
Reactive and Proactive Sharing
Across Concurrent Analytical Queries

Iraklis Psaroudakis Manos Athanassoulis Matthaios Olma Anastasia Ailamaki
École Polytechnique Fédérale de Lausanne

{iraklis.psaroudakis, manos.athanassoulis, matthaios.olma, anastasia.ailamaki}@epfl.ch

ABSTRACT
Today an ever increasing amount of data is collected and analyzed
by researchers, businesses, and scientists in data warehouses (DW).
In addition to the data size, the number of users and applications
querying data grows exponentially. The increasing concurrency is
itself a challenge in query execution, but also introduces an oppor-
tunity favoring synergy between concurrent queries. Traditional
execution engines of DW follows a query-centric approach, where
each query is optimized and executed independently. On the other
hand, workloads with increased concurrency have several queries
with common parts of data and work, creating the opportunity for
sharing among concurrent queries. Sharing can be reactive to the
inherently existing sharing opportunities, or proactive by redesign-
ing query operators to maximize the sharing opportunities.

This demonstration showcases the impact of proactive and re-
active sharing by comparing and integrating representative state-
of-the-art techniques: Simultaneous Pipelining (SP), for reactive
sharing, which shares intermediate results of common sub-plans,
and Global Query Plans (GQP) for proactive sharing, which build
and evaluate a single query plan with shared operators. We visually
demonstrate, in an interactive interface, the behavior of both shar-
ing approaches on top of a state-of-the-art storage engine using the
original prototypes. We show that pull-based sharing for SP elim-
inates the serialization point imposed by the original push-based
approach. Then, we compare, through a sensitivity analysis, the
performance of SP and GQP. Finally, we show that SP can improve
the performance of GQP for a query mix with common sub-plans.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query processing

General Terms
Design, Experimentation, Performance

Keywords
Data Warehouses, Query Processing, Data Sharing, Work Sharing,
Simultaneous Pipelining, Shared Pages List, Global Query Plans,
Reactive Sharing, Proactive Sharing, QPipe, CJOIN

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2594514.

1. INTRODUCTION
Today, in the era of big data, organizations are called to pro-

cess an ever-increasing mass of data to deduce valuable informa-
tion. To meet their needs, organizations employ data warehouses
(DW), which are specialized databases for serving online analytical
processing (OLAP) workloads. OLAP queries are mostly ad-hoc,
long-running, and scan-heavy queries.

The execution engine of a traditional DW typically evaluates the
mix of concurrent analytical queries using a query-centric model:
each query is optimized and evaluated independently of the other
queries in the system. This approach misses opportunities of shar-
ing common parts of data and work across the query mix. Taking
advantage of these opportunities can further enhance the perfor-
mance of highly-concurrent DW, by reducing contention for I/O,
CPU, and RAM resources, and freeing up resources.

Our study shows the performance benefits from state-of-the-art
sharing techniques. We explore how and when these techniques
should be employed, we make a head-to-head comparison and we
combine them. The first study and implementation was presented
at VLDB 2013 [8]. In this work, we demonstrate the sharing tech-
niques in a unified system, and provide to the audience the opportu-
nity to visually assess the effect of the sharing techniques on perfor-
mance, and trigger various workload parameters for an interactive
sensitivity analysis.
Overview of the sharing techniques. The demonstration evalu-
ates two fundamental strategies for sharing: (a) reactive sharing
which acts using the sharing opportunities that inherently exist in
the workload (e.g. common sub-plans) and (b) proactive sharing
which maximizes work and data sharing (e.g, by analyzing the
workload and building synergistically shared operators in a global
query plan). Throughout our experimentation and analysis we use
two representative state-of-the-art techniques. For reactive sharing
we use Simultaneous Pipelining (SP) by integrating its original re-
search prototype QPipe [5], and for proactive sharing we use using
Global Query Plans (GQP) with shared operators, by integrating
the original research prototype CJOIN [2]. Both techniques use
shared scans. In the remainder of the paper we refer to the sharing
strategies using the respective techniques: SP for reactive sharing
and GQP for proactive sharing.

SP identifies common sub-plans among concurrent queries at
run-time, evaluates only one and pipelines the results to the rest
simultaneously. Figure 1a shows an example of two queries that
share a common sub-plan below the join operator (along with any
selection and join predicates), but have a different aggregation op-
erator above the join. SP evaluates only one of them, and pipelines
the results to the other aggregation operator.

Though SP is limited to common sub-plans with identical pred-
icates, a shared operator in a GQP can handle multiple concurrent

889

Α

Q1

⋈

Σ

Β Α

Q2

⋈

Σ

Β ca
n

ce
l

(a) (b)

Re-use

⋈A.c1 11 01B.c1

A.c1 01

+ bitwise AND

σ σΑ Β

Q1

Q2

bitmap

Figure 1: (a) SP on two queries having a common sub-plan be-
low a join. (b) Example of shared scans and a shared join op-
erator in a GQP. The GQP evaluates two queries with the same
join predicate but possibly different selection predicates.

queries with similar plans but potentially different predicates. The
basic technique for enabling them is sharing tuples among queries
and correlating each tuple to the queries, e.g. by annotating tuples
with a bitmap, the bits of which signify whether the tuple is rel-
evant to one of the queries. Figure 1b gives an example of two
queries that join two relations using the same join predicate, but
have different selection predicates for both relations. The shared
scans attach a bitmap to each scanned tuple, calculated after eval-
uating the selection predicates of the queries, and the shared join
operator performs a bitwise AND operation between the bitmaps
of the joined tuples to preserve their correlation to the queries.
Improving SP. In order to overcome the negative effects of ag-
gressive sharing with SP [6] we study the mechanism of copying
common results among operators. We show that the push-based
model for SP creates a serialization point during sharing, and we
address this bottleneck by introducing the novel Shared Pages List
(SPL) data structure which implements a pull-based model of SP
[8], allowing a single producer and multiple consumers accessing
the data. The demonstration allows the audience to verify the se-
rialization point of the push-based model, and dynamically trigger
the usage of SPL to evaluate its impact (see Section 4.3).
Comparing SP vs. GQP. We integrate the original research pro-
totypes that introduced SP and GQP into one system: we inte-
grate the CJOIN operator as an additional stage of the QPipe ex-
ecution engine (see Section 3) on top of the Shore-MT storage
manager [7]. Thus, we can dynamically decide whether to eval-
uate multiple concurrent queries with the standard query-centric
operators of QPipe (with or without SP) or the shared operators
of the GQP of CJOIN. The demonstration allows the audience to
dynamically choose which technique to use when evaluating an an-
alytical workload, under a combination of adjustable parameters,
and visually assess the differences between the two sharing tech-
niques (see Section 4.4). The live comparison gives the audience
the opportunity to validate the rules of thumb presented in the ex-
perimental comparison of SP vs. GQP [8]. Shared operators en-
hance performance for workloads with high concurrency, but their
high book-keeping overhead in comparison with query-centric op-
erators, overwhelms performance for workloads with low concur-
rency. On the other hand, SP enhanced by SPL is beneficial for
both low and high concurrency.
Combining SP and GQP. SP and GQP are orthogonal sharing
techniques that can be combined to get the best of the two worlds.
SP can be applied on the shared operators of a GQP (e.g., aggrega-
tions), further improving the performance of a GQP in a query mix
with common sub-plans, as it avoids reevaluating them through the
GQP, and instead it reuses the common intermediate results. The
demonstration showcases an analytical workload where the audi-
ence can dynamically trigger the number of common sub-plans in
the mix and assess the effect of SP on GQP.

Visual experience. This demonstration includes a graphical inter-
face that allows the audience to change system and workload char-
acteristics in order to assess the effect of the different techniques
of sharing on the execution performance of concurrent analytical
queries. Workload parameters, such as the number of concurrent
queries or their similarity, affect performance, and the audience can
explore different combinations of parameters. The output is shown
with a set of dynamically generated graphs, accompanied by sys-
tem measurements (e.g. CPU times).

2. RELATED WORK
Sharing in the I/O layer. By sharing data, the accesses of queries
in the I/O layer are coordinated. The typical DW uses buffer pool
management techniques and eviction policies. More recently, shared
scans [8] have been proposed to better co-ordinate multiple queries
that scan the same relation, reducing buffer pool contention and
avoiding unnecessary I/O. Both QPipe and CJOIN use a simple
form of shared scans, circular scans [5].
Sharing in the execution engine. By sharing work among queries,
we refer to techniques that avoid redundant computations inside
the execution engine. A typical DW uses query caching, mate-
rialized views, or Multi-Query Optimization (MQO) techniques.
These techniques, however, do not exploit sharing opportunities
among in-progress queries. Both SP and GQP provide deeper and
more dynamic forms of sharing at run-time. The main aim of our
demonstration is to showcase these sharing techniques.

For both techniques, we use their original research prototype
systems: QPipe for SP, and the CJOIN operator for GQP. CJOIN
is restricted to the evaluation of star queries, with a GQP com-
posed of shared scans and shared hash-joins. After CJOIN, more
recent research prototypes (DataPath [1] and SharedDB [4]) have
advanced GQP to more general schemas and operators. Without
loss of generality, we restrict our evaluation of GQP with CJOIN to
star schemas, which are very common in relational DW, and corre-
late our observations to more general schemas and operators [8].

3. DEMONSTRATED SYSTEMS
In this section, we give quick overview of the original systems

that implemented SP and GQP: the QPipe execution engine and
the CJOIN operator respectively. We also explain how we improve
QPipe with a pull-based model of SP, and how we integrate the
CJOIN operator into the QPipe execution engine to take advantage
of both sharing techniques.
The QPipe execution engine. In QPipe, each relational operator is
encapsulated into a self-contained module called a stage, which has
a queue for work requests and employs a local thread pool for pro-
cessing them. A query plan is converted to a series of interdepen-
dent packets, dispatched to the relevant stages. Data flow between
packets is implemented through FIFO buffers and page-based ex-
change, following a push-only model with pipelined execution (as
shown in [3]). SP is implemented at execution time at any stage,
when an incoming packet has a common sub-plan with an ongoing
packet, by copying the results of the ongoing packet to the FIFO
buffer of the incoming packet. SP may not be activated for certain
cases of relational operators and query inter-arrival delays [5].
Shared Pages List. The push-based model using intermediate FIFO
buffers involves a serialization point during SP when the single pro-
ducer forwards the common intermediate results to multiple con-
sumers. This bottleneck makes SP beneficial only for cases of
high concurrency, where sharing proves better than not sharing by
avoiding contention for resources [6]. A pull-based model for SP

890

Preprocessor Distributor

F D1 Shore-MT
QPipe packets

...

...

Shared hash-joins

Q1: CJOIN
F ⋈ D1 ⋈ D2

Q2: CJOIN
F ⋈ D1 ⋈ D2

CJOIN stage
SPL

Figure 2: Integration of CJOIN into QPipe for the evaluation
of star queries joining the fact table with dimension tables.

virtually eliminates this serialization point, by sharing intermediate
results instead of forwarding them [8]. To achieve this, an inter-
mediate data structure, the Shared Pages List (SPL), replaces FIFO
buffers, allowing a single producer and multiple consumers.
The CJOIN operator. CJOIN evaluates the joins of concurrent
star queries, using a GQP with shared scans, shared selections and
shared hash-joins. Due to the semantics of star schemas, the di-
rected acyclic graph of the GQP takes the form of a chain [8].
CJOIN exploits this form and evaluates a single pipeline: the pre-
processor uses a circular scan of the fact table, and flows fact tu-
ples through the pipeline. The shared hash-joins in-between join
the fact tuples with the corresponding dimension tuples and addi-
tionally perform a bitwise AND between their bitmaps. At the end
of the pipeline, the distributor examines the bitmaps of the joined
tuples and forwards them to the relevant queries.
Integration. We integrate the CJOIN operator into the QPipe exe-
cution engine as a new stage, using Shore-MT [7] as the underlying
storage manager. CJOIN supports only shared hash-joins, hence,
any subsequent operators are query-centric. Having CJOIN inte-
grated into QPipe, we can enable SP for the CJOIN stage, combin-
ing the two sharing techniques. Figure 2 shows the new stage that
encapsulates the CJOIN pipeline, and how two star queries, having
a common sub-plan under their CJOIN packets, share the interme-
diate results with a SPL. Only Q1 is evaluated by CJOIN, saving
admission costs and unnecessary book-keeping costs for Q2.

4. DEMONSTRATION WALKTHROUGH
The demonstration will be executed using a poster, and an in-

teractive graphical application. The application will showcase a
number of predefined scenarios, that are executed on the spot, to
demonstrate the advantages of the sharing techniques, their various
aspects and trade-offs. Apart from the predefined scenarios, the
audience will be able to modify the parameters to create custom
scenarios, and get an insight on the effect of the parameters on the
overall performance of analytical workloads.

4.1 Poster
We use a poster to introduce the audience to the traditional query-

centric model, SP, and GQP. We explain how the query-centric
model misses sharing opportunities across concurrent analytical
queries, and how SP and GQP can take advantage of sharing op-
portunities. We also introduce the user to the general design of the
original prototype systems QPipe and CJOIN, how we integrate
the CJOIN operator as an additional stage in QPipe, and how the
SPL data structure supports a pull-based version of SP. Finally, we
include key plots of the predefined scenarios (detailed in the fol-
lowing sections) and explain their implications.

4.2 System setup
The graphical web interface runs on a dedicated virtual machine

in our lab and can be accessed by a laptop at the conference, where

(a) Scenario I (b) Scenario II-IV

Figure 3: Execution options

the audience can define the parameters for the scenarios, and vi-
sualize the results. The experiments run remotely on multiple ma-
chines hosting multiple instance of our database server at EPFL.
We use three machines, in parallel, to measure the response time
or throughput of the different configurations required for the fol-
lowing scenarios. Each machine has two 8-core Intel Xeon E5-
2660 processors (with hyper-threading enabled), 128GB RAM, and
seven 300GB 15kRPM SAS 3.5” hard disks. The O/S is a 64-bit
SMP Linux (Red Hat), with a 2.6.32 kernel.

4.3 Scenario I: Push-based vs. Pull-based SP
The aim of this scenario is to show the advantages of a pull-

based model of SP, using our new SPL data structure, versus the
original push-based model of SP. Sharing intermediate results with
push-based SP proves to be beneficial when executing concurrent
queries, only when the system does not have available parallelism
to execute each query independently because the overhead to copy
the results dominates the response time. Pull-based sharing with
SPL, however, minimizes the copying overhead and is beneficial
even when the system has available parallelism. The audience
can see this behavior by plotting the response time of concurrent
queries and binding the database server process to a minimum of 1
and a maximum of 32 cores. In addition, the interactive interface
allows to experiment with different database sizes, with memory-
resident and disk-resident databases, with different number of con-
current queries, and with different buffer-pool sizes for the case of
the disk-resident database.

Figure 4: GUI for Scenario I

891

The default scenario demonstrates the performance of the two
models using an experiment which evaluates SP for the table scan
stage with a memory-resident database [8]. Specifically, we use
identical TPC-H Q1 instances, submitted at the same time. Fig-
ure 3(a) shows an example of the GUI for the default scenario
where the user can alter the parameters of the experiment, and Fig-
ure 4 shows how the experiment execution will be monitored by
showing for each level of concurrency (i) the response time of the
workload, (ii) the CPU utilization, and (iii) the I/O (memory bus)
throughput for the disk-resident (memory-resident) dataset.

The serialization point of the push-based SP (FIFO) increases the
response time with additional concurrent queries, while CPU load
does not increase significantly. The pull-based SP (SPL) overcomes
the serialization point, and is able to fully use CPU resources. The
query-centric execution has marginally lower response time than
the pull-based approach when the available parallelism is lower
than the concurrency of the workload, but pull-based sharing im-
proves performance for higher concurrency.

4.4 Scenarios II-IV: SP vs GQP
The rest of the scenarios explore the trade-offs of the two shar-

ing techniques, SP and GQP. The workload now consists of queries
issued concurrently by a number of clients following instantiations
of a Star Schema Benchmark (SSB) template. Each client submits
queries iteratively. We present performance in terms of through-
put. Figure 3(b) shows the GUI that the user can alter the different
starting parameters building different execution scenarios. Figure
5 shows the output of a sample execution for these scenarios.

The dark blue line shows the performance of the QPipe execution
engine and query-centric relational operators. On the configuration
pane, the user can enable SP for the different stages of QPipe. With-
out SP for any stage, the QPipe engine is similar to a query-centric
execution engine with shared scans. The light blue line shows the
performance of the QPipe execution engine with the CJOIN oper-
ator evaluating the hash-joins of all concurrent star queries in the
workload. By enabling SP for the CJOIN stage, the user can assess
the performance of the combination of the two sharing techniques.

The rest of the configuration parameters allow the audience to
differentiate from the default scenarios II-IV, and create custom
ones. The x-axis can be selected among the number of concurrent
clients, the selectivity of the queries, and the number of possible
different plans for the selected query template (affecting the num-
ber of common sub-plans in the query mix for SP). The user can
also modify which SSB query template to be used, the scale factor
of the dataset, whether the database is memory-resident or disk-
resident, whether clients should co-ordinate to submit their queries
in batches (ensures maximal SP sharing and decreases admission
costs for GQP), and the throughput measurement duration for each
point of the selected x-axis.
Scenario II: Impact of concurrency. This scenario fixes selec-
tivity to 1%, randomizes the template’s parameters to decrease the
efficiency of SP, and modifies the number of concurrent clients (x-
axis). The database is disk-resident, and SP is enabled for all stages
for both lines. Here we show that shared operators in a GQP are
more efficient in evaluating a high number of concurrent queries in
comparison to standard query-centric operators.
Scenario III: Impact of selectivity. This scenario randomizes the
template’s parameters to decrease the efficiency of SP, fixes the
number of concurrent clients to a low concurrency value, and mod-
ifies the parameters’ selectivity (x-axis). The database is memory-
resident, and SP is enabled for all stages for both lines. The aim of
this scenario is to show that shared operators in a GQP have a high
bookkeeping overhead in comparison to query-centric operators.

Figure 5: GUI for Scenarios II-IV

Scenario IV: Impact of similarity. This scenario fixes the number
of concurrent clients to a high concurrency value, fixes the selectiv-
ity, and modifies the number of possible different plans (x-axis) to
restrict their randomness. Fewer available plans translates to more
common sub-plans for the same number of clients, while a higher
number of available plans translates to fewer common sub-plans
and fewer SP opportunities. The database is disk-resident, and SP
is enabled for all stages for both lines. Batching is used to maxi-
mize SP opportunities. The aim of this scenario is to show that we
can combine SP with a GQP to improve the performance of shared
operators for a query mix with common sub-plans. The measure-
ments with regards to the number of SP opportunities exploited for
each stage comprise the most significant metric for this scenario.

5. CONCLUSIONS
In this demonstration, we show how and when reactive and proac-

tive work sharing outperforms query-centric execution in the con-
text of analytical workloads. The demonstration is composed of
a poster and an interactive graphical user interface that allows the
audience to assess the performance benefits of the sharing tech-
niques, how they compare against each other, and how they can be
combined to exploit both techniques.
Acknowledgments. This work was supported by the FP7 project
BIGFOOT (grant n. 317858).

6. REFERENCES
[1] S. Arumugam, A. Dobra, C. M. Jermaine, N. Pansare, and L. Perez.

The DataPath system: a data-centric analytic processing engine for
large data warehouses. SIGMOD, 2010.

[2] G. Candea, N. Polyzotis, and R. Vingralek. Predictable performance
and high query concurrency for data analytics. VLDBJ, 2011.

[3] K. Gao, S. Harizopoulos, I. Pandis, V. Shkapenyuk, and A. Ailamaki.
Simultaneous Pipelining in QPipe: Exploiting Work Sharing
Opportunities Across Queries. ICDE, 2006.

[4] G. Giannikis, G. Alonso, and D. Kossmann. SharedDB: Killing One
Thousand Queries with One Stone. VLDB, 2012.

[5] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. QPipe: a
simultaneously pipelined relational query engine. SIGMOD, 2005.

[6] R. Johnson, S. Harizopoulos, N. Hardavellas, K. Sabirli, I. Pandis,
A. Ailamaki, N. G. Mancheril, and B. Falsafi. To share or not to
share? VLDB, 2007.

[7] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi.
Shore-MT: a scalable storage manager for the multicore era. EDBT,
2009.

[8] I. Psaroudakis, M. Athanassoulis, and A. Ailamaki. Sharing data and
work across concurrent analytical queries. VLDB, 2013.

892

