
exp2_devices.pdf

CAVE: Concurrency-Aware
Graph Processing on SSDs

Tarikul	Islam	Papon				Taishan	Chen				Shuo	Zhang				Manos	Athanassoulis

SSD	Concurrency

Our	Goal

CAVE:	Performance	Evaluation

College of Arts & Sciences
Department of Computer Science

CAVE	Architecture

Parallelizing	Graph	Traversal	Operations

disc.bu.edu

Real-world graphs often have more than a billion nodes!

They are Designed for HDDs

Data partitioning Improve memory
& disk locality

Reduce random I/O

“Tape is Dead. Disk is Tape. Flash is Disk.” - Jim Gray Parallelism at different levels (channel, chip, die, plane block, page)

Controller
Chip 1 Chip 2 Chip N

Chip 1 Chip 2 Chip N

…
…

…

Channel 1…

Channel N

…Die N
Plane1 PlaneN

Block 1

Block N
…

…Die 1
PlaneN

Page 1

Page N

…

Plane1

Optimize for
storage-based

graph workloads

Focus on
traversal

operations

Utilize
optimal SSD
Concurrency

Maintain core
algorithm
properties

Global	lock

CB0

CB1

CB2

CB3

0

1

0

2Cached	
blocks	map

Threads

1

2

3

1

2

33

Cache	Pool Metadata

VB0

VB1

EB0

EB1

EB2
EB3

Hand

0

degree eb_addr
…
degree eb_addr

degree eb_addr degree eb_addr

e0 e1 e2 e3
…

e1020 e1021 e1022 e1023

EB4

EB5

4KB

8KB

4B 8B 12B

reserved	space
|EB||V| |B| |VB|

0File	on	SSD

1

2

Ref	counter

Block	Structure

Cache	block

(0.4%) (50%)

7x 5x 3.3x

CAVE outperforms GridGraph, Mosaic and GraphChi. Device gets saturated at optimal concurrency.

SOA Out-of-core Systems Rely on

Intra-Subgraph Parallelization Inter-Subgraph Parallelization

SOA	Out-of-core	Systems	for	Large	Graphs

Example: BFS Example: Psedo-DFS

Concurrency-Aware
Graph (V, E) Manager

CAVE

ü Compact data layout

ü Concurrent cache pool

for edge blocks

ü Designed to exploit

SSD concurrency

Dataset

