
Querying Persistent Graphs using Solid State Storage

Manos Athanassoulis

‡⇤

Bishwaranjan Bhattacharjee

⇧

Mustafa Canim

⇧

Kenneth A. Ross

⇧§

‡

´

Ecole Polytechnique F´ed´erale de Lausanne

⇧

IBM Watson Research Labs

§

Columbia University

manos.athanassoulis@epfl.ch {mustafa, bhatta, rossak}@us.ibm.com kar@cs.columbia.edu

ABSTRACT
Solid State Drives (SSDs) are an important component of secondary
storage systems. While Hard Disk Drives (HDDs) are cheaper per
gigabyte, SSDs are cheaper per random I/O per second. A vari-
ety of of solid-state technologies are being developed with NAND
flash being the most mature, and Phase Change Memory (PCM)
beginning to enter the marketplace. Compared with flash, PCM
has finer-grained addressability and higher write endurance. PCM
is also expected to offer lower read and write response times.

In this work we study the use of solid-state storage in latency-
bound applications, a type of workload that can benefit from the
characteristics of flash and PCM technologies. We identify graph
processing and Resource Description Framework (RDF) query pro-
cessing as candidate applications. Using an early PCM prototype
device, we demonstrate the benefits of PCM for this workload and
compare with a flash device. Moreover, we describe Pythia, a pro-
totype RDF repository designed for Solid State Storage. Using
Pythia we investigate whether the predicted benefits for this type
of workload can be achieved in a properly designed RDF reposi-
tory.

1. INTRODUCTION
Flash devices have superior random read performance compared

to magnetic hard-drives but suffer from several limitations. First,
there is a significant asymmetry in read and write performance.
Second, only a limited number of updates can be applied on a flash
device before it becomes unusable; this number is decreasing with
newer generations of flash [1]. Third, writing on flash not only is
much slower than reading and destructive of the device, but it has
proven to interfere with the redirection software layers, known as
Flash Translation Layers (FTL) [6].

PCM addresses some of these challenges. The endurance of
PCM cells is significantly higher than NAND flash [2], although
still not close to that of DRAM. Unlike NAND flash, PCM does
not require the bulk erasure of large memory units before it can be
rewritten. Moreover, while cost is still uncertain, for our purposes,
⇤The majority of this work was completed while the author was an
intern at IBM T. J. Watson Research Center, Hawthorne, NY.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. This article was presented at:
The Fourth Non-Volatile Memories Workshop (NVMW’13).
Copyright 2013.

we assume normal cell size competitiveness and standard volume
economics will apply to this technology as it ramps into high vol-
ume.

The most pronounced benefit of solid state storage over hard
disks is the difference in response time for random accesses. Hence,
we identify dependent reads as an access pattern that has the po-
tential for significant performance gains. Latency-bound applica-
tions like path processing [7] in the context of graph processing,
or RDF-data processing are typical examples of applications with
such access patterns. The Resource Description Framework (RDF)
[3] data model is widely adopted for several on-line, scientific or
knowledge-based datasets because of its simplicity in modeling and
the variety of information it can represent.

We find that PCM-based storage is an important step towards
better latency guarantees with minor bandwidth penalties for ran-
dom I/O, and we identify a concurrency trade-off between max-
imizing bandwidth and minimizing latency. In order to measure
the performance benefit (decrease in response time) for long path
queries we implement a simple benchmark and we compare the re-
sponse times when using flash and PCM. We observe that PCM
can yield 1.5x to 2.5x smaller response times for any bandwidth
utilization without any graph-aware optimizations. We take this
observation one step further and we design a new data layout suit-
able for RDF data optimized for a solid state storage layer. The
proposed layout increases the locality of related information and
decreases the cost of graph traversals by storing more linkage in-
formation (i.e., metadata about how to navigate faster when a graph
is traversed).

In this short paper, which is based on recently published work [5],
we show the benefits of path processing applications over data that
is resident in solid state storage. First, we present a custom graph
benchmark that is used to highlight the differences between two
solid state technologies through two representative devices: a state-
of-the-art flash device and an enterprise-level PCM prototype pro-
vided to us by Micron. Second, we develop a prototype RDF repos-
itory to show the benefits that RDF processing can have if it adopts
PCM storage.

2. PATH PROCESSING
Current PCM prototypes behave as a “better” flash [9], in the

sense that they have faster and more stable reads. We argue that the
best way to make the most of this behavior is in the domain of ap-
plications with dependent reads. Hence, we create a simple bench-
mark that performs path traversals over randomly created graphs
to showcase the potential benefits using PCM as secondary storage
for such applications.

We create a benchmark that models path traversal queries by
graph traversal over a custom built graph. The graph is stored in



Figure 1: Custom path processing benchmark: Speedup of
PCM over flash
fixed-size pages (each page has one node) and the total size of the
graph is 5GB. Each node has an arbitrary number of edges (between
3 and 30). The path traversal queries are implemented as link fol-
lowing traversals of a random edge in each step. Each query starts
from a randomly selected node of the graph and it follows at ran-
dom one of the descendant nodes. When multiple queries are ex-
ecuted concurrently, because of the absence of buffering, locality
will not yield any performance benefits. Each query keeps reading
a descendant node as long as the maximum length is not reached.

We use a 74GB FusionIO ioDrive (SLC) and a 12GB Micron
PCM prototype (SLC). The PCM device offers 800MB/s maximum
read bandwidth, 20µs hardware read latency1 (for 4K reads) and
250µs hardware write latency (for 4K writes), while the endurance
is estimated to be 106 write cycles. While PCM chips can be byte-
addressable the PCI-based PCM prototype available to us uses 4KB
pages for reads and writes. The flash device offers 700MB/s read
bandwidth (for 16K accesses) and hardware read latency as low as
50µs in the best case.

Figure 1 shows the speedup of the query response time for dif-
ferent values of path length and number of concurrently issued
queries. The speedup varies between 1.5x and 2.5x having the max-
imum number of 16 threads. We observe as well that the length of
the query does not play any important role. The sudden drop in
speedup for 32 threads is attributed to the an observed sweet spot
for flash for this level of concurrency.

3. PYTHIA
Next, we design an RDF-processing system which takes into

account the graph-structure of the data and has the infrastructure
needed to support any query over RDF data. Pythia is based on the
notion of an RDF-tuple [5].

RDF data are often stored [8] as triples of <Subject, Predicate,
Object> in a triple-store [10], as set of properties in property tables
[11] or as vertical partitions grouped by predicate [4]. Vertical par-
titioning and property tables assume that the stored RDF data have
some relational structure which is used to decompose the data in
sub-tables.

An RDF-tuple is a hierarchical tree-like representation of a set of
triples given an ordering of subject, predicate, and object. In Pythia,
we store RDF-tuples in two complementary hierarchies: the sub-
ject/predicate/object (SPO) hierarchy and the object/predicate/subject
(OPS) hierarchy. Each triple will thus be represented in RDF-tuples
stored in two places, the SPO-store and the OPS-store. We envision

1Software read latency is about 16–17µs, which is negligible com-
pared to magnetic disk I/O latency, but is close to 50% of the total
latency for technologies like PCM.

RDF-tuples to be stored as a tuple with variable length in a database
page containing many such tuples. Figure 2 shows how an RDF-
tuple is laid out within a page.

Figure 2: RDF-tuple layout
We experiment with Pythia and we corroborate the performance

benefit achieved in the simple benchmark. Pythia for both devices
(Flash and PCM) scales close to linearly until 4 threads (7KQ/s for
PCM and 4.5KQ/s for flash leading to 1.56x speedup), while for
higher number of threads the PCM device is more stable showing
speedup from 1.8x to 2.6x. Last but not least, we compare the
performance of Pythia repository against the state of the art RDF-
3X repository in a limited set of tests and we find that Pythia is
competitive with RDF-3X.

4. CONCLUSIONS
We have described our experiences and observations of a real

PCM prototype. At least for the near future, PCM-based devices
are going to be “better” flash devices, rather than a new incom-
parably fast and more efficient storage technology. The limits of
interconnecting interfaces, and the overhead of the software stack
used to access the devices, are significant determinants of overall
system performance. As new generations of PCM become avail-
able, and as new software technologies are developed to minimize
overheads, PCM device performance and access granularity con-
straints are likely to improve.

5. ACKNOWLEDGMENTS
The authors would like to thank Micheal Tsao of IBM T.J. Wat-

son Research for his help in setting up the machine used in the ex-
periments, and Micron Inc. for providing access to an early PCM
prototype.

6. REFERENCES
[1] NAND Flash Trends for SSD/Enterprise.

http://www.bswd.com/FMS10/FMS10-Abraham.pdf.
[2] Ovonic Unified Memory, page 29.

http://ovonyx.com/technology/technology.pdf.
[3] Resource Description Framework (RDF).

http://www.w3.org/RDF/.
[4] D. J. Abadi et al. Scalable semantic web data management using

vertical partitioning. VLDB, 2007.
[5] M. Athanassoulis et al. Path processing using Solid State Storage.

ADMS, 2012.
http://www.adms-conf.org/athanassoulis adms12.pdf.

[6] L. Bouganim et al. uFLIP: Understanding Flash IO Patterns. CIDR,
2009.

[7] A. Gubichev and T. Neumann. Path Query Processing on Very Large
RDF Graphs. WebDB, 2011.

[8] O. Hassanzadeh et al. Publishing relational data in the semantic web.
ESWC, 2011.

[9] J.-Y. Jung et al. Characterizing a Real PCM Storage Device (poster).
NVMW, 2011.

[10] T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for
RDF. PVLDB, 2008.

[11] K. Wilkinson. Jena property table implementation. SSWS, 2006.


