BOSTON UNIVERSITY

ENDURE: A Robust Tuning Paradigm for LSM Trees Under Workload Uncertainty

Andy Huynh, Harshal A. Chaudhari, Evimaria Terzi, Manos Athanassoulis

Age of LSM trees

The LSM Tuning Problem

DRAM

Tree

Disk

Flexibility for applications

Size Ratio **Buffer Size** Compaction High impact tuning knobs

Cost is sum of expected I/Os per query type, weight by frequency

Both problems are finding the design Φ that minimizes *C*. **Nominal** bases decision on w, while **Robust** considers all workloads in U_w^{ρ}

w: Workload (z_0, z_1, q, w)

 Φ : LSM Tree Design $(m_{buff}, m_{filter}, T, \pi)$ *C* : Cost (I/O)

> $\Phi^* = \operatorname{argmin}_{\Phi} \mathcal{C}(\boldsymbol{w}, \Phi)$ Nominal

 $U_{\rm w}^{\rho}$: Uncertainty neighborhood of workloads ρ : Size of this neighborhood

> $\Phi^* = \operatorname{argmin}_{\Phi} C(\widehat{w}, \Phi)$ $\widehat{\boldsymbol{w}} \in U_w^{\rho}$ s.t.,

The LSM Tuning Problem

Nominal tuning may lead to suboptimal tunings if observed workloads and expected workloads are **far**

Robust tuning solution minimizes **highest** value among **any** workload in our uncertainty neighborhood

Uncertainty neighborhood

ENDURE: Robust Tuning

Workload Characteristic

System Information

Robust

Expected performance

Page Size

RocksDB Configuration

Memory Budget

defines which workloads to consider for robust tuning

ENDURE implemented in Python **alongside RocksDB**

Users provide workload characteristics: expected workload and uncertainty

Selected Results (More can be found in our full paper)

Selected Results

6 sessions with 5 observation periods per session **Observation period:** 200K queries Overall **6million** queries

Writes are unique Range queries are short range queries (1-2 pages)

Small subset of results! Take a look at our paper for a more detailed analysis

