976). “Differential files: their
application to the maintenance of large databases”. ACM Transac-
tions on Database Systems (TODS). 1(3): 256–267. url: http://dl.a
cm.org/citation.cfm?id=320473.320484.

Shasha, D. E. and N. Goodman. (1988). “Concurrent Search Structure
Algorithms”. ACM Transactions on Database Systems (TODS).
13(1): 53–90. doi: 10.1145/42201.42204.

Sheehy, J. and D. Smith. (2010). “Bitcask: A Log-Structured Hash
Table for Fast Key/Value Data”. Basho White Paper.

Shehabi, A., S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey,
E. Masanet, N. Horner, I. Azevedo, and W. Lintner. (2016). “United
States Data Center Energy Usage Report”. Ernest Orlando Lawrence
Berkeley National Laboratory. LBNL-10057. url: https://eta.lbl.go
v/publications/united-states-data-center-energy.

Sidirourgos, L. and M. L. Kersten. (2013). “Column Imprints: A Sec-
ondary Index Structure”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data. 893–904. url:
http://dl.acm.org/citation.cfm?id=2463676.2465306.

Sleator, D. D. and R. E. Tarjan. (1985). “Self-Adjusting Binary Search
Trees”. Journal of the ACM. 32(3): 652–686. doi: 10.1145/3828.3835.

Smith, A. J. (1978). “Sequentiality and Prefetching in Database Sys-
tems”. ACM Trans. Database Syst. 3(3): 223–247. doi: 10.1145/320
263.320276.

Spectra. (2017). “Digital Data Storage Outlook”. Spectra White Paper.
Stonebraker, M. (1981). “Operating System Support for Database Man-

agement”. Communications of the ACM. 24(7): 412–418. doi: 10.11
45/358699.358703.

Stonebraker, M., D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M.
Ferreira, E. Lau, A. Lin, S. R. Madden, E. J. O’Neil, P. E. O’Neil, A.
Rasin, N. Tran, and S. Zdonik. (2005). “C-Store: A Column-oriented
DBMS”. In: Proceedings of the International Conference on Very
Large Data Bases (VLDB). 553–564. url: http://dl.acm.org/citatio
n.cfm?id=1083592.1083658.

http://dl.acm.org/citation.cfm?id=320473.320484
http://dl.acm.org/citation.cfm?id=320473.320484
https://doi.org/10.1145/42201.42204
https://eta.lbl.gov/publications/united-states-data-center-energy
https://eta.lbl.gov/publications/united-states-data-center-energy
http://dl.acm.org/citation.cfm?id=2463676.2465306
https://doi.org/10.1145/3828.3835
https://doi.org/10.1145/320263.320276
https://doi.org/10.1145/320263.320276
https://doi.org/10.1145/358699.358703
https://doi.org/10.1145/358699.358703
http://dl.acm.org/citation.cfm?id=1083592.1083658
http://dl.acm.org/citation.cfm?id=1083592.1083658

References 165

Sweeney, A., D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and G.
Peck. (1996). “Scalability in the XFS File System”. In: Proceedings
of the USENIX Annual Technical Conference (ATC). 1–14. url:
http://www.usenix.org/publications/library/proceedings/sd96/sw
eeney.html.

Tarjan, R. E. (1978). “Complexity of Combinatorial Algorithms”. SIAM
Review. 20(3): 457–491. doi: 10.1137/1020067.

Teixeira, E. M., P. R. P. Amora, and J. C. Machado. (2018). “MetisIDX
- From Adaptive to Predictive Data Indexing”. In: Proceedings of
the International Conference on Extending Database Technology
(EDBT). 485–488. doi: 10.5441/002/edbt.2018.53.

Thonangi, R., S. Babu, and J. Yang. (2012). “A Practical Concurrent
Index for Solid-State Drives”. In: Proceedings of the ACM Inter-
national Conference on Information and Knowledge Management
(CIKM). 1332–1341. doi: 10.1145/2396761.2398437.

Unterbrunner, P., G. Giannikis, G. Alonso, D. Fauser, and D. Kossmann.
(2009). “Predictable Performance for Unpredictable Workloads”.
Proceedings of the VLDB Endowment. 2(1): 706–717. url: http://d
l.acm.org/citation.cfm?id=1687627.1687707.

Van Sandt, P., Y. Chronis, and J. M. Patel. (2019). “Efficiently Searching
In-Memory Sorted Arrays: Revenge of the Interpolation Search?”
In: Proceedings of the ACM SIGMOD International Conference on
Management of Data. 36–53. doi: 10.1145/3299869.3300075.

Varman, P. J. and R. M. Verma. (1997). “An Efficient Multiversion
Access STructure”. IEEE Transactions on Knowledge and Data
Engineering (TKDE). 9(3): 391–409. doi: 10.1109/69.599929.

Viglas, S. D. (2015). “Data Management in Non-Volatile Memory”.
In: Proceedings of the ACM SIGMOD International Conference on
Management of Data. 1707–1711. doi: 10.1145/2723372.2731082.

Vitter, J. S. (2001). “External Memory Algorithms and Data Structures”.
ACM Computing Surveys. 33(2): 209–271. doi: 10.1145/384192.384
193.

Wasay, A., S. Chatterjee, and S. Idreos. (2021). “Deep Learning: Sys-
tems and Responsibility”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data. 2867–2875. doi:
10.1145/3448016.3457541.

http://www.usenix.org/publications/library/proceedings/sd96/sweeney.html
http://www.usenix.org/publications/library/proceedings/sd96/sweeney.html
https://doi.org/10.1137/1020067
https://doi.org/10.5441/002/edbt.2018.53
https://doi.org/10.1145/2396761.2398437
http://dl.acm.org/citation.cfm?id=1687627.1687707
http://dl.acm.org/citation.cfm?id=1687627.1687707
https://doi.org/10.1145/3299869.3300075
https://doi.org/10.1109/69.599929
https://doi.org/10.1145/2723372.2731082
https://doi.org/10.1145/384192.384193
https://doi.org/10.1145/384192.384193
https://doi.org/10.1145/3448016.3457541

166 References

Wasay, A., B. Hentschel, Y. Liao, S. Chen, and S. Idreos. (2020). “Moth-
erNets: Rapid Deep Ensemble Learning”. In: Proceedings of Machine
Learning and Systems (MLSys). url: https://proceedings.mlsys.org
/book/301.pdf.

Wasay, A., X. Wei, N. Dayan, and S. Idreos. (2017). “Data Canopy:
Accelerating Exploratory Statistical Analysis”. In: Proceedings of
the ACM SIGMOD International Conference on Management of
Data. 557–572. doi: 10.1145/3035918.3064051.

Wei, Z., K. Yi, and Q. Zhang. (2009). “Dynamic external hashing: the
limit of buffering”. In: Proceedings of the Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA). 253–259. doi:
10.1145/1583991.1584055.

Weiner, P. (1973). “Linear Pattern Matching Algorithms”. In: Proceed-
ings of the Annual Symposium on Switching and Automata Theory
(SWAT). 1–11. doi: 10.1109/SWAT.1973.13.

Willhalm, T., N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and J.
Schaffner. (2009). “SIMD-Scan: Ultra Fast in-Memory Table Scan
using on-Chip Vector Processing Units”. Proceedings of the VLDB
Endowment. 2(1): 385–394. url: http://www.vldb.org/pvldb/2/vld
b09-327.pdf.

Wilson, P. R. (1991). “Pointer swizzling at page fault time: efficiently
supporting huge address spaces on standard hardware”. SIGARCH
Computer Architecture News. 19(4): 6–13. doi: 10.1145/122576.1225
77.

Wong, C. K. and M. C. Easton. (1980). “An Efficient Method for
Weighted Sampling Without Replacement”. SIAM Journal on Com-
puting (SICOMP). 9(1): 111–113. doi: 10.1137/0209009.

Wu, K., E. J. Otoo, and A. Shoshani. (2006). “Optimizing Bitmap
Indices with Efficient Compression”. ACM Transactions on Database
Systems (TODS). 31(1): 1–38. doi: 10.1145/1132863.1132864.

Wu, X., Y. Xu, Z. Shao, and S. Jiang. (2015). “LSM-trie: An LSM-
tree-based Ultra-Large Key-Value Store for Small Data Items”. In:
Proceedings of the USENIX Annual Technical Conference (ATC).
71–82. url: https://www.usenix.org/conference/atc15/technical-se
ssion/presentation/wu.

https://proceedings.mlsys.org/book/301.pdf
https://proceedings.mlsys.org/book/301.pdf
https://doi.org/10.1145/3035918.3064051
https://doi.org/10.1145/1583991.1584055
https://doi.org/10.1109/SWAT.1973.13
http://www.vldb.org/pvldb/2/vldb09-327.pdf
http://www.vldb.org/pvldb/2/vldb09-327.pdf
https://doi.org/10.1145/122576.122577
https://doi.org/10.1145/122576.122577
https://doi.org/10.1137/0209009
https://doi.org/10.1145/1132863.1132864
https://www.usenix.org/conference/atc15/technical-session/presentation/wu
https://www.usenix.org/conference/atc15/technical-session/presentation/wu

References 167

Wulf, W. A. and S. A. McKee. (1995). “Hitting the Memory Wall: Im-
plications of the Obvious”. ACM SIGARCH Computer Architecture
News. 23(1): 20–24. doi: 10.1145/216585.216588.

Yao, A. C.-C. and F. F. Yao. (1976). “The Complexity of Searching an
Ordered Random Table (Extended Abstract)”. In: Proceedings of
the Annual IEEE Symposium on Foundations of Computer Science
(FOCS). 173–177. doi: 10.1109/SFCS.1976.32.

Yi, K. (2009). “Dynamic indexability and lower bounds for dynamic
one-dimensional range query indexes”. In: Proceedings of the ACM
Symposium on Principles of Database Systems (PODS). 187–196.
doi: 10.1145/1559795.1559825.

Yi, K. (2012). “Dynamic Indexability and the Optimality of B-Trees”.
Journal of the ACM. 59(4): 21:1–21:19. doi: 10.1145/2339123.23391
29.

Yuan, Z., Y. Sun, and D. Shasha. (2023). “Forgetful Forests: Data
Structures for Machine Learning on Streaming Data under Concept
Drift”. Algorithms. 16(6). doi: 10.3390/a16060278.

Zhang, H., G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang. (2015). “In-
Memory Big Data Management and Processing: A Survey”. IEEE
Transactions on Knowledge and Data Engineering (TKDE). 27(7):
1920–1948. doi: 10.1109/TKDE.2015.2427795.

Zhang, H., D. G. Andersen, A. Pavlo, M. Kaminsky, L. Ma, and R.
Shen. (2016). “Reducing the Storage Overhead of Main-Memory
OLTP Databases with Hybrid Indexes”. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data. 1567–
1581. doi: 10.1145/2882903.2915222.

Zhou, J. and K. A. Ross. (2004). “Buffering Database Operations for
Enhanced Instruction Cache Performance”. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data.
191–202. doi: 10.1145/1007568.1007592.

Zoumpatianos, K. and T. Palpanas. (2018). “Data Series Management:
Fulfilling the Need for Big Sequence Analytics”. In: Proceedings of
the IEEE International Conference on Data Engineering (ICDE).
1677–1678. doi: 10.1109/ICDE.2018.00211.

https://doi.org/10.1145/216585.216588
https://doi.org/10.1109/SFCS.1976.32
https://doi.org/10.1145/1559795.1559825
https://doi.org/10.1145/2339123.2339129
https://doi.org/10.1145/2339123.2339129
https://doi.org/10.3390/a16060278
https://doi.org/10.1109/TKDE.2015.2427795
https://doi.org/10.1145/2882903.2915222
https://doi.org/10.1145/1007568.1007592
https://doi.org/10.1109/ICDE.2018.00211

168 References

Zukowski, M. and P. A. Boncz. (2012). “Vectorwise: Beyond Column
Stores”. IEEE Data Engineering Bulletin. 35(1): 21–27. url: http:
//sites.computer.org/debull/A12mar/vectorwise.pdf.

Zukowski, M., S. Héman, N. J. Nes, and P. A. Boncz. (2007). “Coopera-
tive Scans: Dynamic Bandwidth Sharing in a DBMS”. In: Proceedings
of the International Conference on Very Large Data Bases (VLDB).
723–734. url: http://dl.acm.org/citation.cfm?id=1325851.1325934.

http://sites.computer.org/debull/A12mar/vectorwise.pdf
http://sites.computer.org/debull/A12mar/vectorwise.pdf
http://dl.acm.org/citation.cfm?id=1325851.1325934

