
// Update d[i] if a new level is added to the tree
// T = size ratio; level_count = levels in tree
// 𝐷𝑡ℎ = delete persistence threshold
double x = 𝐷𝑡ℎ * T / pow ( T, level_count - 1 );
if ( new_level_added ( ) ) {

for ( int i = 0; i < level_count; ++i ) {
d[i] = x * pow ( T, i );
if ( i > 0 )

d[i] += d[i - 1];
}

}

Acheron: Persisting Tombstones in LSM Engines
Zichen Zhu    Subhadeep Sarkar    Manos Athanassoulis

https://disc-projects.bu.edu/acheron/

LSM-Trees are everywhere Out-of-place Deletes By Tombstones

FADE (FAst DElete): Enforcing a Finite Bound for Delete Persistence Latency

Acheron System Overview

Efficient ingestion

Log-Structured Merge
(LSM) Trees

Privacy Regulations

Performance 

෍

𝑖=1

𝐿−1

𝑑𝑖 = 𝐷𝑡ℎ

Evaluation

Write
Buffer

Bloom
Filters

Size Ratio (T)
T

Partial Compaction PoliciesNew Challenges for LSM-Trees

In
p

u
t 

P
a
n

el
C

o
n

tr
o
l 

P
a
n

el
E

m
u

la
ti

o
n

 P
a
n

el

Setting Environment

after every flush, perform 
the following check

(e.g., GDPR, CCPA, VCPDA)

Competitive reads

Good space utilization

Out-of-place 
Paradigm In an LSM tree, for every tombstone, there can be (A) one matching 

entry per level for leveling or (B) one matching entry per tier per level.

(e.g., WA, Compaction Latency)

T

T

Timely Persistent
Delete

27 - 42 47 - 56 60 - 86 87 - 99Level   i

10 - 30 31 - 40 43 - 50 50 - 89 90 - 105Level   i+1

MinOverlappingRatio: the file with key range 60-86 is selected to compact 
because it has the minimum overlapping ratio.

27 - 42 47 - 56 60 - 86 87 - 99Level   i

10 - 30 31 - 40 43 - 50 50 - 89 90 - 105Level   i+1

RoundRobin: the file with key range 26-42 is selected to compact because it is 
specified by a file cursor (will be updated to the next file after compaction).

Round-Robin Cursor

FADE MinOverlappingRatio RoundRobin

Flushed Data Flushed Data

Flushed Data Flushed Data


	Slide 1

