
// Update d[i] if a new level is added to the tree
// T = size ratio; level_count = levels in tree
// 𝐷𝑡ℎ = delete persistence threshold
double x = 𝐷𝑡ℎ * T / pow ( T, level_count - 1 );
if ( new_level_added ( ) ) {

for ( int i = 0; i < level_count; ++i ) {
d[i] = x * pow ( T, i );
if ( i > 0 )

d[i] += d[i - 1];
}

}
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FADE (FAst DElete): Enforcing a Finite Bound for Delete Persistence Latency
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Setting Environment

after every flush, perform 
the following check

(e.g., GDPR, CCPA, VCPDA)

Competitive reads

Good space utilization

Out-of-place 
Paradigm In an LSM tree, for every tombstone, there can be (A) one matching 

entry per level for leveling or (B) one matching entry per tier per level.

(e.g., WA, Compaction Latency)
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Delete

27 - 42 47 - 56 60 - 86 87 - 99Level   i

10 - 30 31 - 40 43 - 50 50 - 89 90 - 105Level   i+1

MinOverlappingRatio: the file with key range 60-86 is selected to compact 
because it has the minimum overlapping ratio.

27 - 42 47 - 56 60 - 86 87 - 99Level   i

10 - 30 31 - 40 43 - 50 50 - 89 90 - 105Level   i+1

RoundRobin: the file with key range 26-42 is selected to compact because it is 
specified by a file cursor (will be updated to the next file after compaction).

Round-Robin Cursor

FADE MinOverlappingRatio RoundRobin

Flushed Data Flushed Data

Flushed Data Flushed Data
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