
Mnemosyne: Dynamic Workload-Aware BF Tuning Via
Accurate Statistics in LSM-Trees

Zichen Zhu Yanpeng Wei Juhyoung Mun Manos Athanassoulis

LSM-Trees are everywhere Point Queries in LSM-Trees

Experiments

State-of-the-art: Monkey

Mnemosyne: Dynamic File-wise bpk Reallocation

Level 1

Level 2

Level 3

fence
pointers

Bloom
Filters

Key1 BlockId

Key2 BlockId

Key3 BlockId

Get(K)

Write Buffer

TP: true
positive

FP: false
positive

TN: true
negative

K

File-based LSM implementation always build the filter for each file.

…

Get()

Key3 BlockId

𝜖 ≈ 2−𝑏𝑝𝑘⋅ln 2

The uneven access pattern is not fully exploited.

min
{𝜖𝑗}

෍

𝑗=1

𝐿

𝜖𝑗

𝑠. 𝑡. ෍

𝑗=1

𝐿

𝑔 𝜖𝑗 , 𝑛𝑗 ≤ 𝑀,

Get()

𝜖1

𝜖2

𝜖3

Notation Meaning

𝜖𝑗 false positive rate in level 𝑗

𝐿 the number of levels

𝑛𝑗 the number of key-value pairs in level 𝑗

𝑀 the total memory budget in bits

𝑔(𝜖𝑗 , 𝑛𝑗) a space function that returns the filter size in bits

Notation Meaning

𝜖 false positive rate

𝑏𝑝𝑘 bits-per-key

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Th
ro

u
gh

p
u

t
(K

o
p

s/
s)

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

A
ct

u
al

 A
ve

ra
ge

B

it
s-

p
er

-k
ey

Operations (millions)

RocksDB Monkey (Bottom-up) Monkey (Top-down) Mnemosyne (Ours)

workload knowledge
Insert 𝑘1, 𝑣1
Insert 𝑘2, 𝑣2
Query 𝑘2
Insert 𝑘3, 𝑣3
Query 𝑘0
Insert 𝑘4, 𝑣4
Insert 𝑘5, 𝑣5
 ……

Workload
Monkey Bits-per-
key Reallocation

Assuming prior
(𝑏𝑝𝑘1, 𝑏𝑝𝑘2, … , 𝑏𝑝𝑘𝐿)

Static filter allocation per level
(assuming knowledge of the LSM-tree shape)

…

Bloom
Filters

A
ct

u
al

 A
vg

 B
p

k

Operations

RocksDB (Uniform)

Monkey (Top-Down)

Monkey (Bottom-Up)

Modeling: Each sorted run has different 𝛜𝐣

Cannot exploit skew query access

Workflow: Workload is known as a priori to compute bpk list

The average bits-per-key is either overutilized or underutilized compared to user-defined one

Write Buffer

Level 1

Level 2

Level 3

𝝐𝟏 𝝐𝟐 Level 0…
(files in L0 are

unsorted)

𝝐𝟑 𝝐𝟒

𝝐𝟓 𝝐𝟔 𝝐𝟕 𝝐𝟖

𝝐𝟗 𝝐𝟏𝟎 𝝐𝟏𝟏 𝝐𝟏𝟐 𝝐𝟏𝟑 𝝐𝟏𝟒

min
{𝜖𝑖}

෍

𝑖=1

𝐹′

𝑧𝑖 ⋅ 𝜖𝑖

𝑠. 𝑡. ෍

𝑖=1

𝐹′

𝑔 𝜖𝑖 , 𝑛𝑖
′ ≤ 𝑀′,

 𝜖𝑖 ≤ 1

Notation Meaning

𝑧𝑖 the number of empty point queries for file 𝑖

𝜖𝑖 false positive rate for file 𝑖

𝐹′ the current total number of files

𝑛𝑖
, the number of key-value pairs in file 𝑖

𝑀′ the current total memory budget in bits

𝑔(𝜖𝑖 , 𝑛𝑖) a space function that returns the filter size in bits

0 < 𝜖𝑗 ≤ 1

Compaction Compaction

Flush

Allowing different bpk
per file adapt to skew

Reallocate bpk during each
flush and compaction to

control average bpk usage

Access Stats Estimation During Compaction

Compaction

𝒙𝟓
𝒏𝒆𝒘 = 𝜶𝟏 ⋅ 𝒙𝟏

𝒐𝒍𝒅 + 𝜶𝟐 ⋅ 𝒙𝟐
𝒐𝒍𝒅 + 𝜶𝟑 ⋅ 𝒙𝟑

𝒐𝒍𝒅

𝒒𝟏
𝒐𝒍𝒅 , 𝒙𝟏

𝒐𝒍𝒅

𝛼1

𝒒𝟐
𝒐𝒍𝒅 , 𝒙𝟐

𝒐𝒍𝒅

𝛼2

𝒒𝟑
𝒐𝒍𝒅 , 𝒙𝟑

𝒐𝒍𝒅

𝛼3

𝒒𝟓
𝒏𝒆𝒘 = 𝜶𝟏 ⋅ 𝒙𝟏

𝒐𝒍𝒅 + 𝜶𝟐 ⋅ 𝒒𝟐
𝒐𝒍𝒅 + 𝜶𝟑 ⋅ 𝒒𝟑

𝒐𝒍𝒅

Level

𝑗 + 1

𝑗

𝑗 + 1

𝑗

File 1

File 2 File 3

File 4 File 5 File 6

File 1 File 2 File 3

File 5

𝒛𝟓
𝒏𝒆𝒘 = 𝒒𝟓

𝒏𝒆𝒘 − 𝒙𝟓
𝒏𝒆𝒘

Notation Meaning

𝑥𝑖 the number of non-empty
point queries for file 𝑖

𝑞𝑖 the number of all point
queries for file 𝑖

Mnemosyne only inherits existing queries 𝑥𝑖
from upper level in a compaction because

simply averaging 𝑧𝑖 results in overestimation

10% higher throughput

No bpk overutilization

Mnemosyne has higher throughput than RocksDB and Monkey without overusing bits-per-key

Mixed Workload:
512-byte entries/11M inserts (5M first)
5M updates/10M empty queries
Uniform distribution/6 bits-per-key

0

5

10

15

20

25

30

2 3 4 5 6 7

Q
u

er
y

La
te

nc
y

(µ
s)

User-defined bits-per-key

RocksDB Mnemosyne

Empty Query Ratio 𝑍 = 1.0

0

5

10

15

20

25

30

35

40

45

2 3 4 5 6 7

Q
u

er
y

La
te

nc
y

(µ
s)

User-defined bits-per-key

RocksDB Mnemosyne

Empty Query Ratio 𝑍 = 0.0

36% lower latency

10% lower latency

Mixed Workload:
512-byte entries/Preload 20M inserts

10M updates/31M queries/Normal distribution

Mnemosyne does not need to have prior knowledge and
achieves much lower query latency for skewed accesses.

More details can be
found in our full paper!

	Slide 1

