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Real-world graphs often have more than a billion nodes!

They are Designed for HDDs

Data partitioning Improve memory 
& disk locality

Reduce random I/O

“Tape is Dead. Disk is Tape. Flash is Disk.”    - Jim Gray Parallelism at different levels (channel, chip, die, plane block, page)
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CAVE outperforms GridGraph, Mosaic and GraphChi. Device gets saturated at optimal concurrency.

SOA Out-of-core Systems Rely on

Intra-Subgraph Parallelization Inter-Subgraph Parallelization

SOA	Out-of-core	Systems	for	Large	Graphs

Example: BFS Example: Psedo-DFS

Concurrency-Aware 
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CAVE

ü Compact data layout

ü Concurrent cache pool 

for edge blocks
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