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LSM-Trees are everywhere Point Queries in LSM-Trees

Experiments

State-of-the-art: Monkey

Mnemosyne: Dynamic File-wise bpk Reallocation
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File-based LSM implementation always build the filter for each file.
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𝜖 ≈ 2−𝑏𝑝𝑘⋅ln 2 

The uneven access pattern is not fully exploited.
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Notation Meaning

𝜖𝑗 false positive rate in level 𝑗

𝐿 the number of levels

𝑛𝑗 the number of key-value pairs in level 𝑗

𝑀 the total memory budget in bits

𝑔(𝜖𝑗 , 𝑛𝑗) a space function that returns the filter size in bits

Notation Meaning

𝜖 false positive rate

𝑏𝑝𝑘 bits-per-key
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Operations (millions)

RocksDB Monkey (Bottom-up) Monkey (Top-down) Mnemosyne (Ours)

workload  knowledge
Insert       𝑘1, 𝑣1
Insert       𝑘2, 𝑣2
Query          𝑘2
Insert        𝑘3, 𝑣3
Query          𝑘0
Insert        𝑘4, 𝑣4
Insert        𝑘5, 𝑣5
          ……

Workload
Monkey Bits-per-
key Reallocation

Assuming prior
(𝑏𝑝𝑘1, 𝑏𝑝𝑘2, … , 𝑏𝑝𝑘𝐿)

Static filter allocation per level
(assuming knowledge of the LSM-tree shape)
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Operations

RocksDB (Uniform)

Monkey (Top-Down)

Monkey (Bottom-Up)

Modeling: Each sorted run has different 𝛜𝐣

Cannot exploit skew query access

Workflow: Workload is known as a priori to compute bpk list

The average bits-per-key is either overutilized or underutilized compared to user-defined one

Write Buffer
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𝝐𝟏 𝝐𝟐 Level 0…
(files in L0 are 

unsorted)
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𝝐𝟓 𝝐𝟔 𝝐𝟕 𝝐𝟖
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Notation Meaning

𝑧𝑖 the number of empty point queries for file 𝑖

𝜖𝑖 false positive rate for file 𝑖

𝐹′ the current total number of files

𝑛𝑖
, the number of key-value pairs in file 𝑖

𝑀′ the current total memory budget in bits

𝑔(𝜖𝑖 , 𝑛𝑖) a space function that returns the filter size in bits

0 < 𝜖𝑗 ≤ 1

Compaction Compaction

Flush

Allowing different bpk 
per file adapt to skew

Reallocate bpk during each 
flush and compaction to 

control average bpk usage

Access Stats Estimation During Compaction

Compaction
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Notation Meaning

𝑥𝑖 the number of non-empty 
point queries for file 𝑖

𝑞𝑖 the number of all point 
queries for file 𝑖

Mnemosyne only inherits existing queries 𝑥𝑖  
from upper level in a compaction because 

simply averaging 𝑧𝑖  results in overestimation

10% higher throughput

No bpk overutilization

Mnemosyne has higher throughput than RocksDB and Monkey without overusing bits-per-key

Mixed Workload:
512-byte entries/11M inserts (5M first)
5M updates/10M empty queries
Uniform distribution/6 bits-per-key
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User-defined bits-per-key

RocksDB Mnemosyne

Empty Query Ratio 𝑍 = 1.0
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36% lower latency

10% lower latency

Mixed Workload:
512-byte entries/Preload 20M inserts

10M updates/31M queries/Normal distribution

Mnemosyne does not need to have prior knowledge and 
achieves much lower query latency for skewed accesses.

More details can be 
found in our full paper! 
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