
Mnemosyne: Dynamic Workload-Aware BF Tuning via
Accurate Statistics in LSM trees
ZICHEN ZHU, Boston University, USA

YANPENG WEI, Tsinghua University, China
JU HYOUNG MUN, Brandeis University, USA
MANOS ATHANASSOULIS, Boston University, USA

Log-structured merge (LSM) trees typically employ Bloom Filters (BFs) to prevent unnecessary disk accesses

for point queries. The size of BFs can be tuned to navigate a memory vs. performance tradeoff. State-of-

the-art memory allocation strategies use a worst-case model for point lookup cost to derive a closed-form

solution. However, existing approaches have three limitations: (1) the number of key-value pairs to be ingested

must be known a priori, (2) the closed-form solution only works for a perfectly shaped LSM tree, and (3) the

model assumes a uniform query distribution. Due to these limitations, the available memory budget for BFs is

sub-optimally utilized, especially when the system is under memory pressure (i.e., less than 7 bits per key).

In this paper, we designMnemosyne, a BF reallocation framework for evolving LSM trees that does not

require prior workload knowledge. We use a more general query cost model that considers the access pattern

per file, and we find that no system accurately maintains access statistics per file, and that simply maintaining

a counter per file significantly deviates from the ground truth for evolving LSM trees. To address this, we

proposeMerlin, a dynamic sliding-window-based tracking mechanism that accurately captures these statistics.

The upgradedMnemosyne+ combinesMerlinwith our new cost model. In our evaluation,Mnemosyne reduces
query latency by up to 20% compared to RocksDB under memory pressure, andMnemosyne+ further improves

throughput by another 10% when workloads exhibit higher skew.

CCS Concepts: • Information systems→ Point lookups.

Additional Key Words and Phrases: LSM-Trees, Bloom Filter, Optimization

ACM Reference Format:
Zichen Zhu, Yanpeng Wei, Ju Hyoung Mun, and Manos Athanassoulis. 2025.Mnemosyne: Dynamic Workload-

Aware BF Tuning via Accurate Statistics in LSM trees. Proc. ACM Manag. Data 3, 3 (SIGMOD), Article 190

(June 2025), 28 pages. https://doi.org/10.1145/3725327

1 Introduction
LSM-Tree-Based Key-Value Stores. Log-Structured Merge-trees (LSM trees) [50] have emerged as

the core data structure inmostmodern key-value stores [1, 3–5, 11, 12, 22, 25, 26, 28, 29, 34, 57, 60, 65].

LSM trees are widely adopted because they achieve high ingestion throughput via an out-of-place
update strategy. With this paradigm, data ingestion operations (including inserts, deletes, and

updates) are buffered in memory and eventually flushed to disk as a sorted immutable run whenever
the buffer fills up. While LSM trees use compaction to sort-merge several runs to form fewer but

larger runs, there could still be multiple runs to probe when answering a point query before all data

is compacted into a single run. To facilitate point lookups, commercial LSM-tree-based key-value

Authors’ Contact Information: Zichen Zhu, Boston University, USA, zczhu@bu.edu; Yanpeng Wei, Tsinghua University,

China, weiyp21@mails.tsinghua.edu.cn; Ju Hyoung Mun, Brandeis University, USA, jmun@brandeis.edu; Manos Athanas-

soulis, Boston University, USA, mathan@bu.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2836-6573/2025/6-ART190

https://doi.org/10.1145/3725327

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

https://doi.org/10.1145/3725327
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3725327

190:2 Zichen Zhu, Yanpeng Wei, Ju Hyoung Mun, and Manos Athanassoulis

Insert 𝑘1, 𝑣1
Insert 𝑘2, 𝑣2
Query 𝑘2
Insert 𝑘3, 𝑣3
Query 𝑘0
Insert 𝑘4, 𝑣4
Insert 𝑘5, 𝑣5

……

Workload
Monkey/IdealMonkey

/Dostoevsky etc.workload knowledge

Assuming prior
(𝑏𝑝𝑘1, 𝑏𝑝𝑘2, … , 𝑏𝑝𝑘𝐿)

Static filter allocation per level
(assuming knowledge of the LSM-tree shape)

On-the-fly filter allocation
with Mnemosyne

…… …
…

Bloom
Filters

(a)

(c)

9

T
pu

t (
10

K
op

s/
s)

RocksDB (Uniform)

Monkey (Top-Down)

Monkey (Bottom-Up)

Operations

(b)
18

0
20M 100M

A
ct

ua
l A

vg
 B

pk

Operations

4

0

8

20M 100M

Fig. 1. (a) State-of-the-art models (e.g., Monkey[15]) require prior workload knowledge to compute the
bits-per-key per SST and then apply it during LSM tree construction. Instead, Mnemosyne does not require
prior workload knowledge and is easy to integrate with existing systems. (b) For a mixed read-write workloads
starting with 20𝑀 inserts, followed by 40𝑀 queries, 20𝑀 inserts and 20𝑀 updates that are mixed in an
interleaved manner, building LSM trees with 4 bits-per-key using static Monkey allocation may not have
higher throughput than uniform allocation for bottom-up LSM-tree construction. (c) The actual average
bits-per-key can be either over utilized or under utilized due to inaccurate LSM-tree shape estimation.

stores typically maintain metadata such as fence pointers and Bloom filters to reduce the number

of storage accesses [45].

Bloom Filters in LSM trees. Traditionally, a single Bloom Filter (BF) is constructed per level or

sorted run. In practical LSM tree implementations like LevelDB [29] and RocksDB [26], a sorted

run can span multiple Sorted-String Table (SST) files, and each SST file has its own BF. A BF is used

to identify whether the desired key belongs to a given file/run with a False Positive Rate (FPR).
Typically, smaller BFs that encode more entries have a higher FPR, exhibiting a space-accuracy

trade-off, controlled by the bits-per-key parameter that specifies the ratio between the overall size

of BFs and the total number of entries in LSM trees. Since a BF has no false negatives, storage access

to the raw data of a file/run can be avoided if the BF returns a negative answer. Traditionally, all BFs

are pre-fetched in a read buffer with fixed capacity (termed block cache in LSM-based systems) to

be readily available during a point query before accessing slow storage. However, when the filters

do not fit in memory, we spend a significant number of I/Os fetching them from disk, adversely

impacting query performance [49].

The Impact of Memory Pressure on BFs.While both memory and storage prices drop, their

respective rates differ. Over the last few years, the price drop for memory has been slower than

for storage – since 2007, the unit price per MB for DRAM and SSD has decreased by 90% and

98.3%, respectively [47]. In other words, in 2007, memory was 1.67× more expensive than storage,

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

Mnemosyne: Dynamic Workload-Aware BF Tuning via Accurate Statistics in LSM trees 190:3

Bits-per-key

U
nn

ec
es

sa
ry

 I/
O

s

Monkey (State-of-the-art)

1 2 3 4 5 6 7

Optimal for Uniform Empty-Query Workload
Optimal for Uniform Existing-Query Workload

Optimal for Skewed Existing-Query Workload
More
Non-empty
queries

Higher
skew

Fig. 2. A conceptual graph that compares the state-of-the-art bits-per-key allocation solution from Monkey
and the solution from our workload-aware model.

and in 2018 it has been more than 10× more expensive [6, 49]. In the context of LSM-based

systems, the ratio between bits-per-key and the average size of key-value pairs provides a minimum

memory-to-storage requirement to ensure all BFs fit in the block cache. As a concrete example, both

storage-optimized and compute-optimized EC2 instances in Amazon have less than 3% memory-to-

storage size ratio [2], while a BF with 8 bits-per-key needs at least 5% memory-to-storage ratio

for 20-byte key-value pairs [7]. As a result, the bits-per-key for BFs has to be small enough to

ensure most BFs fit in the block cache. BFs also compete for memory resources with fence pointers,

the write buffer, and temporary buffer for compactions. In production systems, when some other

applications are running on the same server and consuming the memory space, the memory-to-

storage ratio can be as low as 1% [40], forcing no larger than 8 bits-per-key to ensure filters can fit

in memory [13]. As BFs in LSM tree are often configured with small bits-per-key due to memory

pressure, reallocating BF size across different files with maintaining the overall memory budget

unchanged becomes more essential to enhance the overall query throughput.

Challenges for Existing BF Reallocation in LSM trees. Existing BF reallocation models [15,

18, 20] cannot fully exploit the available memory when (A) the LSM tree is heavily updated and
thus evolves rapidly, (B) the LSM tree has an imperfect shape (e.g., due to iterative compactions),

or (C) the workload has a high access skew. To illustrate these limitations, Figure 1 highlights the

first two challenges using a mixed workload comprising 40𝑀 inserts, 40𝑀 empty point queries,

and 20𝑀 updates. In addition, Figure 2 demonstrates the conceptual optimization headroom for BF

reallocation when more workload characteristics are considered. We explain in detail why existing

approaches are suboptimal in Section 2.

Inaccurate Access Statistics. One of the key reasons that prior work could not offer a true

workload-aware memory allocation model is that such a model would require complete and precise-
enough knowledge of the access statistics for each BF within the LSM tree. While it is fair to

assume that past workload is a good predictor for the future, capturing statistics in evolving LSM

trees is still hard. Maintaining query counters and propagating statistics at compaction time by

averaging [41], overlooks the evolving access patterns during flushes and compactions (§5). This

leads to a significant discrepancy between the tracked accesses and the ground truth. The challenge

is to estimate the accesses of a newly generated file after a compaction. Although such a file has

never been physically accessed, to allocate memory for it properly, we need an accurate estimate of

the accesses it would have received if it had been generated earlier. Such a mechanism can facilitate

other workload-specific tuning decisions in LSM trees (e.g., prefetching files with high estimated

access frequency into block cache), in addition to what we propose in this paper.

Mnemosyne: Dynamic BF Memory Allocation for Evolving LSM trees. To address the

aforementioned challenges, we build Mnemosyne (named after the ancient Greek goddess of

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

190:4 Zichen Zhu, Yanpeng Wei, Ju Hyoung Mun, and Manos Athanassoulis

memory), a BF reallocation framework for evolving LSM trees, which can dynamically determine

the bits-per-key for newly generated files without any prior workload knowledge. Furthermore,

to support workload-aware tuning, we use a more faithful cost model for BFs with constrained

memory, and we also develop a statistics tracking mechanism called Merlin (named after a wizard

who could foresee the outcome of battles in Celtic mythology), using which we buildMnemosyne+,
a system that offers workload-aware memory allocation.

Merlin captures the historical workload characteristics with a sliding window and estimates the

access frequency for each file with high accuracy. The estimated statistics are used to instantiate

our cost model with the current LSM tree structure to decide the bits-per-key for newly generated

files during each flush and compaction. This approach captures the exact tree structure (whether it

is leveling, tiering, or hybrid), including how full each level is, thus, Mnemosyne+ does not need to

make any assumptions regarding the LSM tree shape. Mnemosyne+ enforces the user-provided
memory budget (average bits-per-key) without assuming a perfectly shaped tree or a predefined

tree structure. Overall,Mnemosyne+ is a practical approach for BF reallocation in evolving LSM

trees to reduce unnecessary I/Os compared to the state of the art.

Contributions. In summary, our contributions are as follows:

• We build a generalized cost model for bits-per-key allocation, and propose an efficient solver for

it. To address Challenges (B) and (C), our model considers workload skew and empty queries per

file without assuming a perfectly shaped LSM tree (§3).

• We design a dynamic BF reallocation framework, Mnemosyne, for evolving LSM trees. To

address Challenge (A), our framework does not rely on any prior knowledge of the workload

and reallocates memory during flushes and compactions (§4).

• We find that averaging the access counters at compaction time to estimate access frequency

leads to a large discrepancy between the estimated frequency and the ground truth (§5.1).

• We design Merlin, a new access frequency estimation mechanism that considers the impact on

the access frequency from continuous flushes and compactions in LSM trees. Compared to naïve

tracking,Merlin drastically reduces the estimation error, thus also addressing the challenge of

statistics estimation (§5.2).

• We buildMnemosyne+ on top of RocksDB by combining our cost model,Merlin andMnemosyne,
and show thatMnemosyne+ outperforms RocksDB by up to 2× with small bits-per-key (§6).

• We make our code available for exploration and reproducibility
1
.

2 Background
In this section, we review the LSM tree background [45, 50]. We summarize the most commonly

used notations in Table 1.

Log-Structured Merge tree. The LSM tree is a classical out-of-place key-value data structure. To
support fast writes, LSM trees buffer all inserts (including updates and deletes) into a memory

buffer with a predefined capacity. When the buffer fills up, all the entries in the write buffer are

flushed to secondary storage as an immutable sorted run. As more runs accumulate, a compaction
is triggered, which essentially sort-merges smaller runs to form a larger sorted run. Since runs

may have overlapping key ranges, a compaction can effectively restrict the number of runs that

a query searches, and it also discards obsolete entries during this process. Specifically, all sorted

runs are organized in a tree-like structure where each level has exponentially larger capacity with

a predefined size ratio 𝑇 . A compaction is triggered for a level whenever its accumulated data

size reaches the predefined capacity. Classically, LSM trees are constructed in a top-down manner,

i.e., Level 0 files compacted into Level 1, Level 1 into Level 2, and so forth. In contrast, RocksDB

1
https://github.com/BU-DiSC/Mnemosyne

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

https://github.com/BU-DiSC/Mnemosyne

Mnemosyne: Dynamic Workload-Aware BF Tuning via Accurate Statistics in LSM trees 190:5

Table 1. Summary of our notation.

Notation Definitions (Explanations)

𝑇 the size ratio in an LSM tree

𝐿 the number of levels for an LSM tree

𝑀 the total memory budget in bits for all the Bloom Filters

𝐹 the total number of files in an LSM tree

𝜖𝑖 (𝜖 𝑗) the false positive rate for File 𝑖 (Level 𝑗)2

𝑛𝑖 (𝑛 𝑗) the number of entries in File 𝑖 (Level 𝑗)

bpk𝑖 (bpk𝑗) bits-per-key for File 𝑖 (Level 𝑗)

𝑧𝑖 the number of zero-result (empty) queries for File 𝑖

𝑥𝑖 the number of existing (non-empty) queries for File 𝑖

𝑞𝑖 the number of queries for the 𝑖th file (𝑞𝑖 = 𝑧𝑖 + 𝑥𝑖)
𝑚𝑖 the Bloom Filter size of File 𝑖 (𝑚𝑖 = 𝑛𝑖 · bpk𝑖)
𝐼 𝑗 the set of file IDs in level 𝑗 in a compaction

Q a workload that only contains point queries

I a workload that only contains ingestion

𝑍 the proportion of zero-result queries in Q

supports a bottom-up construction approach [24] to reduce space amplification, allowing files at

Level 0 to be compacted directly into the last level (logical Level 1 in this case).

Compaction Policy. The compaction policy in an LSM tree specifies when the compaction process

is triggered and how it is executed. There have been extensive studies focusing on tuning a

compaction policy to leverage various trade-offs among the costs associated with reads, writes,

and space [18, 19, 21, 53, 56, 64, 67]. One common tuning guideline is that the leveling compaction

policy is optimized for reads, while the tiering policy is optimized for writes. There are also hybrid

strategies [19, 56] that allow different levels to have different compaction policies. In a leveling

architecture, there could be a significant latency spike when a compaction involves two entire

levels, especially for deeper (larger) levels. To amortize the compaction cost, real systems like

LevelDB, RocksDB, and Pebble typically employ partial compactions, where multiple immutable

Sorted-String Table (SST) files form a single sorted run, and one or only a few files are selected for a

compaction to the next level whenever it is triggered.

Point Queries in LSM trees.A point lookup begins by querying the write buffer and then traverses

the LSM tree from the shallowest level to the deepest level until it finds the first match. After

finding the first match, the point lookup does not need to access deeper levels because entries in

older levels (runs) are superseded. As such, a zero-result query (i.e., when the target key does not

exist in the database, also called empty query) may result in large #I/Os, as it examines all levels

(runs). To reduce the lookup cost, LSM trees maintain the key range of every SST file in memory

(also called file-wise fence pointers). These fence pointers ensure that at most one file is accessed

when querying a sorted run. Similarly, since entries in a file are sorted and stored by contiguous

data blocks, block-wise fence pointers (i.e., min-max keys per page, stored in dedicated index blocks)

are created for each SST file to ensure that at most one data block is accessed when querying the

file (assuming all index blocks are prefetched into the block cache).
Bloom Filters. LSM trees use Bloom Filters (BFs) [8, 58] to accelerate point lookups. Similar to

the index block, each SST file has a filter block that stores the associated BF (filter blocks are often

prefetched in the block cache). The BF is queried before accessing any data blocks to determine

if they can be skipped. For positive BF results, the search proceeds to access the index block and

2
We use 𝑖 to index the file, and 𝑗 to index the level throughout this paper.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

190:6 Zichen Zhu, Yanpeng Wei, Ju Hyoung Mun, and Manos Athanassoulis

then the data block. However, the BF is a probabilistic membership test data structure that can

yield false positives. For each key-value pair in an SST file, the BF encodes the key into 𝑘 indexes

(using 𝑘 independent hash functions) in an𝑚-bit vector and sets the corresponding bits. When the

number of key-value pairs 𝑛 is large, and the vector size𝑚 is small, hash collisions may frequently

occur, leading to a high false positive rate (FPR, also noted by 𝜖). Formally, by selecting the optimal

𝑘𝑜𝑝𝑡 = ⌈𝑚/𝑛 · ln 2⌉, 𝜖 can be obtained as follows:

𝜖 = 𝑒−(ln 2)
2 ·𝑚

𝑛 , (1)

where𝑚/𝑛 is also known as bits-per-key, short as bpk.
State-of-the-art BF Reallocation Models for Empty Point Queries Assumes a Static LSM
tree. Monkey [15] builds a cost model for empty point lookups, noted by 𝐶𝑜𝑠𝑡 ({𝜖 𝑗 }), to obtain the

bpk assignment per level 𝑗 . In the leveling case of Monkey, the expected number of data blocks

accessed by an empty query is the sum of the FPRs at each level, and thus 𝐶𝑜𝑠𝑡 ({𝜖 𝑗 }) =
∑𝐿

𝑗=1 𝜖 𝑗 ,

where 𝐿 is the number of levels and 𝜖 𝑗 is the false positive rate in level 𝑗 . Taking into account Eq.

(1) and the memory budget𝑀 , Monkey restricts −∑𝐿
𝑗=1 𝑛 𝑗 · ln 𝜖 𝑗 ≤ (ln 2)2 ·𝑀 , where 𝑛 𝑗 represents

the number of entries in level 𝑗 , and 𝑀 represents the total number of bits for all filters. The

number of entries for each level, {𝑛 𝑗 }, is assumed to be fixed, and thus, Monkey works for a static
LSM tree. When the average bits-per-key for the entire LSM tree is configured as bpk, we have
𝑀 = bpk ·∑𝐿

𝑗=1 𝑛 𝑗 . Since Monkey assumes the same number of sorted runs per level (either leveling

or tiering), we can only apply the Monkey model to Level 1 and onward in RocksDB since files in

Level 0 are unsorted and can accumulate even beyond the maximum number of files in Level 0. As

such, all files in Level 0 have the user-defined bpk and files in deeper level have very small bpk,
which explains why the Monkey model does not have any advantage over the default RocksDB in

Figure 1b. In contrast to Monkey, Dostoevsky [18] allows a different number of sorted runs per

level, and the overall cost is now 𝐶𝑜𝑠𝑡 ({𝜖 𝑗 }) =
∑𝐿

𝑗=0 𝑟 𝑗 · 𝜖 𝑗 where 𝑟 𝑗 is the number of predefined

sorted runs in level 𝑗 . However, Dostoevsky also assumes a perfectly shaped LSM tree, where the

number of key-value pairs per level increases by size ratio 𝑇 . An optimized version of Monkey,

termed in this paper IdealMonkey [16], allows the user to specify an arbitrary number of key-value

pairs per level, thus supporting imperfect shapes. Since we no longer have closed-form solutions

for arbitrary {𝑛 𝑗 }, IdealMonkey uses a gradient decent algorithm with complexity 𝑂 (𝐿2 · log𝑀) to
obtain the optimal {𝜖 𝑗 }. As IdealMonkey does not restrict the LSM tree shape, it can also act as

a more general version of Dostoevsky since we can treat each sorted run as a separate level, and

re-apply the IdealMonkey model.

Limitations of State of the Art.We now elaborate on the limitations of Monkey and IdealMonkey.

(L1) Monkey assumes that the number of levels 𝐿 is given in advance, or 𝐿 can be estimated using

the given number of key-value pairs to be inserted

(L2) IdealMonkey relies on the exact number of entries per level.

Note that here 𝐿 refers to the number of non-empty levels that depends on the input workload,

instead of the maximum number of levels which can be estimated by storage capacity. Both are

impractical when deploying a real-world key-value store engine, since we generally do not have

any prior knowledge of the workload. Further, even if we know the approximate workload scale in

advance and we can estimate 𝐿 for Monkey, the overall throughput of Monkey could be worse than a

standard RocksDB due to inaccurate LSM-tree shape estimation. Figure 1b shows how the observed

throughput evolves as we run a mixed read-write workload for uniform bits-per-key allocation

and Monkey approaches (one for top-down LSM tree construction and the other for bottom-up

construction). Figure 1c shows how the memory allocated for BFs evolves during execution. We

observe that Monkey with top-down LSM-tree construction outperforms RocksDB, which, however,

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

Mnemosyne: Dynamic Workload-Aware BF Tuning via Accurate Statistics in LSM trees 190:7

comes at the cost of overusing the user-defined bits-per-key since data first reside in the shallow

levels using higher bits-per-key. On the other hand, when Monkey respects the memory budget in

the bottom-up LSM-tree construction, this comes with a significant performance cost because files

in Level 0 are compacted first into the last level which has the smallest bits-per-key in Monkey.

Note that, although RocksDB strictly aligns with the memory budget, its throughput is not ideal,

so, overall, there is room for improvement, both in terms of performance and memory allocation.

(L3) Monkey uses a closed-form solution that assumes that a perfect LSM tree shape, i.e., the

number of keys per level grows exactly exponentially with a constant size ratio 𝑇 .

The perfect shape assumption does not always hold for evolving LSM trees. Classical tiering and

leveling compact the whole level into the next one, which means that every compaction leaves an

empty level (a hole in the tree). Even for partial compaction [56, 63], multiple files can be selected

to be compacted together into the next level, akin to the expansion mechanism in RocksDB [54],

and partition-based compactions for deeper levels in Spooky [21]. When more than one file is

picked, the size ratio between two adjacent levels changes drastically. Note that compactions are not

necessarily triggered by level capacity [56], instead, they can also be triggered by tombstone-related

metadata [34, 55]. Finally, the key-value entry size may vary across levels, thus preventing the

number of entries from growing exponentially even with a constant size ratio. Note that the size

ratio in most LSM tree implementations specifies the ratio of the data size between two adjacent

levels instead of the ratio of the number of entries that idealistic models typically assume.

(L4) Both Monkey and IdealMonkey assume that point queries are perfectly uniform in the key

domain, and thus, files in the same level should have the same bpk.
Real-world workloads exhibit skewed access patterns [7, 10, 14], in which case the best bpk
assignment could also differ among files within a level (or a sorted run). Further, memory allocation

in prior work considers non-empty queries opportunistically [16], while a more accurate cost

model has been recently proposed for holistic tuning [35]. In practice, if we know that the queries

targeting a file will be exclusively non-empty, no BF is needed for this file since no queries can

be skipped (i.e., bits-per-key should be 0), and any hashing for the BF will only negatively impact

query latency due to its CPU cost [70]. Recent work on optimizing collections of BFs in the presence

of query skew [41, 48, 59] focuses on the total number of queries and also assumes static data.

Overall, the challenge to exploit skew, focusing on empty queries in evolving LSM trees, remains a

key challenge. Figure 2 shows that there is a large improvement headroom if we can ideally allocate

bits-per-key for each file at compaction time.

3 Workload-Aware bpk Allocation for A Static LSM Tree
We now study the optimal workload-aware bpk allocation model for a static LSM tree. If point

queries are skewed, then the optimal design should have files at the same level with different bpk
allocation, with the exact numbers depending on the number of empty queries that access each file.

In this section, we assume that we know all read statistics in advance, which include the number

of queries per file {𝑞𝑖 }, the number of zero-result queries per file {𝑧𝑖 }, and the number of entries

per file {𝑛𝑖 }. Note that, in practice, it is unrealistic to know the exact query statistics when

building filters during flushes or compactions, since the associated files are newly created and have

not received any queries. Thus, this section provides a theoretically optimal bpk assignment that

provides a headroom of improvement for our practical algorithm.

3.1 Problem Definition
We aim to minimize the number of data blocks that are unnecessarily accessed, which is equivalent

to minimizing the total number of data blocks accessed, since the number of necessary data blocks

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

190:8 Zichen Zhu, Yanpeng Wei, Ju Hyoung Mun, and Manos Athanassoulis

accessed is constant. Note that all unnecessary accesses to a file 𝑖 are triggered by the corresponding

false positives (𝜖𝑖) for empty queries (𝑧𝑖). Thus, the cost function is:

𝐶𝑜𝑠𝑡 ({𝜖𝑖 }) =
𝐹∑︁
𝑖=1

𝑧𝑖 · 𝜖𝑖 , (2)

where 𝐹 is the number of total BFs (files). When a file does not receive empty queries (𝑧𝑖 = 0),

it does not affect the objective function and would also not benefit from a BF. In this case, we

manually assign bpk𝑖 = 0. For the remainder of this section, we assume that 𝑧𝑖 > 0 for every file. In

addition, the memory constraint specifies that the total BF size should be no more than𝑀 , where

𝑀 = bpk ·∑𝐹
𝑖=1 𝑛𝑖 and bpk is the user-defined average bits-per-key. Further, since bpk is defined

for all the entries and we do not create BFs for files with 𝑧𝑖 = 0, we effectively reallocate the BF

budget for those files to files with 𝑧𝑖 > 0. We formalize the problem statement as follows:

min

𝜖1,𝜖2,...,𝜖𝐹
𝐶𝑜𝑠𝑡 ({𝜖𝑖 })

subject to − 1

(ln 2)2 ·
𝐹∑︁
𝑖=1

𝑛𝑖 · ln 𝜖𝑖 ≤ 𝑀

0 < 𝜖𝑖 ≤ 1,∀𝑖 ∈ [𝐹]

(3)

Note that we now want to find 𝐹 false positive rates (one per file), as opposed to 𝐿 false positive

rates in Monkey/IdealMonkey (one per level or one per sorted run). The new problem space is

significantly larger since an LSM tree typically has less than seven levels but thousands of files. We

will revisit this when we discuss the efficiency of solving the optimization problem. Similarly to

previous work [15, 16, 59], we use a Lagrangian multiplier for the memory constraint to obtain:

𝜖𝑖 =
𝑛𝑖

𝑧𝑖
· 𝑒𝐶 where 𝐶 = −

𝑀 · (ln 2)2 +∑𝐹
𝑖=1 𝑛𝑖 · ln

𝑛𝑖
𝑧𝑖∑𝐹

𝑖=1 𝑛𝑖
(4)

As the constraint 𝜖𝑖 ≤ 1,∀𝑖 ∈ [𝐹] is not enforced in Eq. (4), we may get files with 𝜖𝑖 > 1. Since the

false positive of a BF can only be between 0 and 1, we need to handle these cases specially. This

may happen when the overall cost does not benefit from a specific file having BF despite having

some empty queries (𝑧𝑖 > 0). In this case, we assign 𝜖𝑖 = 1 and reallocate any memory of this file

to other files. We then recalculate Eq. (4) to obtain the new bpk assignment. We may execute this

process many times until we have no 𝜖𝑖 > 1 after applying Eq. (4). To do this efficiently, we develop

an algorithm that identifies which files have 𝜖𝑖 ≥ 1 in the optimal solution, assign to them bpk𝑖 = 0,

and use Eq. (4) for the remaining files. We discuss how to develop this algorithm in the next section.

3.2 Headroom for Improvement
To investigate the headroom for improvement, we conduct a micro-benchmark that compares the

number of unnecessarily accessed data blocks among the default BF allocation strategy in RocksDB

(the same bpk for all BFs), IdealMonkey (that allows imperfect LSM shapes), and the optimal one

obtained by our model in Eq. (3).

Experimental Methodology. We populate an LSM tree with 4𝑀 512-byte entries (2GB) using

the default BF allocation strategy in RocksDB (all the BFs have the same bpk). We set the size

ratio 𝑇 = 4, the data block size as 16KB, and the target file size as 16MB, which produces a 3-level

LSM tree. Then we allocate a 64MB block cache, which ensures all the filters and indexes fit in the

cache except the data blocks, and we execute a read workload of 15𝑀 point queries. We run our

experiments with varying the proportion of empty queries (noted by 𝑍) and varying the query

distribution. In Figure 3, we plot different query distributions in the key domain and we also show

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

Mnemosyne: Dynamic Workload-Aware BF Tuning via Accurate Statistics in LSM trees 190:9

0.0 0.2 0.4 0.6 0.8 1.0
Key Space

0

5

10

15
F

re
qu

en
cy

(×
10

4)

(a) PDF of data accesses

0.00 0.25 0.50 0.75 1.00
SST files (descending order of #accesses)

0.0

0.5

1.0

C
D

F

Normal (σ = 3.0)
Normal (σ = 4.0)
Normal (σ = 5.0)
Uniform

(b) CDF of SST accesses

Fig. 3. Different distributions for 15𝑀 point queries. Note that, even with uniform access patterns in the data
domain, the access frequency of the SST files is not uniform.

how the read access patterns on the domain are translated into access requests on various SST

files of the LSM tree. In the following experiment with Normal distribution, we choose 𝜎 = 5.0

by default. For a fixed 𝑍 and a query distribution, we can run the query workload and obtain the

statistics for each SST file (including the number of entries 𝑛𝑖 , the number of point reads 𝑞𝑖 , and the

number of existing point reads 𝑥𝑖). Next we rebuild each BF in LSM tree with specifying different

bpk𝑖 per file, where we obtain the bpk𝑖 with the gradient decent algorithm in IdealMonkey and

with solving Eq. (3) for our model. To compare different bpk allocation strategies, we execute the

same query workload again and measure and the number of accessed data blocks. Finally, we report

the average number of unnecessarily accessed data blocks (which is the difference between the

number of accessed data blocks and the number of existing point queries). We also repeat the

above procedure by varying overall bpk from 4 to 8. Note that we do not use the number of overall

false positives as a measure here, although this metric is closely related to unnecessarily accessed

data blocks. False positives occur when BFs incorrectly indicate the presence of a key, resulting

in unnecessary data block accesses. However, in scenarios where IdealMonkey assigns no BFs

to certain files in lower levels for a very small user-specified bpk, accessing these files bypasses

BFs entirely. Consequently, while there are no false positives in such cases, empty point queries

may still lead to unnecessarily accessed data blocks, which means that our metric, the number of

unnecessarily accessed data blocks, can more accurately capture all wasted I/Os.

Observations.As shown in Figure 4, when we fix the distribution and vary the proportion of empty

queries 𝑍 , our model significantly reduces the number of unnecessary block accesses compared to

IdealMonkey. The benefit is especially pronounced when there are fewer empty queries (i.e., as 𝑍

approaches 0), as indicated by the larger gap between the blue and red bars in Figure 4. In addition,

when we fix bpk and compare the impact of query distribution, we also observe that our model can

further reduce unnecessary block accesses for a more skewed distribution (normal vs. uniform).

For example, the optimal (red bar) when 𝑍 = 0.0 in Figure 4a is two order of magnitude higher than

the one in Figure 4b while RocksDB and IdealMonkey (black and blue bars) remain unchanged

regardless of the distribution. These observations confirm our expectations from Figure 2. We

conclude that a file-based skew-aware model, as defined in Eq. (3), should be prioritized over

IdealMonkey if the workload access pattern per file is known.

4 BF Reallocation in An Evolving Tree
In this section, we first discuss how we efficiently solve Eq. (3), and, based on our solution, we

then introduce Mnemosyne, which can dynamically reallocate BFs in an evolving tree without

excessively overusing the user-defined average bits per key.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

190:10 Zichen Zhu, Yanpeng Wei, Ju Hyoung Mun, and Manos Athanassoulis

Empty Point Lookup Ratio (𝒁)

(a) bpk=4, uniform (b) bpk=4, normal

(c) bpk=6, uniform (d) bpk=6, normal

(e) bpk=8, uniform (f) bpk=8, normal

#U
n

n
ec

es
sa

ri
ly

 A
cc

es
se

d
D

at
a

B
lo

ck
s

Fig. 4. Comparing the optimal model with RocksDB and IdealMonkey, the average number of unnecessarily
accessed data blocks is much fewer for workloads that have all non-empty point queries or exhibit skew
access pattern. 𝑍 is the proportion of zero-result queries (𝑍 = 0 means all queries are existing queries and
𝑍 = 1 means all are zero-result queries).

4.1 Ordered Property
We observe that we cannot directly apply Eq. (4) to Eq. (3) as files with bpk𝑖 = 0 (𝜖𝑖 = 1) may exist.

To identify them, we use the Ordered Theorem that we present and prove in this section. The core

result is that we can use basic file statistics, 𝑧𝑖 and 𝑛𝑖 , to identify whether the solution in Eq. (4)

is applicable to a file. Specifically, such files are contiguous if we sort them according to the 𝑧𝑖/𝑛𝑖
ratio. Using this result, we derive an algorithm with 𝑂 (𝐹 · log 𝐹) complexity that identifies which

files have 𝜖𝑖 = 1 in the optimal solution.

Theorem 4.1 (Ordered Theorem). In the optimal solution of the objective function in Eq. (3), the
value 𝑧𝑖

𝑛𝑖
of files with 𝜖𝑖 = 1 should be all smaller than the one of any file with 𝜖𝑖 < 1.

Proof. We prove Theorem 4.1 using duality. We note that the optimization problem is a convex
problem, as proved by Truncated BF [48]. We now use Slater’s condition to show that strong duality

holds. To do this, we define the Lagrangian function L as follows:

L(𝜖1, 𝜖2, ..., 𝜖𝐹 , 𝜆, 𝜈1, 𝜈2, ..., 𝜈𝐹) = 𝐶𝑜𝑠𝑡 ({𝜖𝑖 })+

𝜆 ·
(
− 1

(ln 2)2 ·
𝐹∑︁
𝑖=1

𝑛𝑖 ln 𝜖𝑖 −𝑀
)
+

𝐹∑︁
𝑖=1

𝜈𝑖 · (𝜖𝑖 − 1) ,
(5)

where 𝜆 and {𝜈𝑖 } are Lagrange multipliers we introduce for the constraints (𝜆 ≥ 0 and 𝜈𝑖 ≥ 0 ∀𝑖 ∈
[𝐹]). We do not consider the constraint 𝜖𝑖 > 0 because it is implied by ln 𝜖𝑖 in the memory constraint.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

Mnemosyne: Dynamic Workload-Aware BF Tuning via Accurate Statistics in LSM trees 190:11

We also define the dual function 𝑔(𝜆, 𝜈1, ..., 𝜈𝐹) as follows:
𝑔(𝜆, 𝜈1, ..., 𝜈𝐹) = inf

𝜖1,𝜖2,...,𝜖𝐹
L(𝜖1, 𝜖2, ..., 𝜖𝐹 , 𝜆, 𝜈1, 𝜈2, ..., 𝜈𝐹) (6)

As long as the user-specified average bpk > 0 and the LSM tree is not empty, we always

have 𝑀 > 0 since 𝑀 = bpk · ∑𝐹
𝑖=1 𝑛𝑖 . Otherwise, we can set all bpk𝑖 = 0 if bpk = 0. To satisfy

Slater’s condition, we need to find a feasible point that makes the convex constraint to strictly

hold. We can achieve this by setting all bpk𝑖 = 0. Synthesizing the above discussion and Slater’s

condition, the optimization problem in Eq. (3) has strong duality. Therefore, the optimal solution

𝜖1, 𝜖2, ..., 𝜖𝐹 , 𝜈1, 𝜈2, ..., 𝜈𝐹 of Eq. (6) should satisfy:{
𝜈𝑖 > 0, if 𝜖𝑖 = 1

𝜈𝑖 = 0, otherwise (i.e., 𝜖𝑖 < 1)

(7)

Note that, we should always have 𝜆 > 0 and − 1

(ln 2)2 ·
∑𝐹

𝑖=1 ln 𝜖𝑖 = 𝑀 to minimize 𝐶𝑜𝑠𝑡 ({𝜖𝑖 }).
Furthermore, to minimize L, we can take its derivative with respect to 𝜖𝑖 , and set it equal to 0:

𝑧𝑖 −
𝜆 · 𝑛𝑖
(ln 2)2 · 𝜖𝑖

+ 𝜈𝑖 = 0 (8)

By solving the equation, we have: {
𝐶 >

𝑧𝑖
𝑛𝑖

if 𝜖𝑖 = 1

𝐶 <
𝑧𝑖
𝑛𝑖

if 𝜖𝑖 < 1

, (9)

where 𝐶 = 𝜆/(ln 2)2, obtained by Eq. (4) without considering BFs with 𝜖𝑖 = 1, that is, we will not

consider all 𝐹 files in

∑𝐹
𝑖=1 𝑛𝑖 and

∑𝐹
𝑖=1 𝑛𝑖 · ln

𝑛𝑖
𝑧𝑖
, but only those with 𝜖𝑖 < 1. Proof completes. □

Connection with Monkey. In Monkey, shallower levels have larger bpk𝑗 than deeper levels,

which is consistent with Theorem 4.1 when the workload is uniform and only has empty queries.

Specifically, when all the files have the same number of entries (i.e.,𝑛𝑖 is constant), our model always

assigns more bpk to files with large 𝑧𝑖 , because shallower levels have fewer files but approximately

the same key range, compared to the deeper levels. However, if the workload only contains existing

(non-empty) queries, all the files in the deepest level then have 𝑧𝑖 = 0, and thus bpk𝑖 = 0, while

Monkey wastes 1/𝐿 BF memory budget in the deepest level where 𝐿 is the number of levels. As

such, when the overall bpk is small, bpk𝑗 for shallower levels in Monkey can be much smaller than

bpk𝑖 derived from our model, and thus Monkey may result in more unnecessary data block accesses

in those levels, as shown in Figure 2. Besides, when the workload exhibits higher skew, files in the

same level could have significantly different 𝑧𝑖 . Since Monkey assumes files in the same level have

the same 𝑧𝑖 , the bpk assignment in Monkey can deviate further away from the optimal one.

Sort-And-Search.We now present Algorithm 1, our sort-and-search algorithm based on Theo-

rem 4.1. We first sort all the files according to
𝑧𝑖
𝑛𝑖

in descending order, and then we do reversely

linear searching to find the maximum 𝐶 so that the maximum false positive rate 𝜖𝑚𝑎𝑥 is smaller

than 1. During this process, we also filter out files with small
𝑧𝑖
𝑛𝑖

(that is, we do not construct BFs

for these files, i.e., bpk𝑖 = 0). After that, we calculate bpk using 𝑧𝑖 , 𝑛𝑖 and 𝐶 for the remaining

files. The overall complexity 𝑂 (𝐹 · log 𝐹) is dominated by sorting. In fact, we can also use binary

search after sorting to further accelerate the algorithm. Since the complexity is dominated by the

sorting, we do not observe that binary search shows significant improvements over linear scan (see

a micro-benchmark in Figure 5), we thus only implement the linear scan algorithm in Mnemosyne.
Implementation. In practical systems such as RocksDB, when bpk ≤ 1, the assigned bpk is

actually round(bpk). For example, if bpk < 0.5, it rounds down to 0. This implementation restricts

the minimum bpk𝑖 to be 1 if bpk𝑖 > 0. To achieve this, we replace the condition (• > 0) in line 10

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

190:12 Zichen Zhu, Yanpeng Wei, Ju Hyoung Mun, and Manos Athanassoulis

0 250 500 750 1000
#SST files (F)

10−6

10−4

10−2

100

102

ti
m

e
(s

ec
on

d
s)

gradient descent

binary search

scan

(a) Uniform, 𝑍 = 0.0, bpk= 2

0 250 500 750 1000
#SST files (F)

10−6

10−4

10−2

100

102

ti
m

e
(s

ec
on

d
s)

gradient descent

binary search

scan

(b) Uniform, 𝑍 = 0.0, bpk= 8

Fig. 5. Our algorithms (both binary search and scan) are much faster than gradient descent.

of Algorithm 1 with • > 𝑒−(ln 2)2 (the false positive rate 𝜖 = 𝑒−(ln 2)2 when bpk = 1), and then we

naturally have bpk𝑖 ≥ 1 if bpk𝑖 > 0 in the optimal solution.

Algorithm 1: Sort-And-Search({𝑧𝑖 }, {𝑛𝑖 }, 𝐹 , 𝑀)
1 Z ← {𝑧𝑖 }
2 N ← {𝑛𝑖 }
3 𝑟𝑒𝑠𝑢𝑙𝑡 ← {}
4 Initialize a pair vector 𝑉 so that 𝑉 [𝑖] = (𝑧𝑖

𝑛𝑖
, 𝑖)

5 Sort 𝑉 according to
𝑧𝑖
𝑛𝑖

in a descending order

6 𝑆1 ←
∑𝐹

𝑖=1 𝑛𝑖

7 𝑆2 ←
∑𝐹

𝑖=1 𝑛𝑖 · ln
𝑛𝑖
𝑧𝑖

8 𝐶 ← −𝑀 · (ln 2)2−𝑆2
𝑆1

9 for 𝑖∗ ← 𝑛 to 1 do
10 if 𝐶 − ln𝑉 [𝑖∗] .𝑓 𝑖𝑟𝑠𝑡 > 0 then
11 𝑖𝑡𝑚𝑝 ← 𝑉 [𝑖∗] .𝑠𝑒𝑐𝑜𝑛𝑑
12 𝑟𝑒𝑠𝑢𝑙𝑡 [𝑖𝑡𝑚𝑝] ← 0

13 𝑆1 = 𝑆1 − N [𝑖𝑡𝑚𝑝]
14 𝑆2 = 𝑆2 − N [𝑖𝑡𝑚𝑝] · ln

𝑁 [𝑖𝑡𝑚𝑝]
Z[𝑖𝑡𝑚𝑝]

15 𝐶 ← −𝑀 · (ln 2)2−𝑆2
𝑆1

16 else
17 break;

18 for 𝑖 ← 𝑖∗ to 1 do
19 𝑖𝑡𝑚𝑝 ← 𝑉 [𝑖] .𝑠𝑒𝑐𝑜𝑛𝑑
20 𝑟𝑒𝑠𝑢𝑙𝑡 [𝑖𝑡𝑚𝑝] = − 1

(ln 2)2 ·
(
ln

N[𝑖𝑡𝑚𝑝]
Z[𝑖𝑡𝑚𝑝] +𝐶

)
21 Return 𝑟𝑒𝑠𝑢𝑙𝑡

Efficiency of the Optimization Solver. We also examine the difference in the execution time

between the gradient descent algorithm (proposed by Monkey) and our sort-and-search algorithms

(including both linear-scan and binary-search versions). We set the SST file size as 32MB and the

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

Mnemosyne: Dynamic Workload-Aware BF Tuning via Accurate Statistics in LSM trees 190:13

size ratio as 4, and vary bpk, the workload characteristics (including both 𝑍 and the distribution),

and also the number of SST files (𝐹). Since most experimental results have similar patterns when

fixing 𝐹 , we only present a subset of results (𝑍 = 0.0, bpk = 2 and 𝑍 = 0.0, bpk = 8) in Figure 5. As

shown in Figures 5a and 5b, the gradient descent approach is slower than our algorithms by 2 ∼ 4

orders of magnitude. Note that the execution time to find the optimal solution shall not exceed

one second because this searching algorithm is executed during each compaction as mentioned

later and the median compaction latency is just one second [56] when populating a 10GB LSM tree

with a 4000 IOPS-provisioned SSD. Since our optimization solvers only take around 0.1𝑚𝑠 when

𝐹 ≈ 1𝐾 , our algorithms are more practical to be deployed during compactions. However, obtaining

the input of Algorithm 1 is not trivial since it has to traverse the metadata of all files. This process

can result in around 2% throughput reduction in write-intensive workloads.

4.2 Mnemosyne
Since we do not yet have the estimated access statistics, we assume that all files within the same

sorted run are accessed uniformly, resulting in the same bpk𝑖 for each file within the same sorted

run. Based on this assumption, we can reformulate Eq. (3) by optimizing 𝜖 𝑗 and setting 𝑧 𝑗 = 1 for all

sorted runs, where 𝜖 𝑗 represents the false positive rate for each sorted run. As Algorithm 1 remains

applicable under the adjusted model, we integrate the BF reallocation algorithm into RocksDB to

construct Mnemosyne.
BF Reconstruction During Flushes and Compactions. As all SST files in LSM trees are im-

mutable, we cannot directly apply Algorithm 1 to rebuild BFs. Therefore, BF reallocation is only

applied for files generated by flushes and compactions and all other BFs remain unchanged. When-

ever a flush or compaction is triggered, we estimate the future LSM tree shape based on its current

structure. The shape is represented by the list {𝑛 𝑗 } of length 𝐿′, where each element records the

number of entries in a sorted run, and 𝐿′ denotes the total number of sorted runs. In RocksDB, Level

0 can contain multiple sorted runs, and starting from Level 1, each level forms a separate sorted

run. Note that while users can configure the number of files in Level 0 to trigger compactions, this

threshold is not strictly enforced due to write stalls, which occur when compaction from Level 0 to

Level 1 is blocked by ongoing compaction between Level 1 and Level 2. Write stalls thus allow files

to accumulate in Level 0 beyond the configured limit. In such cases, there might be unexpectedly

high overlap between files. Given the current LSM tree shape {𝑛 𝑗 } and a newly flushed file with

𝑛𝑛𝑒𝑤 entries, the updated LSM tree shape becomes {𝑛𝑛𝑒𝑤} ∪ {𝑛 𝑗 }. For compaction, we adjust the

number of entries between adjacent levels accordingly. Specifically, when a compaction moves a set

of files containing 𝑛′ entries from one sorted run 𝑗1 to another sorted run 𝑗2, we update the LSM tree

shape by setting 𝑛 𝑗1 = 𝑛 𝑗1 − 𝑛′ and 𝑛 𝑗2 = 𝑛 𝑗2 + 𝑛′. This formulation applies to normal compactions

between levels, user-triggered compactions, and intra-L0 compactions. Once the estimated LSM

tree shape {𝑛 𝑗 } is determined, we compute 𝑀 = bpk · ∑𝐿′
𝑖=1 𝑛 𝑗 , and apply Algorithm 1 with the

input ({1}, {𝑛 𝑗 }, 𝐿′, 𝑀) to obtain bpk𝑛𝑒𝑤 for newly generated files.

Bits-per-key Adjustment. If bpk𝑗 ∈ [0.5, 1), we round it up to 1. Otherwise, we set it to 0, as

is already done in RocksDB. Knowing the number of entries 𝑛𝑛𝑒𝑤 in the upcoming new file, we

can compute bpk𝑛𝑒𝑤 using Algorithm 1 and estimate the average bpk for the entire LSM tree if

bpk𝑛𝑒𝑤 is applied. Note that we allow a BF to be skipped during a point query if Algorithm 1 says

the associated bpk is 0, even if a BF exists. As such, we ignore this BF when computing the actual

average bpk inMnemosyne. After we get the average bpk, we then adjust bpk𝑛𝑒𝑤 to ensure that

the average bpk usage does not exceed the target by more than one bit-per-key. We allow bpk to be
temporarily overused so that future compactions at lower levels do not underutilize bpk.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

190:14 Zichen Zhu, Yanpeng Wei, Ju Hyoung Mun, and Manos Athanassoulis

Level

𝑗 + 1

compaction

𝑞4
𝑛𝑒𝑤 = 𝑞5

𝑛𝑒𝑤 = 𝑞6
𝑛𝑒𝑤 = (𝑞1

𝑜𝑙𝑑 + 𝑞2
𝑜𝑙𝑑 + 𝑞3

𝑜𝑙𝑑)/3

𝑞2
𝑜𝑙𝑑

File 2
𝑞3

𝑜𝑙𝑑

File 3

𝑞1
𝑜𝑙𝑑

File 1
𝑞4

𝑛𝑒𝑤

File 4
𝑞5

𝑛𝑒𝑤

File 5
𝑞6

𝑛𝑒𝑤

File 6

𝑗

Newly generated files from a compactionSelected input files in a compaction

Fig. 6. The naïve strategy to inherit statistics during a compaction. 𝑞𝑜𝑙𝑑
𝑖1

, 𝑞𝑛𝑒𝑤
𝑖2

denote the number of point
queries for an input File 𝑖1, and the estimated number of point queries for a newly generated File 𝑖2, respectively.

Limited Block Cache. When the block cache is constrained, BF cache misses may occur because

it is not always possible to fit all BFs into the available cache. Therefore, BFs should not be

reconstructed during queries, as re-creating and subsequently evicting BFs would necessitate

persisting them to disk, leading to excessive random disk writes. As such, inMnemosyne, every
BF construction is associated with a flush or a compaction, and BFs do not need to be re-created

during restarts. Additionally, a limited block cache may require large BFs to be retrieved from disk,

further exacerbating I/O overhead. To mitigate unnecessary reads spent on retrieving large BFs,

we adopt the ModularBF [49], which decomposes large BFs into smaller BFs with different hash

functions. In this way, only the first small BF needs to be loaded in the case of a cache miss. If the

first small BF returns a positive result, the remaining components are then retrieved as needed,

significantly reducing the number of disk I/Os. In our implementation, a ModularBF is built when

bpk𝑛𝑒𝑤 > bpk + 1 where bpk𝑛𝑒𝑤 is the bits-per-key value assigned by Algorithm 1.

5 Access Estimation in Mnemosyne+

SinceMnemosyne cannot perform workload-aware BF allocation due to the lack of access statistics,

we now describe how to estimate, at runtime, the number of zero-result (empty) queries per file (𝑧𝑖)

in an LSM tree. This estimation is crucial for instantiating our workload-aware model in Eq. (3) and

buildMnemosyne+. Tracking the exact value of 𝑧𝑖 per file would introduce significant maintenance

overhead as the LSM tree continues to evolve with more data ingestion. Therefore, we focus on

estimating 𝑧𝑖 . To do this, we first estimate the number of queries 𝑞𝑖 and the number of existing

queries 𝑥𝑖 , and compute 𝑧𝑖 as 𝑧𝑖 = 𝑞𝑖 − 𝑥𝑖 .

5.1 A Naïve Strategy
We first introduce a naïve strategy for estimating statistics. With this strategy, we maintain two

counters for the number of point reads 𝑞𝑖 and the number of existing point reads 𝑥𝑖 , respectively,

per file. At every compaction, we use the average counter of {𝑞𝑜𝑙𝑑𝑖 } of all the input files as the
estimated 𝑞𝑛𝑒𝑤

𝑖
for every newly generated file to avoid a cold start (a method similar to the one

used by ElasticBF [41] to monitor {𝑞𝑖 }). In this example, shown in Figure 6, Files 1, 2, and 3 are

the input files for a compaction, and Files 4, 5, and 6 are generated from this compaction. Using

the naïve strategy, the number of point queries of newly generated files (i.e., 𝑞𝑛𝑒𝑤
4

, 𝑞𝑛𝑒𝑤
5

, 𝑞𝑛𝑒𝑤
6

) are

all estimated as

∑
3

𝑖=1 𝑞
𝑜𝑙𝑑
𝑖 /3. We can also use a similar strategy to estimate 𝑧𝑛𝑒𝑤

𝑖
or 𝑥𝑛𝑒𝑤

𝑖
. However,

the naïve strategy has two problems that lead to inaccurate estimation, in which case the memory

allocation would significantly deviate from the desired one. We detail these two problems below.

Problem 1: The Query Counters Are Initiated From an Inconsistent Starting Point. First,
the naïve strategy does not consider a critical discrepancy, that is, {𝑞𝑖 } are not initiated from

the same starting counting point. If we simply count 𝑞𝑖 per file, new SST files cannot record the

workload statistics before they are generated, and thus {𝑞𝑖 } of new files are usually smaller than

older files. For example, in Figure 7, we consider a scenario where we start with the left-top LSM

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

Mnemosyne: Dynamic Workload-Aware BF Tuning via Accurate Statistics in LSM trees 190:15

1

Level

2
3

1

Level

2
3

𝒬1 𝒬2𝐼1 𝐼2

…

…

…

…

…

…

File 1

Files 4 and 5 overlap in key
domain, a compaction is triggered
(Files 6 and 7 are generated)

A file that collected
query statistics of 𝒬1

A file that collected
query statistics of 𝒬2

A file that collected query
statistics of both 𝒬1, 𝒬2

A file that collected query
statistics of only partial 𝒬1

File 2 File 3

File 1 File 2 File 3

File 1 File 2 File 3

File 1 File 2 File 3

File 1 File 2 File 3

File 1 File 2 File 3

File 4

File 4

File 4 File 5

File 6 File 7

Fig. 7. An example that shows how the counter discrepancy could occur with the naïve approach. Darker
color indicates more query statistics are collected when maintaining 𝑞𝑖 .

tree, and sequentially execute workloads Q1,I1,Q2,I2 where Q1,Q2 are query workloads and I1,I2
are insertion workloads (I1,I2 both trigger a flush). In the final (right-bottom) state, the point

query counters 𝑞1, 𝑞2, 𝑞3 of older Files 1, 2, 3 are much larger than 𝑞6, 𝑞7 of newer Files 6, 7 because

𝑞1, 𝑞2, 𝑞3 count for both workloads Q1,Q2, while 𝑞6, 𝑞7 only count Q2. Besides, 𝑞6, 𝑞7 are inaccurate

even if we only consider Q2. In the naïve strategy, 𝑞6 = 𝑞7 = (𝑞4 + 𝑞5)/2 (Files 6,7 are generated by

compacting Files 4, 5). Since File 5 does not track any query workload (𝑞5 = 0), 𝑞6 and 𝑞7 deviate a

lot from the actual ones if we replay Q2. Ideally, 𝑞6 and 𝑞7 should take into account both Q1 and Q2

so that {𝑞𝑖 } of all SST files have the same starting counting point.

Problem 2: Averaging Query Statistics at Compaction Leads to Overestimation.A query that

does not find the desired key in level 𝑗 proceeds to search in level 𝑗 + 1, which may lead to counting

this query twice when calculating the average for newly generated files. Therefore, whenwe average

the query statistics from the files in a compaction, the newly calculated statistics overestimate the

number of queries by double counting the number of empty queries from level 𝑗 . For example,

consider a query workload Q on keys ∈ [𝑘2, 𝑘5] in Figure 8 (assuming 𝑘2 < 𝑘3 < 𝑘4 < 𝑘5). The

empty queries that arrive before the compaction in File 1 – key ∈ [𝑘2, 𝑘5] – may have also accessed

File 2 – if key also ∈ [𝑘2, 𝑘3] – or File 3 – if key also ∈ [𝑘4, 𝑘5] (only queries ∈ (𝑘3, 𝑘4) skip level 𝑗 + 1
because no files in level 𝑗 + 1 overlap with this range). We mark these two sets of double-counted

queries using different shaded patterns in Figure 8. In the compaction, the averaging approach

counts the queries in the shaded areas two times: once from File 1 and once from File 2 or File 3.

After compaction, workload Q skips level 𝑗 since no files overlap with [𝑘2, 𝑘5] in level 𝑗 , and the

query statistics are only collected once in Files 4, 5, and 6.

5.2 Merlin
We now introduceMerlin, a tracking and estimation mechanism for point queries per file. Although

we only use Merlin for memory allocation in this paper, it can also benefit other decisions like

caching and compaction priority. We summarize new notations of Merlin in Table 2.

5.2.1 Estimation of Zero-Result Point Queries. As discussed, we decompose the estimation of 𝑧𝑖
into two steps: (1) estimating 𝑞𝑖 and (2) estimating 𝑥𝑖 . 𝑧𝑖 is then approximated by 𝑞𝑖 −𝑥𝑖 (we explain
why we need to estimate 𝑥𝑖 instead of directly estimating 𝑧𝑖 in §5.2.2).

Estimation of 𝑞𝑖 . We maintain a global point query sequence number (noted by 𝐷𝑔𝑙𝑜𝑏𝑎𝑙
) that

represents the total number of point queries issued so far, and then we maintain a sliding window

Ω𝑖 per file, where Ω𝑖 is implemented as a First-In-First-Out 64-length queue of 𝐷𝑔𝑙𝑜𝑏𝑎𝑙
that accesses

file 𝑖 . In addition, for File 𝑖 , we also maintain two counters 𝑞′𝑖 and 𝑥
′
𝑖 that store the number of queries

and the number of non-empty queries before the first element of Ω𝑖 (noted by Ω𝑖 .𝑓 𝑟𝑜𝑛𝑡), i.e., 𝑞
′
𝑖

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

190:16 Zichen Zhu, Yanpeng Wei, Ju Hyoung Mun, and Manos Athanassoulis

Table 2. Notations in Merlin.

Notation Description

𝐷𝑔𝑙𝑜𝑏𝑎𝑙
the global point query counter

𝑞′
𝑖

a 64-bit point query counter of File 𝑖

𝑥 ′
𝑖

a 64-bit non-empty point query counter of File 𝑖

Ω𝑖 a queue for the most recent point queries of File 𝑖

𝑥Ω𝑖
a bitmap that represents if queried keys in Ω𝑖 are found

𝛽 the adaptation rate in statistics estimation

Level

𝑗 + 1

compaction
File 2 File 3

𝑗
File 1

File 4 File 6

𝒬 𝒬A Fixed Query Workload ∈ [𝑘2, 𝑘5]

𝑘2 𝑘5

𝑘1 𝑘3 𝑘4 𝑘6

File 5

Fig. 8. In the naïve strategy, most empty queries counted in File 1 (𝑧1) are counted again in 𝑧2 and 𝑧3, which
could result in inaccurate estimation for newly generated files, i.e., Files 4, 5, and 6 in the above example.

does not count the number of point queries in Ω𝑖 . With these access statistics, 𝑞𝑖 is estimated as:

𝑞𝑖 = 𝐷
𝑔𝑙𝑜𝑏𝑎𝑙

/ (
𝛽 · Ω𝑖 .𝑙𝑎𝑠𝑡 − Ω𝑖 .𝑓 𝑖𝑟𝑠𝑡

∥Ω𝑖 ∥ − 1
+ (1 − 𝛽) · Ω𝑖 .𝑓 𝑖𝑟𝑠𝑡

𝑞′
𝑖
+ 1

)
where Ω𝑖 .𝑙𝑎𝑠𝑡 represents the last point query that accesses File 𝑖 , ∥Ω𝑖 ∥ represents the length of

Ω𝑖 , and 𝛽 represents the adaptation rate to control how aggressive the estimation adapts to most

recent queries. In the above estimation model, (Ω𝑖 .𝑙𝑎𝑠𝑡 − Ω𝑖 .𝑓 𝑖𝑟𝑠𝑡)/(∥Ω𝑖 ∥ − 1) is used to estimate

the access interval in Ω𝑖 , which is essentially a Maximum Likelihood Estimation that has been

proposed by 𝜑 failure detector [32] and applied in Cassandra [4].

Estimation of 𝑥𝑖 . Based on Ω𝑖 and 𝑞
′
𝑖 , we use a 64-length bitmap 𝑥Ω𝑖

, where each bit in 𝑥Ω𝑖
denotes

whether the queried key in Ω𝑖 is found in File 𝑖 . We estimate 𝑥𝑖 as follows:

𝑥𝑖 =

(
𝛽 · __builtin_popcount(𝑥

Ω𝑖)
∥Ω𝑖 ∥

+ (1 − 𝛽) ·
𝑥 ′𝑖
𝑞′
𝑖

)
· 𝑞𝑖 ,

where __builtin_popcount(𝑥Ω𝑖) is a built-in function in gcc compiler that returns the number

of non-zero bits for a given integer.

Workload Shifting. The workload characteristics (e.g., the proportion of empty queries, the

distribution of queries) may change over time [7, 33, 46], and the old statistics thus become

outdated if we only use the counter to estimate 𝑞𝑖 and 𝑥𝑖 . Merlin addresses this by maintaining

query counters for older point queries while also using a sliding window to track the most recently

accessed queries and the current ratio of existing queries. The adaptive ratio 𝛽 ∈ [0, 1] further
enablesMerlin to balance between preserving historical statistics and rapidly adapting to changing

workload patterns, where a larger 𝛽 indicates quicker adaptation to the most recent workload.

Concurrency. Although we can use atomic variables for all the counters when there are multiple

querying threads, it is hard to maintain a thread-safe queue Ω𝑖 for each file, because adding a

lock can bring significant overhead. As such, we use a sampling-based approach for estimation.

We start by randomly picking a thread to record the statistics (other threads cannot update Ω𝑖

and 𝑞′𝑖 , 𝑥
′
𝑖 , 𝑥

Ω𝑖
). In each query, the picked thread has low probability (i.e., 1%) to transfer the write

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

Mnemosyne: Dynamic Workload-Aware BF Tuning via Accurate Statistics in LSM trees 190:17

compaction

File 5

𝒙𝟓
𝒏𝒆𝒘 = 𝜶𝟏 ⋅ 𝒙𝟏

𝒐𝒍𝒅 + 𝜶𝟐 ⋅ 𝒙𝟐
𝒐𝒍𝒅 + 𝜶𝟑 ⋅ 𝒙𝟑

𝒐𝒍𝒅

File 1

𝒒𝟏
𝒐𝒍𝒅, 𝒙𝟏

𝒐𝒍𝒅

𝛼1

File 2

𝒒𝟐
𝒐𝒍𝒅, 𝒙𝟐

𝒐𝒍𝒅

𝛼2

File 3
𝒒𝟑
𝒐𝒍𝒅, 𝒙𝟑

𝒐𝒍𝒅

𝛼3

𝒒𝟓
𝒏𝒆𝒘 = 𝜶𝟏 ⋅ 𝒙𝟏

𝒐𝒍𝒅 + 𝜶𝟐 ⋅ 𝒒𝟐
𝒐𝒍𝒅 + 𝜶𝟑 ⋅ 𝒒𝟑

𝒐𝒍𝒅

File 2 File 3

File 1

File 4 File 5 File 6

Level
𝑗

𝑗 + 1

𝑗

𝑗 + 1

Fig. 9. In our inheritance model, File 5 is generated when merging files 1, 2, and 3. 𝛼1, 𝛼2, 𝛼3 ∈ [0, 1] indicates
the fraction of files 1, 2, and 3 that are used when generating file 5.

permission to another randomly picked thread. Note that 𝐷𝑔𝑙𝑜𝑏𝑎𝑙
is implemented by an atomic

counter, and thus we allow each thread to update it without conflicts.

Complexity. Maintaining such a queue for each SST file does not bring much CPU overhead

during the point query, because evicting or inserting one element takes only 𝑂 (1) complexity. In

addition, before accessing each file, we may need to estimate 𝑧𝑖 = 𝑞𝑖 − 𝑥𝑖 to determine if we can

skip the BF (we discuss this in §5.2.3), but the estimation also only takes a constant time. In terms

of space complexity, we need a 64-length queue where each element (the point query sequence

number) is a 64-bit unsigned long variable, and we also have 𝑞′𝑖 , 𝑥
′
𝑖 , 𝑥

𝑤
𝑖
, and bpk𝑖 . Overall, we need

64 · (64 + 4)/8 = 544 extra bytes per file. For a 100GB database with file size of 32MB, the overall

memory footprint only increases by 1.7MB.

5.2.2 Statistics Inheritance during Compactions. When new files are generated in compactions, we

need an inheritance mechanism to estimate 𝑞𝑛𝑒𝑤
𝑖

of them to avoid cold start. To achieve this, the

estimated 𝑞𝑛𝑒𝑤
𝑖

, 𝑥𝑛𝑒𝑤
𝑖

are assigned to 𝑞′𝑖 , 𝑥
′
𝑖 , all new files start with an empty Ω𝑖 and 𝑥

Ω𝑖
. We observe

that only the non-empty queries are inherited during a compaction, according to the example

shown in Figure 8 (only the queries for keys in File 1, are added in level 𝑗 + 1). In fact, the number

of queries of newly generated files in compaction should mostly depend on 𝑞𝑖 in the deeper (i.e.,

level 𝑗 + 1) level and 𝑥𝑖 in the shallower level (i.e., level 𝑗). To improve the estimation accuracy, we

keep track of what proportion 𝛼𝑖 of input files is used to form the newly generated file, and we use

the weighted combination between {𝑥𝑜𝑙𝑑𝑖 } (typically one file) in shallower level and {𝑞𝑜𝑙𝑑𝑖 } (one or
more files) in deeper level to estimate 𝑞𝑛𝑒𝑤

𝑖∗ . Formally, when a compaction merges a set of files from

level 𝑗 and 𝑗 + 1, and writes a new file to level 𝑗 + 1, we have:

𝑞𝑛𝑒𝑤𝑖∗ =
∑︁
𝑖∈𝐼 𝑗

𝛼𝑖 · 𝑥𝑜𝑙𝑑𝑖 +
∑︁
𝑖∈𝐼 𝑗+1

𝛼𝑖 · 𝑞𝑜𝑙𝑑𝑖 , (10)

where 𝐼 𝑗 , 𝐼 𝑗+1 represent the set of file IDs in level 𝑗 and 𝑗 + 1 that get compacted. For example, in

Figure 9, 𝑥𝑜𝑙𝑑
1

is the number of existing queries in the shallower level 𝑗 , and we use 𝑥𝑜𝑙𝑑
1

instead

of 𝑞𝑜𝑙𝑑
1

to estimate 𝑞𝑛𝑒𝑤
5

to avoid the double counting issue. In addition to 𝑞𝑛𝑒𝑤
𝑖∗ , the number of

existing queries 𝑥𝑖 does not have the double counting issue because all the existing queries for the

file in level 𝑗 terminate at the same level, thus, they do not contaminate the 𝑥𝑖 of the deeper level.
Replacing the average model in the naïve strategy with our weighted model, we formally have:

𝑥𝑛𝑒𝑤𝑖∗ =
∑︁

𝑖∈𝐼 𝑗∪𝐼 𝑗+1
𝛼𝑖 · 𝑥𝑜𝑙𝑑𝑖 (11)

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

190:18 Zichen Zhu, Yanpeng Wei, Ju Hyoung Mun, and Manos Athanassoulis

As we do not count 𝑞𝑜𝑙𝑑𝑖 (𝑖 ∈ 𝐼 𝑗), we may underestimate 𝑞𝑛𝑒𝑤
𝑖∗ . To avoid this, we calculate

min𝑖∈𝐼 𝑗 {𝑞𝑜𝑙𝑑𝑖 /𝑛𝑖 }, which stands for the minimum average number of point queries per entry in

a compaction, and then obtain a lower bound for 𝑞𝑛𝑒𝑤
𝑖∗ by multiplying 𝑛𝑛𝑒𝑤

𝑖∗ with the minimum

average whenever a new file is being created.

5.2.3 Mnemosyne+: Integrating Merlin with Our Cost Model into Mnemosyne. We add the queue

and other counter variables into the metadata of the FileMetaData object to implement the sliding-

window-based estimation. During each compaction, we calculate 𝑞
𝑎𝑣𝑔

𝑖
, the average number of

queries per key for each input File 𝑖 , and we embed 𝑞
𝑎𝑣𝑔

𝑖
into the compaction iterator. When the

compaction iterator adds a key-value pair to a new File 𝑖∗ generated from the compaction, we

accumulate 𝑞
𝑎𝑣𝑔

𝑖
to 𝑞′

𝑖∗ . To determine bpk𝑖∗ , we estimate {𝑧𝑖 } for all the files during each flush and

compaction, and run Algorithm 1 to get 𝐶 from Eq. (9). After that, we use 𝐶 , 𝑛𝑖∗ , and 𝑧𝑖∗ = 𝑞
′
𝑖∗ − 𝑥 ′𝑖∗

to calculate bpk𝑖∗ (following line 20 in Algorithm 1). We apply the same bpk adjustment as we do

in Mnemosyne. Benefited by empty query estimation, Mnemosyne+ is able to skip BFs when most

point queries become non-empty, which can be achieved even without compactions. Currently,

Mnemosyne+ does not have a more advanced adaptive mechanism that adapts to changing skew.

However, as we break a large BF into several small BFs, future work can consider adaptively using

small BFs for read-only workloads.

5.3 Micro-benchmark for Estimation
We now evaluate the accuracy of the estimated number of zero-result point queries (𝑧𝑖) withMerlin.
Experimental Methodology. We first populate an LSM tree with 21𝑀 512B key-value pairs with

size ratio 4 and file size 16MB. To examine the accuracy of a tracking strategy, we copy the database

and execute a mixed workload with 31𝑀 point queries and 10𝑀 updates. For every 200𝐾 updates,

we copy the entire database with resetting all statistics counters, and re-execute all the point queries

issued so far. By doing this, we obtain the ground-truth access statistics for every 200𝐾 updates, and

then we can compare the estimated statistics with the ground truth. To quantify the accuracy, we

build two {𝑧𝑖 } vectors that record the number of estimated/ground-truth 𝑧𝑖 per file and compare

two vectors using both Euclidean distance and cosine similarity. We do not consider as a baseline

the tracking mechanism in ElasticBF [41] because it eliminates statistics after expiredTime and thus
the Euclidean distance could deviate further away compared to naïve tracking. We then report how

the distance and the similarity change as the database receives more updates for different query

workloads. We repeat the experiment three times, and we report the average. In the interest of

space, we only show our experimental results for 𝑍 = 0.5 (that is, half of the queries are zero-result

queries) when LSM trees are built in a bottom-up manner in Figure 10. Our findings for 𝑍 = 0, 1

or for top-down LSM tree construction are similar, and thus the figures are omitted. In Figure 10,

black lines stand for Euclidean distance (lower black lines mean higher accuracy) and red lines

stand for cosine similarity (higher red lines mean higher accuracy).

Observations. As shown in Figure 10a, Merlin has much smaller Euclidean distance from the

ground truth than the naïve strategy, and more than 2× larger cosine similarity of the naïve strategy

to the ground truth, supporting thatMerlin offers more accurate statistics estimation. Note
thatMerlin cannot be perfectly accurate because no strategy can get the exact 𝑧𝑖 for new files during

compactions with affordable CPU overhead. In mixed workloads, where flushes and compactions

occur alongside queries, statistics can deviate further from the ground truth. Both strategies show

increasing Euclidean distance as ingestion grows. We also observe oscillating patterns, particularly

in the naïve strategy. This is mainly because the gap between the naïve approach and the ground

truth stems from statistical differences at Level 0, where past queries are not counted. At checking

points, when statistics are evaluated, Level 0 files are just compacted to Level 1. The averaging

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

Mnemosyne: Dynamic Workload-Aware BF Tuning via Accurate Statistics in LSM trees 190:19

(a) Uniform, 𝑍 = 0.5 (b) Normal, 𝑍 = 0.5

Fig. 10. The Euclidean distance (black lines) represents the absolute error, where Merlin (dashed line) shows
significantly lower error compared to naïve tracking (solid line). Furthermore, when comparing cosine
similarity (red lines), Merlin also outperforms naïve tracking by exhibiting higher similarity.

0

3

6

9

12

15

18

T
p

u
t

(1
0K

op
s/

s)

RocksDB
Monkey (Bottom-Up)

Monkey (Top-Down)
Mnemosyne

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Operations (M)

0

2

4

6

8

10

12

A
ct

u
al

A
vg

B
p

k

(a) Uniform, 𝑍 = 1.0, bpk = 6.0

0

3

6

9

12

15

18

T
p

u
t

(1
0K

op
s/

s)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Operations (M)

0

2

4

6

8

10

12

A
ct

u
al

A
vg

B
p

k

(b) Uniform, 𝑍 = 1.0, bpk = 4.0

0

3

6

9

12

15

18

T
p

u
t

(1
0K

op
s/

s)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Operations (M)

0

2

4

6

8

10

A
ct

u
al

A
vg

B
p

k

(c) Uniform, 𝑍 = 1.0, bpk = 2.0

Fig. 11. Mnemosyne outperforms RocksDB and Monkey without violating the user-defined memory budget.

approach, which tends to overestimate the number of queries, reduces the impact of missing

counters. Consequently, a local maximum in Euclidean distance (or minimum in cosine similarity)

occurs when Level 0 has files, while a local minimum Euclidean distance (or maximum cosine

similarity) occurs when Level 0 is empty. A similar explanation applies to Merlin, as its largest
statistical discrepancies also occur in the shallower levels. However, the oscillation amplitude of

Merlin is significantly smaller compared to the naïve strategy, with the maximum similarity of

Merlin remaining close to 1. However, when it comes to skew queries, we observe a much drastic

oscillating pattern of Merlin in Figure 10b. This is becauseMerlin still has to average the access

frequency to every key during compactions, where the actual accesses may be centralized in a small

key range. Unless we consume more memory and build another global histogram to record the

access frequency, we cannot be more accurate just using the current extra meta data we maintain.

6 Evaluation
We implementMnemosyne on top of RocksDB (v8.9.1), and we integrate it withMerlin and our

workload-aware cost model to constructMnemosyne+. In this section, we first compareMnemosyne
with Monkey (Top-Down), Monkey (Bottom-Up), and RocksDB, i.e., the same bpk per file. We also

compare Mnemosyne+ and Mnemosyne with RocksDB in other experiments. Note that we cannot

run IdealMonkey for evolving LSM trees, as IdealMonkey requires the exact number of entries per

level, which cannot be obtained in end-to-end experiments. For offline benchmark on IdealMonkey,

readers can refer to Section 3.2.

Environment. We use an in-house server, configured with two Intel Xeon Gold 6230 2.1GHz

processors, each having 20 cores with virtualization enabled, and 375GB of main memory. By

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

190:20 Zichen Zhu, Yanpeng Wei, Ju Hyoung Mun, and Manos Athanassoulis

default, we use a 350GB Optane P4800X SSD with direct I/O enabled (reading a 4KB page takes

around 15 𝜇s) as our disk storage. We use gcc version 12.3.1 with optimization level -O2 enabled.

Table 3. Synthetic Workloads.

Type Description

I 40𝑀 inserts mixed with 40𝑀 empty queries, and 20𝑀 updates

II 21𝑀 inserts, followed by mixed 31𝑀 queries and 10𝑀 updates

Experimental Methodology. We experiment with two synthetic workloads produced by an

existing workload generator [71] and an industry-grade benchmark YCSB [14]. The synthetic

workloads in our experiments are classified in Table 3 where queries in these two workload types

can follow different distributions (i.e., uniform or normal distribution with 𝜎 = 3.0). In workload

type I, each key-value pair consists of 128 bytes (32 bytes for the key and 96 bytes for the value),

whereas in workload type II, each key-value pair comprises 512 bytes (128 bytes for the key and

384 bytes for the value). Consequently, the total workload sizes for workload types I and II are

4.8 GB and 10 GB, respectively. We fix the size ratio 𝑇 = 4 and the target SST file size as 16MB

in all the experiments. By default, we enable Write-Ahead-Log and use the default compaction

policy of RocksDB (i.e., tiering in Level 0 and leveling in all other levels) in all the experiments.

More detailed RocksDB configuration can be found in our code repository. In addition, we focus

on bpk ∈ [2, 7] in our experiments, which corresponds to a practical system setup under memory

pressure. To emulate the memory pressure, the block cache is set as around 5% of the workload

size accordingly. When testing Mnemosyne+ with synthetic workloads, we reduce the block cache

for Mnemosyne+ by the amount of extra memory occupied by our statistics, to ensure the overall

memory budget is approximately the same as other baselines. The extra memory is estimated

according to Section 5.2.1, where the total number of files is collected after running RocksDB with

the same workload. AsMnemosyne does not rely on extra statistics, we do not apply the above

block cache adjustment for Mnemosyne.
Mnemosyne Achieves Higher Throughput Without Excessive Bits-per-key Usage. We first

compareMnemosynewith RocksDB, Monkey (Top-Down), and Monkey (Bottom-Up) by measuring

throughput and the actual average bpk. The experiment uses workload type I, where approximately

5𝑀 inserts are ingested first, followed by another 5𝑀 inserts interleaved with other operations.

In this experiment, we vary the bpk between 2 and 6 and construct Mnemosyne and RocksDB

in a top-down manner. The results are shown in Figure 11 (similar results can be reproduced for

bottom-up construction). The red, black, purple, and blue lines representMnemosyne, RocksDB,
Monkey (Top-Down), and Monkey (Bottom-Up), respectively. Since the first 20𝑀 operations consist

of pure inserts, the initial throughput is high and gradually decreases as more point queries are

introduced. As shown in Figure 11, the write throughput of Mnemosyne only decreases by no
more than 2% during the first 20𝑀 inserts. When more point queries and updates are issued, the

performance of all systems drops, however, Mnemosyne begins to outperform all other baselines,

without excessive use of bpk. In Figure 11a, when bpk = 6, the actual bpk is underutilized for both

versions of Monkey, and their overall throughput is less than standard RocksDB (which uses the

same bpk for all files). In contrast, the average bpk inMnemosyne is closer to the intended value,

and it achieves higher throughput than all baselines. The trends observed in Figure 11a are also

visible for designs with smaller bpk in Figures 11b and 11c.

Additionally, we observe that bpk utilization in both versions of Monkey is inconsistent, deviating

from the user-defined bpk as we vary bpk. This inconsistency is due to the fact that Monkey requires

an estimation of the LSM tree shape to compute a static bpk list, but the actual LSM tree shape can

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

Mnemosyne: Dynamic Workload-Aware BF Tuning via Accurate Statistics in LSM trees 190:21

2 3 4 5 6 7
bits-per-key

0

2

4

6

8

R
ea

d
by

te
s

(×
10

0
G

B
)

RocksDB
Mnemosyne
Mnemosyne+

(a) UD (𝑍 = 0)

2 3 4 5 6 7
bits-per-key

0

2

4

6

8

R
ea

d
by

te
s

(×
10

0
G

B
)

(b) UD (𝑍 = 0.5)

2 3 4 5 6 7
bits-per-key

0

2

4

6

8

R
ea

d
by

te
s

(×
10

0
G

B
)

(c) UD (𝑍 = 1)

2 3 4 5 6 7
bits-per-key

0

2

4

6

8

R
ea

d
by

te
s

(×
10

0
G

B
)

(d) ND (𝑍 = 0)

2 3 4 5 6 7
bits-per-key

0

2

4

6

8

R
ea

d
by

te
s

(×
10

0
G

B
)

(e) ND (𝑍 = 0.5)

2 3 4 5 6 7
bits-per-key

0

2

4

6

8

R
ea

d
by

te
s

(×
10

0
G

B
)

(f) ND (𝑍 = 1)

2 3 4 5 6 7
bits-per-key

0

20

40

60

R
ea

d
la

te
n

cy
(µ

s/
op

)

RocksDB
Mnemosyne
Mnemosyne+

(g) UD (𝑍 = 0)

2 3 4 5 6 7
bits-per-key

0

20

40

60

R
ea

d
la

te
n

cy
(µ

s/
op

)

(h) UD (𝑍 = 0.5)

2 3 4 5 6 7
bits-per-key

0

20

40

60

R
ea

d
la

te
n

cy
(µ

s/
op

)

(i) UD (𝑍 = 1)

2 3 4 5 6 7
bits-per-key

0

15

30

45

R
ea

d
la

te
n

cy
(µ

s/
op

)

(j) ND (𝑍 = 0)

2 3 4 5 6 7
bits-per-key

0

15

30

45

R
ea

d
la

te
n

cy
(µ

s/
op

)

(k) ND (𝑍 = 0.5)

2 3 4 5 6 7
bits-per-key

0

15

30

45

R
ea

d
la

te
n

cy
(µ

s/
op

)

(l) ND (𝑍 = 1)

Fig. 12. Mnemosyne+ and Mnemosyne significantly reduce the read bytes and the query latency of Rocks-
DBfor small bpk where UD and ZD stand for uniform and Normal distribution.

vary significantly due to concurrent compactions and flushes. As a result, the actually allocated

bpk fluctuates due to inaccuracies in the LSM tree shape estimation. Furthermore, although we

set the overuse threshold at 20% in Mnemosyne, we do not see the actual bpk exceeding this

threshold when bpk is large, as shown in Figures 10a and 10b. However, when bpk = 2, as the

smallest non-zero bpk is 1, the largest actual bpk inMnemosyne approaches 2.5, contributing to
more noticeable oscillations in Figures 11c.

Mnemosyne+ have Higher Benefit for Small Bits-per-key.We test six workloads of type II

where we vary the query distribution and the fraction of empty queries (𝑍), and report the total

number of read bytes from disk and the average latency per query in Figure 12. We first observe that

Mnemosyne+ has higher benefit for small bpk (e.g., 2, 3 forMnemosyne and 2 ∼ 6 for RocksDB).

As the workload becomes more skewed (moving from Uniform distribution to Normal distribution),

the benefit of Mnemosyne+ remains for both 𝑍 = 0.5 and 𝑍 = 1.0, which is consistent with our

headroom experiments in §3.2. However, we do not observe significant performance improvement

for 𝑍 = 0. This is because, when all queries are non-empty queries, the query latency is dominated

by retrieving data blocks from the disk. As false positive results from BFs only trigger a small

portion of all the data block accesses for workloads with all non-empty queries, Mnemosyne+ thus
has very similar performance toMnemosyne. Nevertheless,Mnemosyne andMnemosyne+ still
outperform RocksDB for all tested bpk and all different workloads. Specifically, when bpk = 2.0,

Mnemosyne and Mnemosyne+ can achieve 1.42× and 1.61× speedup over RocksDB for skewed

empty query workload, as shown in Figure 12l.

Latency Benefits Remain With a Different SSD. To further study the impact of the underlying

storage, we re-run the all empty workloads with normal and uniform distributions using a slower

NVM SSD (Intel P4510 SFF), of which reading a 4KB page takes 36 𝜇s, 2.4× slower than our default

SSD. We compare the average query latency and the total number of read bytes in Figure 13.

Although we have a smaller I/O reduction for skewed workloads due to more cache hits, as

we already discussed, reading a data block now becomes 2.4× more expensive, and thus, we

observe a larger benefit of Mnemosyne+ overMnemosyne and RocksDB. Compared with RocksDB,

Mnemosyne+ achieves up to 1.9× and 2× speedup for uniform and normal distribution when

bpk = 2. Further, Mnemosyne+ dominates Mnemosyne when the query distribution becomes more

skewed. When the query workload follows a uniform distribution,Mnemosyne dominates RocksDB

with lower latency but it nearly overlaps withMnemosyne+, as shown in Figure 13a. For queries

that follow normal distribution, we observe higher benef it for the slower device. Specifically, when

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

190:22 Zichen Zhu, Yanpeng Wei, Ju Hyoung Mun, and Manos Athanassoulis

2 3 4 5 6 7
bits-per-key

0

50

100

150

R
ea

d
la

te
n

cy
(µ

s/
op

)

RocksDB
Mnemosyne
Mnemosyne+

(a) Uniform, 𝑍 = 1.0

2 3 4 5 6 7
bits-per-key

0

50

100

150

R
ea

d
la

te
n

cy
(µ

s/
op

)

(b) Normal, 𝑍 = 1.0

Fig. 13. Mnemosyne+ and Mnemosyne achieve higher latency benefits when using a slower SSD.

2 3 4 5 6 7
bits-per-key

0

50

100

150

R
ea

d
la

te
n

cy
(µ

s/
op

)

RocksDB
Mnemosyne
Mnemosyne+

2 3 4 5 6 7
bits-per-key

0

2

4

6

8

R
ea

d
by

te
s

(×
10

0
G

B
)

Fig. 14. Mnemosyne+ and Mnemosyne have a similar benefit over RocksDB when using Ribbon Filter.

bpk = 3,Mnemosyne+ has 10% lower query latency thanMnemosyne in a slower SSD while the

latency reduction becomes 5% for the faster one, as we compare Figure 13b with Figure 12l.

Mnemosyne andMnemosyne+ Can be Seamlessly Integrated with the Ribbon Filter and
still Outperform RocksDB. Although Mnemosyne and Mnemosyne+ were originally proposed

to distribute bpk for BFs, the assignment strategy can also be applied for alternative filters, such

as Ribbon Filters. Benefited by the well-decoupled code interface provided by RocksDB, we can

specify the filter implement policy as Ribbon Filter in RocksDB without changing anything else.

By default, the Ribbon Filter construction interface allows to specify BF-equivalent bpk, which
achieves the same false positive rate of BF. Using this interface, we can easily compareMnemosyne
andMnemosyne+ with RocksDB on top of Ribbon Filters. In this experiment, we still use the slower

SSD and test with the workload with uniform all empty queries. The experimental results are

summarized in Figure 14. While the observed patterns are consistent with Figures 13a and 12c,

we highlight that the exact query latency and the number of read bytes both decrease by 2% on

average for all tested approaches. From the above experimental results, we see thatMnemosyne
and Mnemosyne+ can co-exist with alternative filters and remain dominant over RocksDB.

Mnemosyne+ Outperforms Mnemosyne and RocksDB in Most YCSB Workloads. We

use YCSB [14] (specifically its C++ version [37]) to compare the performance of Mnemosyne+,
Mnemosyne, and RocksDB. For this experiment, the fieldlength is set to 9 bytes, resulting in a

key-value size of 24 + 10 · 9 = 114 bytes. With bpk = 2.0, direct I/O enabled, and a block cache of

200MB, we run each workload (except workload E, a range query workload) with operationcount
of 60𝑀 and recordcount of 30𝑀 . To evaluate multi-threaded performance, we respectively report

the throughputs of experiments using a single and four threads. The results are summarized in

Figure 15. We observe thatMnemosyne+ andMnemosyne exhibit a 2% lower loading (insertion)

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

Mnemosyne: Dynamic Workload-Aware BF Tuning via Accurate Statistics in LSM trees 190:23

Load A B C D F
Workload

0

5

10

T
p

u
t

(1
0K

op
s/

s)

(a) 1 thread

Load A B C D F
Workload

0

5

10

15

20

25

T
p

u
t

(1
0K

op
s/

s) RocksDB
Mnemosyne
Mnemosyne+

(b) 4 threads

Fig. 15. Mnemosyne+ has 2% lower throughput than RocksDB when loading YCSB, but Mnemosyne+ gains
up to 20% improvement in all other workloads.

throughput compared to RocksDB, primarily due to the dynamic bits-per-key reallocation during

each flush and compaction. However,Mnemosyne+ outperforms RocksDB in all other workloads

by up to 20% and shows superior performance over Mnemosyne in workloads A, B, and C. For

workloads D and F, there is no significant performance difference between Mnemosyne+ and
Mnemosyne. In workload F, where readmodifywrite operations exhibit skew, many queries are

also targeting newly updated entries, many queries also target recently updated entries, resulting

in comparable performance betweenMnemosyne+ andMnemosyne. Nevertheless, as shown in Fig-

ure 15b, both Mnemosyne+ and Mnemosyne achieve substantial performance gains over RocksDB,

with improvements of 15% and 21% for workloads D and F respectively.

Mnemosyne and Mnemosyne+ Dominates RocksDB When Scales up. We also use YCSB to

examine the scalability of Mnemosyne and Mnemosyne+. In this experiment, we choose workload

type b in YCSB and use 16 threads by default. We vary the database size from 10GB to 50GB (i.e.,

varying both operationcount and recordcount from 100𝑀 to 500𝑀). The block cache size is fixed

as 5% of the database size, ranging from 512MB to 2.5GB. We repeat the above experiments using

both bottom-up and top-down LSM tree construction for all three methods. In Figure 16, we observe

that in both bottom-up and top-down construction methods,Mnemosyne+ andMnemosyne remain

dominant over RocksDB. Moreover, while Mnemosyne+ achieves up to 5% higher throughput than

Mnemosyne, their performance is also closely comparable. This is due to the maximum overused

bpk limitation, where Mnemosyne+ assigns a small bpk to files that should be assigned with a

larger bpk. Although this limitation ensures the average bpk remains controlled, it can lead to

performance regression. However, as more entries are ingested and deeper level compactions are

triggered, the actual average bpk decreases, allowing larger bpk values to be assigned to new files.

7 Related Work
Memory Allocation in LSM trees. In addition to memory allocation within BFs, memory can

also be reallocated among BFs, fence pointers, and the write buffer [16, 36]. Further, memory can

be further reallocated between multiple LSM trees [43, 44] in LSM-based storage systems. In fact,

our sort-and-search algorithm (§4.1) to find the optimal bits-per-key per BF can be seamlessly

integrated into these techniques to achieve a better holistic memory tuning.

Membership-Testing Filters.Many membership-testing filters have been proposed in the past

literature including Blocked Bloom Filter [52], Cuckoo Filter [27], Quotient Filter [51], Morton

Filter [9], Vacuum Filter [62], Xor Filter [30], Ribbon Filter [23], and InfiniFilter [17]. To replace

Bloom Filters in LSM trees with any other fingerprint-based filter, we can replace the FPR definition

in Eq. (1) and the core idea of our sort-and-search algorithm still applies. In addition, Chucky [20]

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

190:24 Zichen Zhu, Yanpeng Wei, Ju Hyoung Mun, and Manos Athanassoulis

10G 20G 30G 40G 50G
Scalability

0

10

20

30

40

T
p

u
t

(1
0K

op
s/

s)

RocksDB
Mnemosyne
Mnemosyne+

(a) Bottom Up

10G 20G 30G 40G 50G
Scalability

0

10

20

30

40

T
p

u
t

(1
0K

op
s/

s)

RocksDB
Mnemosyne
Mnemosyne+

(b) Top Down

Fig. 16. Mnemosyne and Mnemosyne+ dominates RocksDB when the database grows in YCSB workload B.

and SlimDB [53] construct a global Cuckoo Filter for an LSM tree that does not work well under

memory pressure. Specifically, when the filter does not fit in cache, every compaction updates the

on-disk part of the filter. Furthermore, Partitioned Learned Bloom Filter (PLBF) [59] targets finding

how to partition the key space and how to allocate bpk per partition to find the optimal FPR with

constrained memory. Although PLBF has a more general optimization function than Mnemosyne,
our system aims optimize BFs in the context of LSM-trees instead of the key domain where the key

ranges of all the files are also pre-determined by ingestion, iterative compactions, and file sizes.

Skew-Aware Key-Value Stores. Existing skew-aware read optimizations for LSM trees primarily

focus on caching policies [61, 66, 68] or allocating extra memory to frequently queried keys [31, 69].

When memory is limited, BFs can be partitioned into smaller components — as in ElasticBF [41]

and ModularBF [49] — to avoid loading the entire filter into memory. To determine how many

of these smaller filters are needed to answer a query within an SST file, some systems maintain

per-file query statistics, enabling skew-aware optimization in LSM trees. All of these skew-aware

techniques are compatible withMnemosyne+. Additionally, there are skew-aware methods designed

for hash-table-based and purely in-memory key-value stores [38, 39, 42]; however, these are tailored

to their specific data structures and are not directly applicable to LSM trees.

8 Conclusion
In this paper, we propose a workload-aware Bloom Filter memory allocation strategy with accurate

statistics estimation in LSM trees. We build a more general cost model that considers the access

pattern per file and we further design Merlin, a novel and accurate query statistics tracking

mechanism. We implementMnemosyne+ by integratingMerlin andMnemosyne into RocksDB.
With limited memory,Mnemosyne+ achieves up to 2× improvement over RocksDB and 10% latency

reduction over Mnemosyne.

Acknowledgments
We thank the anonymous reviewers for their constructive feedback. This work is partially funded

by the National Science Foundation under Grants No. IIS-2144547 and CCF-2403012, a Facebook

Faculty Research Award, and a Meta Gift.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

Mnemosyne: Dynamic Workload-Aware BF Tuning via Accurate Statistics in LSM trees 190:25

References
[1] Sattam Alsubaiee, Yasser Altowim, Hotham Altwaijry, Alexander Behm, Vinayak R. Borkar, Yingyi Bu, Michael J.

Carey, Inci Cetindil, Madhusudan Cheelangi, Khurram Faraaz, Eugenia Gabrielova, Raman Grover, Zachary Heilbron,

Young-Seok Kim, Chen Li, Guangqiang Li, Ji Mahn Ok, Nicola Onose, Pouria Pirzadeh, Vassilis J. Tsotras, Rares Vernica,

Jian Wen, and Till Westmann. 2014. AsterixDB: A Scalable, Open Source BDMS. Proceedings of the VLDB Endowment 7,
14 (2014), 1905–1916. http://www.vldb.org/pvldb/vol7/p1905-alsubaiee.pdf

[2] Amazon. [n.d.]. EC2 Instance Types. https://aws.amazon.com/ec2/instance-types/.

[3] Apache. 2023. Accumulo. https://accumulo.apache.org/ (2023).
[4] Apache. 2023. Cassandra. http://cassandra.apache.org (2023).

[5] Apache. 2023. HBase. http://hbase.apache.org/ (2023).
[6] Raja Appuswamy, Renata Borovica-Gajic, Goetz Graefe, and Anastasia Ailamaki. 2017. The Five minute Rule Thirty

Years Later and its Impact on the Storage Hierarchy. In Proceedings of the International Workshop on Accelerating Data
Management Systems Using Modern Processor and Storage Architectures (ADMS).

[7] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. 2012. Workload Analysis of a Large-scale

Key-value Store. In Proceedings of the ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems. 53–64.

[8] Burton H Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable Errors. Commun. ACM 13, 7 (1970),

422–426. http://dl.acm.org/citation.cfm?id=362686.362692

[9] Alexander Breslow and Nuwan Jayasena. 2018. Morton Filters: Faster, Space-Efficient Cuckoo Filters via Biasing,

Compression, and Decoupled Logical Sparsity. Proceedings of the VLDB Endowment 11, 9 (2018), 1041–1055.
[10] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H C Du. 2020. Characterizing, Modeling, and Benchmarking

RocksDB Key-Value Workloads at Facebook. In Proceedings of the USENIX Conference on File and Storage Technologies
(FAST). 209–223.

[11] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra,

Andrew Fikes, and Robert E. Gruber. 2006. Bigtable: A Distributed Storage System for Structured Data. In Proceedings
of the USENIX Symposium on Operating Systems Design and Implementation (OSDI). 205–218. http://dl.acm.org/citation.

cfm?id=1267308.1267323

[12] CockroachDB. 2021. CockroachDB. https://github.com/cockroachdb/cockroach (2021).

[13] Alex Conway, Martin Farach-Colton, and Rob Johnson. 2023. SplinterDB and Maplets: Improving the Tradeoffs in

Key-Value Store Compaction Policy. Proceedings of the ACM on Management of Data (PACMMOD) 1, 1 (2023), 46:1–46:27.
https://doi.org/10.1145/3588726

[14] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Benchmarking cloud

serving systems with YCSB. In Proceedings of the ACM Symposium on Cloud Computing (SoCC). 143–154. http:

//doi.acm.org/10.1145/1807128.1807152

[15] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal Navigable Key-Value Store. In Proceedings
of the ACM SIGMOD International Conference on Management of Data. 79–94. http://doi.acm.org/10.1145/3035918.

3064054

[16] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2018. Optimal Bloom Filters and Adaptive Merging for LSM-Trees.

ACM Transactions on Database Systems (TODS) 43, 4 (2018), 16:1–16:48. https://doi.org/10.1145/3276980

[17] Niv Dayan, Ioana O Bercea, Pedro Reviriego, and Rasmus Pagh. 2023. InfiniFilter: Expanding Filters to Infinity and

Beyond. Proceedings of the ACM on Management of Data (PACMMOD) 1, 2 (2023), 140:1–140:27. https://doi.org/10.

1145/3589285

[18] Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better Space-Time Trade-Offs for LSM-Tree Based Key-Value Stores via

Adaptive Removal of Superfluous Merging. In Proceedings of the ACM SIGMOD International Conference on Management
of Data. 505–520. http://doi.acm.org/10.1145/3183713.3196927

[19] Niv Dayan and Stratos Idreos. 2019. The Log-Structured Merge-Bush & the Wacky Continuum. In Proceedings of the
ACM SIGMOD International Conference on Management of Data (SIGMOD). 449–466.

[20] Niv Dayan and Moshe Twitto. 2021. Chucky: A Succinct Cuckoo Filter for LSM-Tree. In Proceedings of the ACM
SIGMOD International Conference on Management of Data. 365–378. https://doi.org/10.1145/3448016.3457273

[21] Niv Dayan, Tamar Weiss, Shmuel Dashevsky, Michael Pan, Edward Bortnikov, and Moshe Twitto. 2022. Spooky:

Granulating LSM-Tree Compactions Correctly. Proceedings of the VLDB Endowment 15, 11 (2022), 3071–3084. https:

//www.vldb.org/pvldb/vol15/p3071-dayan.pdf

[22] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,

Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available

Key-value Store. ACM SIGOPS Operating Systems Review 41, 6 (2007), 205–220. http://dl.acm.org/citation.cfm?id=

1323293.1294281

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

http://www.vldb.org/pvldb/vol7/p1905-alsubaiee.pdf
https://aws.amazon.com/ec2/instance-types/
http://dl.acm.org/citation.cfm?id=362686.362692
http://dl.acm.org/citation.cfm?id=1267308.1267323
http://dl.acm.org/citation.cfm?id=1267308.1267323
https://doi.org/10.1145/3588726
http://doi.acm.org/10.1145/1807128.1807152
http://doi.acm.org/10.1145/1807128.1807152
http://doi.acm.org/10.1145/3035918.3064054
http://doi.acm.org/10.1145/3035918.3064054
https://doi.org/10.1145/3276980
https://doi.org/10.1145/3589285
https://doi.org/10.1145/3589285
http://doi.acm.org/10.1145/3183713.3196927
https://doi.org/10.1145/3448016.3457273
https://www.vldb.org/pvldb/vol15/p3071-dayan.pdf
https://www.vldb.org/pvldb/vol15/p3071-dayan.pdf
http://dl.acm.org/citation.cfm?id=1323293.1294281
http://dl.acm.org/citation.cfm?id=1323293.1294281

190:26 Zichen Zhu, Yanpeng Wei, Ju Hyoung Mun, and Manos Athanassoulis

[23] Peter C. Dillinger, Lorenz Hübschle-Schneider, Peter Sanders, and Stefan Walzer. 2022. Fast Succinct Retrieval and

Approximate Membership Using Ribbon. In Proceedings of the International Symposium on Experimental Algorithms
(SEA). 4:1–4:20. https://doi.org/10.4230/LIPIcs.SEA.2022.4

[24] Facebook. 2023. Level Compaction Dynamic Level Bytes in RocksDB. https://github.com/facebook/rocksdb/wiki/

Leveled-Compaction#option-level_compaction_dynamic_level_bytes-and-levels-target-size. (Accessed: 2025-01-16).

[25] Facebook. 2023. MyRocks. http://myrocks.io/ (2023).
[26] Facebook. 2024. RocksDB. https://github.com/facebook/rocksdb (2024).
[27] Bin Fan, David G Andersen, Michael Kaminsky, and Michael Mitzenmacher. 2014. Cuckoo Filter: Practically Better Than

Bloom. In Proceedings of the ACM International on Conference on emerging Networking Experiments and Technologies
(CoNEXT). 75–88. http://doi.acm.org/10.1145/2674005.2674994

[28] Guy Golan-Gueta, Edward Bortnikov, Eshcar Hillel, and Idit Keidar. 2015. Scaling Concurrent Log-Structured Data

Stores. In Proceedings of the ACM European Conference on Computer Systems (EuroSys). 32:1–32:14. http://doi.acm.org/

10.1145/2741948.2741973

[29] Google. 2021. LevelDB. https://github.com/google/leveldb/ (2021).
[30] Thomas Mueller Graf and Daniel Lemire. 2019. Xor Filters: Faster and Smaller Than Bloom and Cuckoo Filters. CoRR

abs/1912.0 (2019). http://arxiv.org/abs/1912.08258

[31] Xiangpeng Hao and Badrish Chandramouli. 2024. Bf-Tree: A Modern Read-Write-Optimized Concurrent Larger-Than-

Memory Range Index. Proceedings of the VLDB Endowment 17, 11 (2024), 3442–3455. https://www.vldb.org/pvldb/

vol17/p3442-hao.pdf

[32] Naohiro Hayashibara, Xavier Défago, Rami Yared, and Takuya Katayama. 2004. The 𝜙 Accrual Failure Detector. In

Proceedings of the International Symposium on Reliable Distributed Systems (SRDS). 66–78. https://doi.org/10.1109/

RELDIS.2004.1353004

[33] Marc Holze, Ali Haschimi, and Norbert Ritter. 2010. Towards workload-aware self-management: Predicting significant

workload shifts. Proceedings of the IEEE International Conference on Data Engineering (ICDE) (2010), 111–116.
[34] Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang, Dengcheng He, Tieying Zhang, Feifei Li, Sheng Wang, Wei

Cao, and Qiang Li. 2019. X-Engine: An Optimized Storage Engine for Large-scale E-commerce Transaction Processing.

In Proceedings of the ACM SIGMOD International Conference on Management of Data. 651–665.
[35] Andy Huynh, Harshal A. Chaudhari, Evimaria Terzi, and Manos Athanassoulis. 2024. Towards flexibility and robustness

of LSM trees. The VLDB Journal (2024), 1–24. https://doi.org/10.1007/s00778-023-00826-9

[36] Stratos Idreos, Niv Dayan, Wilson Qin, Mali Akmanalp, Sophie Hilgard, Andrew Ross, James Lennon, Varun Jain,

Harshita Gupta, David Li, and Zichen Zhu. 2019. Design Continuums and the Path Toward Self-Designing Key-Value

Stores that Know and Learn. In Proceedings of the Biennial Conference on Innovative Data Systems Research (CIDR).
https://www.cidrdb.org/cidr2019/papers/p143-idreos-cidr19.pdf

[37] Ren Jinglei, Kjellqvist Chris, and Deng Long. 2024. YCSB-C. (2024). https://github.com/basicthinker/YCSB-C

[38] Konstantinos Kanellis, Badrish Chandramouli, and Shivaram Venkataraman. 2023. F2: Designing a Key-Value Store for

Large Skewed Workloads. CoRR abs/2305.0 (2023). https://doi.org/10.48550/arXiv.2305.01516

[39] Hongbo Kang, Yiwei Zhao, Guy E Blelloch, Laxman Dhulipala, Yan Gu, Charles McGuffey, and Phillip B Gibbons.

2022. PIM-tree: A Skew-resistant Index for Processing-in-Memory. Proceedings of the VLDB Endowment 16, 4 (2022),
946–958. https://www.vldb.org/pvldb/vol16/p946-kang.pdf

[40] Hiwot Tadese Kassa, Jason Akers, Mrinmoy Ghosh, Zhichao Cao, Vaibhav Gogte, and Ronald G Dreslinski. 2021.

Improving Performance of Flash Based Key-Value Stores Using Storage Class Memory as a Volatile Memory Extension.

In Proceedings of the USENIX Annual Technical Conference (ATC). 821–837. https://www.usenix.org/conference/atc21/

presentation/kassa

[41] Yongkun Li, Chengjin Tian, Fan Guo, Cheng Li, and Yinlong Xu. 2019. ElasticBF: Elastic Bloom Filter with Hotness

Awareness for Boosting Read Performance in Large Key-Value Stores. In Proceedings of the USENIX Annual Technical
Conference (ATC). 739–752.

[42] Hyeontaek Lim, Dongsu Han, David G Andersen, and Michael Kaminsky. 2014. MICA: A Holistic Approach to Fast In-

Memory Key-Value Storage. In Proceedings of the USENIX Symposium on Networked Systems Design and Implementation
(NSDI). 429–444. https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim

[43] Chen Luo. 2020. Breaking Down Memory Walls in LSM-based Storage Systems. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 2817–2819. https://dl.acm.org/doi/10.1145/3318464.3384399

[44] Chen Luo and Michael J Carey. 2020. Breaking Down Memory Walls: Adaptive Memory Management in LSM-based

Storage Systems. Proceedings of the VLDB Endowment 14, 3 (2020), 241–254. http://www.vldb.org/pvldb/vol14/p241-

luo.pdf

[45] Chen Luo and Michael J. Carey. 2020. LSM-based Storage Techniques: A Survey. The VLDB Journal 29, 1 (2020),

393–418. https://link.springer.com/article/10.1007%2Fs00778-019-00555-y

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

https://doi.org/10.4230/LIPIcs.SEA.2022.4
https://github.com/facebook/rocksdb/wiki/Leveled-Compaction#option-level_compaction_dynamic_level_bytes-and-levels-target-size
https://github.com/facebook/rocksdb/wiki/Leveled-Compaction#option-level_compaction_dynamic_level_bytes-and-levels-target-size
http://doi.acm.org/10.1145/2674005.2674994
http://doi.acm.org/10.1145/2741948.2741973
http://doi.acm.org/10.1145/2741948.2741973
http://arxiv.org/abs/1912.08258
https://www.vldb.org/pvldb/vol17/p3442-hao.pdf
https://www.vldb.org/pvldb/vol17/p3442-hao.pdf
https://doi.org/10.1109/RELDIS.2004.1353004
https://doi.org/10.1109/RELDIS.2004.1353004
https://doi.org/10.1007/s00778-023-00826-9
https://www.cidrdb.org/cidr2019/papers/p143-idreos-cidr19.pdf
https://github.com/basicthinker/YCSB-C
https://doi.org/10.48550/arXiv.2305.01516
https://www.vldb.org/pvldb/vol16/p946-kang.pdf
https://www.usenix.org/conference/atc21/presentation/kassa
https://www.usenix.org/conference/atc21/presentation/kassa
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim
https://dl.acm.org/doi/10.1145/3318464.3384399
http://www.vldb.org/pvldb/vol14/p241-luo.pdf
http://www.vldb.org/pvldb/vol14/p241-luo.pdf
https://link.springer.com/article/10.1007%2Fs00778-019-00555-y

Mnemosyne: Dynamic Workload-Aware BF Tuning via Accurate Statistics in LSM trees 190:27

[46] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo, and Geoffrey J Gordon. 2018. Query-based

Workload Forecasting for Self-Driving Database Management Systems. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. 631–645.

[47] John C. McCallum. 2022. Historical Cost of Computer Memory and Storage. https://jcmit.net/mem2015.htm (2022).

[48] Gabriel Mersy, ZhuoWang, Stavros Sintos, and Sanjay Krishnan. 2024. Optimizing Collections of Bloom Filters within a

Space Budget. Proceedings of the VLDB Endowment 17, 11 (2024), 3551–3564. https://www.vldb.org/pvldb/vol17/p3551-

mersy.pdf

[49] Ju Hyoung Mun, Zichen Zhu, Aneesh Raman, and Manos Athanassoulis. 2022. LSM-Tree Under (Memory) Pressure.

In Proceedings of the International Workshop on Accelerating Data Management Systems Using Modern Processor and
Storage Architectures (ADMS). 23–35. https://adms-conf.org/2022-camera-ready/ADMS22_mun.pdf

[50] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. 1996. The log-structured merge-tree

(LSM-tree). Acta Informatica 33, 4 (1996), 351–385. http://dl.acm.org/citation.cfm?id=230823.230826

[51] Prashant Pandey, Alex Conway, Joe Durie, Michael A Bender, Martin Farach-Colton, and Rob Johnson. 2021. Vector

Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design. In Proceedings of the ACMSIGMOD International
Conference on Management of Data. 1386–1399. https://doi.org/10.1145/3448016.3452841

[52] Felix Putze, Peter Sanders, and Johannes Singler. 2009. Cache-, hash-, and space-efficient bloom filters. ACM Journal of
Experimental Algorithmics 14 (2009).

[53] Kai Ren, Qing Zheng, Joy Arulraj, and Garth Gibson. 2017. SlimDB: A Space-Efficient Key-Value Storage Engine For Semi-

Sorted Data. Proceedings of the VLDB Endowment 10, 13 (2017), 2037–2048. http://www.vldb.org/pvldb/vol10/p2037-

ren.pdf

[54] RocksDB. 2023. Expanding Picked Files Before Compaction. (2023). https://github.com/facebook/rocksdb/blob/8.9.fb/

db/compaction/compaction_picker.cc#L497

[55] Subhadeep Sarkar, Tarikul Islam Papon, Dimitris Staratzis, and Manos Athanassoulis. 2020. Lethe: A Tunable Delete-

Aware LSM Engine. In Proceedings of the ACM SIGMOD International Conference on Management of Data. 893–908.
[56] Subhadeep Sarkar, Dimitris Staratzis, Zichen Zhu, and Manos Athanassoulis. 2021. Constructing and Analyzing the

LSM Compaction Design Space. Proceedings of the VLDB Endowment 14, 11 (2021), 2216–2229. http://vldb.org/pvldb/

vol14/p2216-sarkar.pdf

[57] Russell Sears and Raghu Ramakrishnan. 2012. bLSM: AGeneral Purpose Log StructuredMerge Tree. In Proceedings of the
ACM SIGMOD International Conference on Management of Data. 217–228. http://doi.acm.org/10.1145/2213836.2213862

[58] Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz. 2012. Theory and Practice of Bloom Filters for

Distributed Systems. IEEE Communications Surveys & Tutorials 14, 1 (2012), 131–155. http://ieeexplore.ieee.org/xpl/

login.jsp?arnumber=5751342

[59] Kapil Vaidya, Eric Knorr, MichaelMitzenmacher, and TimKraska. 2021. Partitioned Learned Bloom Filters. In Proceedings
of the International Conference on Learning Representations (ICLR). https://openreview.net/forum?id=6BRLOfrMhW

[60] ChenWang, Jialin Qiao, Xiangdong Huang, Shaoxu Song, Haonan Hou, Tian Jiang, Lei Rui, JianminWang, and Jiaguang

Sun. 2023. Apache IoTDB: A Time Series Database for IoT Applications. Proceedings of the ACM on Management of
Data (PACMMOD) 1, 2 (2023), 195:1–195:27. https://doi.org/10.1145/3589775

[61] Kefei Wang and Feng Chen. 2023. Catalyst: Optimizing Cache Management for Large In-memory Key-value Systems.

Proceedings of the VLDB Endowment 16, 13 (2023), 4339–4352. https://www.vldb.org/pvldb/vol16/p4339-chen.pdf

[62] Minmei Wang, Mingxun Zhou, Shouqian Shi, and Chen Qian. 2019. Vacuum Filters: More Space-Efficient and

Faster Replacement for Bloom and Cuckoo Filters. Proceedings of the VLDB Endowment 13, 2 (2019), 197–210. http:

//www.vldb.org/pvldb/vol13/p197-wang.pdf

[63] RanWei, Zichen Zhu, Andrew Kryczka, Jay Zhuang, andManos Athanassoulis. 2024. Codebase for Benchmark, Analyze,

Optimize Partial Compaction in RocksDB. (2024). https://github.com/BU-DiSC/Benchmark-Analyze-Optimize-Partial-

Compaction-in-RocksDB-Codebase

[64] Ran Wei, Zichen Zhu, Andrew Kryczka, Jay Zhuang, and Manos Athanassoulis. 2025. Benchmarking, Analyzing,

and Optimizing WA of Partial Compaction in RocksDB. In Proceedings of the International Conference on Extending
Database Technology (EDBT). 425–437. https://doi.org/10.48786/edbt.2025.34

[65] WiredTiger. 2021. Source Code. https://github.com/wiredtiger/wiredtiger (2021).
[66] Fenggang Wu, Ming-Hong Yang, Baoquan Zhang, and David H C Du. 2020. AC-Key: Adaptive Caching for LSM-based

Key-Value Stores. In Proceedings of the USENIX Annual Technical Conference (ATC). 603–615. https://www.usenix.org/

conference/atc20/presentation/wu-fenggang

[67] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. 2015. LSM-trie: An LSM-tree-based Ultra-Large Key-Value Store for

Small Data Items. In Proceedings of the USENIX Annual Technical Conference (ATC). 71–82. https://www.usenix.org/

conference/atc15/technical-session/presentation/wu

[68] Lei Yang, Hong Wu, Tieying Zhang, Xuntao Cheng, Feifei Li, Lei Zou, Yujie Wang, Rongyao Chen, Jianying Wang, and

Gui Huang. 2020. Leaper: A Learned Prefetcher for Cache Invalidation in LSM-tree based Storage Engines. Proceedings

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

https://www.vldb.org/pvldb/vol17/p3551-mersy.pdf
https://www.vldb.org/pvldb/vol17/p3551-mersy.pdf
https://adms-conf.org/2022-camera-ready/ADMS22_mun.pdf
http://dl.acm.org/citation.cfm?id=230823.230826
https://doi.org/10.1145/3448016.3452841
http://www.vldb.org/pvldb/vol10/p2037-ren.pdf
http://www.vldb.org/pvldb/vol10/p2037-ren.pdf
https://github.com/facebook/rocksdb/blob/8.9.fb/db/compaction/compaction_picker.cc#L497
https://github.com/facebook/rocksdb/blob/8.9.fb/db/compaction/compaction_picker.cc#L497
http://vldb.org/pvldb/vol14/p2216-sarkar.pdf
http://vldb.org/pvldb/vol14/p2216-sarkar.pdf
http://doi.acm.org/10.1145/2213836.2213862
http://ieeexplore.ieee.org/xpl/login.jsp?arnumber=5751342
http://ieeexplore.ieee.org/xpl/login.jsp?arnumber=5751342
https://openreview.net/forum?id=6BRLOfrMhW
https://doi.org/10.1145/3589775
https://www.vldb.org/pvldb/vol16/p4339-chen.pdf
http://www.vldb.org/pvldb/vol13/p197-wang.pdf
http://www.vldb.org/pvldb/vol13/p197-wang.pdf
https://github.com/BU-DiSC/Benchmark-Analyze-Optimize-Partial-Compaction-in-RocksDB-Codebase
https://github.com/BU-DiSC/Benchmark-Analyze-Optimize-Partial-Compaction-in-RocksDB-Codebase
https://doi.org/10.48786/edbt.2025.34
https://www.usenix.org/conference/atc20/presentation/wu-fenggang
https://www.usenix.org/conference/atc20/presentation/wu-fenggang
https://www.usenix.org/conference/atc15/technical-session/presentation/wu
https://www.usenix.org/conference/atc15/technical-session/presentation/wu

190:28 Zichen Zhu, Yanpeng Wei, Ju Hyoung Mun, and Manos Athanassoulis

of the VLDB Endowment 13, 11 (2020), 1976–1989.
[69] Jianshun Zhang, Fang Wang, and Chao Dong. 2022. HaLSM: A Hotspot-aware LSM-tree based Key-Value Storage

Engine. In IEEE 40th International Conference on Computer Design, ICCD 2022, Olympic Valley, CA, USA, October 23-26,
2022. 179–186. https://doi.org/10.1109/ICCD56317.2022.00035

[70] Zichen Zhu, Ju Hyoung Mun, Aneesh Raman, and Manos Athanassoulis. 2021. Reducing Bloom Filter CPU Overhead

in LSM-Trees on Modern Storage Devices. In Proceedings of the International Workshop on Data Management on New
Hardware (DAMON). 1:1–1:10.

[71] Zichen Zhu, Arpita Saha, Manos Athanassoulis, and Subhadeep Sarkar. 2024. KVBench: A Key-Value Benchmarking

Suite. In International Workshop on Testing Database Systems (DBTest). 9–15. https://doi.org/10.1145/3662165.3662765

Received October 2024; revised January 2025; accepted February 2025

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 190. Publication date: June 2025.

https://doi.org/10.1109/ICCD56317.2022.00035
https://doi.org/10.1145/3662165.3662765

	Abstract
	1 Introduction
	2 Background
	3 Workload-Aware bpk Allocation for A Static LSM Tree
	3.1 Problem Definition
	3.2 Headroom for Improvement

	4 BF Reallocation in An Evolving Tree
	4.1 Ordered Property
	4.2 Mnemosyne

	5 Access Estimation in Mnemosyne+
	5.1 A Naïve Strategy
	5.2 Merlin
	5.3 Micro-benchmark for Estimation

	6 Evaluation
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

