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Abstract—Log-structured merge (LSM) trees have emerged as
one of the most commonly used storage-based data structures in
modern data systems as they offer high throughput for writes
and good utilization of storage space. However, LSM-trees were
not originally designed to facilitate efficient reads. Thus, state-of-
the-art LSM engines employ numerous optimization techniques
to make reads efficient. The goal of this tutorial is to present
the fundamental principles of the LSM paradigm along with the
various optimization techniques and hybrid designs adopted by
LSM engines to accelerate reads.

Toward this, we first discuss the basic LSM operations and
their access patterns. We then discuss techniques and designs
that optimize point and range lookups in LSM-trees: (i) index
and (ii) filter data structures, (iii) caching, and (iv) read-
friendly data layouts. Next, we present the performance tradeoff
between writes and reads, outlining the rich design space of the
LSM paradigm and how one can navigate it to improve query
performance. We conclude by discussing practical problems and
open research challenges. This will be a 1.5-hour tutorial.

Index Terms—LSM-trees; Key-value stores; Storage engine

I. INTRODUCTION

LSM-Trees are Everywhere. The log-structured merge
(LSM) paradigm has emerged as one of the most popular
storage paradigms for modern data stores. This is because
LSM-trees (i) offer high throughput for writes by employ-
ing out-of-place ingestion to the database [65], while (ii)
their immutable file structure allows for good utilization of
storage space [27]. Thus, LSM-trees are widely used in
state-of-the-art relational and NoSQL data stores, including
LevelDB [32] and BigTable [14] at Google, RocksDB [29]
and MyRocks [61] at Facebook, X-Engine [33] at Alibaba,
DynamoDB [25] at Amazon, AsterixDB [2], Cassandra [5],
HBase [4], and Accumulo [3] at Apache, ScyllaDB [77],
Speedb [79], Pliops [22], in influential but now discontinued
systems like Voldemort [52] and bLSM [78], as well as, in
other spatial [45, 60, 84] and time-series data systems [41, 47].
The LSM Paradigm and its Tradeoffs. The founding idea of
LSM trees is to buffer ingestions in memory and flush them to
storage using large sequential writes, facilitating fast ingestion
by avoiding random writes. However, the eagerness of com-
paction creates a stringent cost contention between the costs
of reads and writes. While compacting more eagerly means
that queries need to search fewer components, it increases the
amortized cost of writes and thus counter-balances the benefits
of LSM-tree in the first place [6, 7].

Attempting to reduce the lookup cost comes at the cost of
increased memory footprint and CPU-intensive computations.

Thus, a lot of work over the past decade focused on how to
facilitate faster reads. State-of-the-art LSM engines use several
auxiliary in-memory data structures such as filters, indexes,
and block-based caches, implement workload-aware block-
based caching and prefetching techniques, and adopt read-
friendly designs and tunings to improve lookup performance.
A Rich Design Space. A closer look into the internals of
production LSM engines reveals numerous design decisions
that determine the performance of a storage engine, such as
the storage data layout, the implementation of the auxiliary in-
memory components that facilitate competitive reads, and how
to allocate memory between the buffer and other in-memory
components [18, 75, 76]. Together, these design choices con-
stitute the vast design space of LSM engines.
Goal of the Tutorial. In this tutorial, we discuss the internals
and design decisions that drive state-of-the-art LSM engines,
highlighting the optimization techniques adopted to make
reads better. We reveal the rich design space of the LSM
paradigm and provide insights on how to build, tune, and
optimize LSM-based systems and navigate their design space.

Tutorial Overview

The 1.5-hour tutorial, broken down into 3 modules.
Module I: LSM Basics. (25 mins) This module discusses the
LSM background and and its core read/write tradeoffs.

(i) The LSM structure and its key operating principles
(5 mins). Outlines the in-memory and storage-based com-
ponents of LSM-based storage engines, and discusses
the fundamental operating principles of the log-structured
merge paradigm [18, 27, 58, 65, 76].

(ii) Access patterns of the fundamental LSM operations
(10 mins). Presents the workflows for the internal op-
erations (flush and compaction) [27, 58, 76] and external
operations (put, get, scan, and delete) [19, 20, 58, 65, 73]
of an LSM-based data store.

(iii) The read vs. write tradeoff in LSM-trees (10 mins).
Outlines the key optimization techniques used in state-
of-the-art LSM engines to improve query performance,
focussing particularly on the LSM compaction design
space [15, 20, 21, 23, 24, 36, 69, 76, 87].

Module II: Optimizing Reads. (40 mins) The second module
outlines various optimization techniques that make point and
range queries efficient.



(i) Techniques to improve point query performance (15 mins).
Outlines the various filter data structures (and index
structures) used in LSM engines to improve point lookup
performance [18, 19, 23, 26, 50].

(ii) Techniques to improve range query performance
(10 mins). Outlines the different filter and index data
structures proposed in the literature to facilitate efficient
range queries in LSM engines [59, 91–93].

(iii) Prefetching and caching techniques; learned indexing
(5 mins). Presents new techniques to employ caching and
learned approaches to speed up queries [1, 13, 14, 17, 31,
44, 46, 48, 55, 60, 80, 81, 94].

(iii) Impact of LSM shapes on read performance (10 mins).
Outlines the impact of lazy and greedy merging policies
on read performance, and provides intuitions on the influ-
ence of the common LSM shapes on reads [18, 23, 76].

Module III: LSM Tuning. (25 mins) This module presents
the research on tunability and navigability of the LSM design
space to ensure optimal design choices for diverse workloads.
(i) Navigating the LSM design space and tradeoff curve

(15 mins). Outlines techniques to navigate the read-write
tradeoff curve by constructing hybrid LSM shapes based
on the workload [19, 21, 37–39, 54, 57].

(ii) Workload-aware tuning and robust tuning (5 mins). Dis-
cusses workload and performance-driven tuning tech-
niques LSM engines, including discussions on robust
LSM tunings [35, 56].

(iii) Opportunities and open research challenges (5 mins)

Output. The expected outcomes of this tutorial are:
• Understanding of the LSM paradigm, the LSM design space,

and its key operating principles.
• Insights about the point and range query paths and the role

of auxiliary in-memory data structures in optimizing reads.
• Understanding the performance tradeoff in LSM-trees.
• Appreciation for the rich design space of LSMs, along with

intuitions about how to navigate this design space.
• Exposure to open research challenges on the LSM paradigm.

Target Audience. The target audience includes graduate stu-
dents who aspire to try their hands on LSM-based systems,
database researchers who want a primer on LSM, and practi-
tioners who want to better tune their systems.

II. TUTORIAL NARRATIVE

A. Module I: LSM Basics

The LSM Design. LSM-trees store data as key-value pairs,
where a key refers to a unique object identifier, and the data
associated with it is the value. Entries in an LSM-tree are
typically stored and accessed based on the key. LSM-trees
were conceptualized to have a hierarchical data layout with one
component in memory and several components – a collection
of sorted runs – on storage [65]. For an LSM-tree with L
levels, the first level (Level 0) resides in memory, while the
remaining levels (Levels 1 to L−1) reside in storage [20]. Data

in the memory-resident component is moved to the storage-
component iteratively during data layout re-organization.

1) Basic Operations: We now present the basic operations
supported by LSM-based key-value stores.
Internal operations are triggered by the storage engine to
re-structure the data layout: (i) flushing the memory buffer to
storage, and (ii) compacting the storage-resident sorted runs.

Flush: LSM-trees accumulate incoming entries in a mutable
in-memory buffer to amortize the storage access cost. When
the memory buffer reaches capacity, the entries are sorted on
the key, and flushed to the storage as an immutable file [58].

Compaction: When a storage-resident level reaches capac-
ity, all or part of the data from that level is moved to the
next level, sort-merging the entries that overlap within the key
range. This process, termed compaction, limits the number
of sorted runs in a tree, and in the process, garbage collects
logically invalidated entries [27, 58].
External operations are triggered by the application in order
to access or update data via puts, gets, and scans.

Put: LSM-trees ingest data in an out-of-place manner; thus,
updates are treated similarly to inserts. Inserts, updates, and
deletes are first put into the memory buffer, before being
moved to storage in an opportunistic way.

Get: A get returns the most recent version of an entry. A get
begins at the memory buffer and traverses the tree from the
youngest sorted run to the oldest one. The lookup terminates
when it finds the first matching entry, as the LSM-invariant
ensures that the latest version of an entry is always retained
in the youngest sorted run containing the matching key.

Scan: A scan returns the latest version of all range of
keys after scanning and merging the contents of all qualifying
sorted runs. Typically, during range lookups, an iterator is
assigned for each run, and the runs are scanned in parallel.
For consistency reasons, a scan operates over a version (or
snapshot) of the data. A version is the collection of files that
were active and live at the time the scan began.

2) The Read vs. Write Tradeoff: LSM-trees exhibit an in-
trinsic tradeoff between reads and writes, the understanding of
which is critical for performance tuning. Varying the number
of buffer components, the buffer size, and implementation
of the buffer allows one to navigate the read-update-memory
tradeoff [7], and optimize performance based on the workload
and the performance target [5, 28, 29, 29, 33, 77, 85].

To avoid merging the buffer components with storage-
resident runs eagerly, a tiered variant of the LSM was intro-
duced by Jagadish et al. [42]. The tiered design, with multiple
sorted runs with overlapping key-ranges in a level, allows for
(i) faster data ingestion and (ii) reduced write amplification;
but, comes at the cost of (iii) increased query cost and (iv)
increased space amplification [4, 5, 29, 76, 77]. Recent research
has proposed a new set of hybrid data layouts where the
shallower (smaller) level(s) have a tiered layout and the lower
(larger) levels have a leveled layout [20, 36, 37, 87].

For better load balancing, some LSM engines partition the
key space and store the partitions in separate trees [34, 56, 64,
67]. For tail latency sensitive applications, many LSM engines



have adopted a partial compaction strategy, where one (or
few) file is compacted at a time [29, 32, 33, 75, 76]. For such
systems, the design decision on which file(s) to compact
affects ingestion performance [74, 76]. Recent research has
also proposed to separate the storage of keys from values to
improve search time at the expense of additional accesses for
queries [12, 49, 53, 88].

B. Module II: Optimizing Reads

The write-optimized LSM design leads to suboptimal read
performance. To ameliorate this, LSM engines employ in-
memory auxiliary structures, like filters, indexes, and caches.

1) Basic Indexing and Block-based Caching: Without help
from any auxiliary data structures, LSM-trees would perform
several superfluous I/Os for every lookup. To avoid issuing
a binary search in storage for each sorted run during a
lookup, LSM-trees maintain fence pointers (a special form
of Zonemaps [62]), which allow to access the relevant key
range at each run with just one storage access [27]. Such light-
weight data structures are typically pre-fetched to memory in
an opportunistic way. LSM-trie eliminates the fence pointers
by using the immutable files as hash tables, reducing the CPU
overhead for index navigation [87]. Bourbon [17] uses learned
indexing to improve the performance of fence pointers.

Another way of improving lookup performance is by using
block-level caching [71]. Commercial LSM engines use a
block cache (which, for example, is frequently configured to be
12GB in RocksDB [27]) that can be tuned to retain in memory
the first few levels of a tree, the frequently accessed hot data
blocks, and even the filter and index blocks. Since compactions
involve a lot of data movement, it is rather frequent that the
hot pages that are compacted are invalidated, forcing us to
fetch the same data in memory [82]. To address this problem
and retain hot pages in memory, Leaper [90] introduces
an ML-aided predictive mechanism to identify pages from
recently compacted files and prefetch those in block cache
immediately after compaction.

2) Point Query Filters: In the worst-case, even with fence
pointers, a point lookup may need to probe every sorted run
in a tree [18, 27, 58], leading to superfluous I/Os. Thus, to
bound the cost of point lookups, state-of-the-art LSM engines
maintain Bloom filters in memory [29]. Bloom filters allow
a lookup to skip probing a run altogether, if the filter-lookup
returns negative [58]. Further, block-based Bloom filters [66]
reduce CPU cache misses while partitioned filters allow for
more granular in-memory caching [89]. Several new filter
designs and LSM-specific filter optimization techniques have
been proposed. ElasticBF [50] and Modular Bloom filters
[63] address access skew by employing multiple small filter
units per Bloom filter. Ribbon filter [26] introduces a better
tradeoff of index time vs. space utilization at the expense
of additional CPU work. On the other hand, sharing hash
calculations [95] reduces the CPU cost per query. Cuckoo
filters [30] are also used as a Bloom filter replacement in
SlimDB [68] and Chucky [23]. Note that other approximate
set membership data structures can be used as Bloom filter

replacements [10, 11, 16]. A different approach is taken by
PinK [40] which avoids using Bloom filters altogether by
pinning the keys from the shallower LSM-levels in memory.

3) Range Query Filters: LSMs are by design not optimized
for range queries as data within a given range can be scattered
across all levels of the tree. Therefore, range filters are crucial
to prevent unnecessary storage accesses while executing range
queries on LSMs. Prefix filters use fixed-length key-prefixes
to answer long range membership queries [70]. SuRF [91, 92]
is a succinct trie-based filter that supports storing variable
length prefixes of keys, thus, allowing fewer false positives
for long range queries. Rosetta [59] introduces a range filter
comprising of a hierarchy of Bloom filters that can logically
construct a segment tree to detect differences in longer pre-
fixes, which is a better fit for short range queries. REMIX
reduces the CPU costs for range scans by maintaining an
index on the domain order of entries across multiple runs [93].
SNARF is an array-based range filter that uses a distribution-
aware model and compressed bit array to efficiently address
numeric range queries [83].

4) Advanced Indexing Techniques: In memory, the tight-
loop search during lookups leads to multiple key comparisons
triggering several cache misses and increasing CPU utiliza-
tion [86]. Thus, many systems maintain an additional hash map
for each page which allows a key to be found in constant time.
Several approaches have also focused on optimizing reads on
secondary (non-key) attributes through secondary indexing
techniques [55, 60, 80, 81, 94].

In addition to classical indexes, recent work also focuses on
using learned index on LSM-trees to reduce memory foot-
print and to speed up the in-memory computation associated
with indexes (e.g., Bourbon [17]). RadixSpline [46] proposes a
learned hash-based index that can be constructed in a single
pass over the data with no support for inserts. Such indexes are
beneficial for the LSM design (i) due to their low training time
that does not affect the ingestion throughput and (i) because
their read-only nature can exploit the immutability of files in
LSMs. While other learned indexes, such as PGM [31] and
RMI [48], support inserts, they can still be used as a read-only
index on LSMs. However, they require multiple passes to learn
the data distribution, which increases the construction time. In
a recent study [1], Google reported the superiority of such
indexes compared to fence pointers in production systems.

5) Optimizing Memory Allocation: The memory allocation
between the buffer and the filters can be tuned to improve read
performance. Usually, in production systems, the Bloom filters
are assigned the same memory footprint across all levels of
the LSM tree. Monkey [18, 19] proposes an optimal memory
allocation strategy (i) across the Bloom filters within a tree
and (ii) between filters and buffers to navigate the read-
write tradeoff space. Chucky [23] discusses the same with
fingerprints and variable hash bucket sizes for succinct cuckoo
filters on LSMs. Luo et al. [54, 57] outlined how to optimally
allocate memory between the memory buffer and the block
cache to improve query performance. FloDB [9] introduces a
two-level buffer to facilitate efficient in-memory search.



C. Module III: LSM Tuning
Commercial LSM engines expose hundreds of tuning knobs

to the developers, and together, these variable components
constitute the LSM design space. The space is vast, and it is
important to quantify the impact of LSM designs and tunings
to improve performance.

1) Navigating the LSM Design Space: Idreos et al. [38, 39]
introduced a notion of breaking down data structures into first-
order primitives, which has been seminal in exploration of the
LSM design space. Based on this, the design continuum [37]
outlines a larger design space for LSMs by exploring
different design elements, in terms of (i) the storage data
layout, (ii) the data access patterns, and (iii) main memory
allocation. Sarkar et al. [74, 76] have introduced a set of first-
order compaction primitives: (i) the compaction trigger, (ii)
the data layout, (iii) the compaction granularity, and (iv) the
data movement policy, highlighting how compactions affect
the performance of LSM engines in terms of ingestion, point
and range lookups, and space and write amplification.

LSM-Bush [21] introduces a continuum for data layouts,
where LSMs are configured to have an arbitrary number of
sorted runs in each level based on worst-case cost modeling.
Cosine [15] breaks away from worst-case cost modeling and
introduces (i) distribution-aware I/O models and (ii) learning-
based concurrency models, which allow for accurate naviga-
tion of the LSM design space.

2) Robust LSM Designs: The ever-evolving application
requirements and wide-spread adoption of shared computing
infrastructures (e.g., private or public clouds) have added
a considerable amount of uncertainty between the expected
and the observed workloads. Toward this, Huynh et al. [35]
propose a robust LSM tuning approach to minimize the
worst-case performance loss in a neighborhood of the expected
workload. CruiseDB [51] proposes an adaptive admission
mechanism to improve the LSM-shape, offering enhanced tail
performance. Luo et al. [56] proposed a throttling mecha-
nism for compactions to offer predictably stable performance,
diminishing the performance instability due to overloading un-
derlying storage. Silk+ prevents latency spikes in LSM stores
running heterogeneous workloads [8]. DLC introduces a load-
aware compaction policy to increase performance stability in
LSM-based storage engines [43].

3) Open Challenges: In the final part of the tutorial, we
present opportunities and open challenges in LSM research.
Despite recent efforts, LSMs continue to suffer from high write
amplification. Thus, reducing write amplification in LSMs
remains an open challenge. Further, identifying the optimal
compaction policies based on the workload and the LSM-
tuning is an interesting research avenue. A first step toward this
would involve extensive workload-aware modeling for each
compaction primitive. Another interesting research direction
involves on-line storage data layout transformation subject
to workload changes. This encapsulates the key intuitions of
robust LSM tuning and hybrid LSM data layouts. Reducing the
duration and the variance of write-stalls when flushing is also a
key challenge. Last but not least, LSM engines are frequently

used in transactional settings, and a detailed analysis of the
interplay of compaction with transactional semantics is still
missing from the literature.

III. RELATED WORK

Prior tutorials on storage engine designs primarily focused
on expressing the design principles and optimizations adopted
in modern key-value systems [6, 36, 37]. Athanassoulis and
Idreos [6] presented a tutorial that focused on the three-way
tradeoff constructed by the Read cost, the Update cost, and
the Memory footprint that binds every data system. Idreos and
Kraska [37] presented a tutorial outlining the general design
trends toward building auto-tuning and self-designing data
systems. The tutorial by Idreos and Callaghan [36] discussed
the core design principles and components of modern key-
value storage engines. Sarkar and Athanassoulis [72] focus on
the techniques adopted in modern LSM engines to improve
ingestion performance and reduce write amplification. On the
other hand, this tutorial focuses on techniques to optimize read
performance of LSM-trees. We discuss various approaches
adopted in state-of-the-art LSM engines to improve read
performance, the read vs. write tradeoff, and insights about
the LSM design space and tuning.
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