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ABSTRACT
In this paper, we show that key-value stores backed by an LSM-tree
exhibit an intrinsic trade-off between lookup cost, update cost, and
main memory footprint, yet all existing designs expose a subopti-
mal and difficult to tune trade-off among these metrics. We pin-
point the problem to the fact that all modern key-value stores sub-
optimally co-tune the merge policy, the buffer size, and the Bloom
filters’ false positive rates in each level.

We present Monkey, an LSM-based key-value store that strikes
the optimal balance between the costs of updates and lookups with
any given main memory budget. The insight is that worst-case
lookup cost is proportional to the sum of the false positive rates
of the Bloom filters across all levels of the LSM-tree. Contrary
to state-of-the-art key-value stores that assign a fixed number of
bits-per-element to all Bloom filters, Monkey allocates memory
to filters across different levels so as to minimize this sum. We
show analytically that Monkey reduces the asymptotic complex-
ity of the worst-case lookup I/O cost, and we verify empirically
using an implementation on top of LevelDB that Monkey reduces
lookup latency by an increasing margin as the data volume grows
(50%− 80% for the data sizes we experimented with). Further-
more, we map the LSM-tree design space onto a closed-form model
that enables co-tuning the merge policy, the buffer size and the fil-
ters’ false positive rates to trade among lookup cost, update cost
and/or main memory, depending on the workload (proportion of
lookups and updates), the dataset (number and size of entries), and
the underlying hardware (main memory available, disk vs. flash).
We show how to use this model to answer what-if design ques-
tions about how changes in environmental parameters impact per-
formance and how to adapt the various LSM-tree design elements
accordingly.

1. INTRODUCTION
LSM-Based Key-Value Stores. Modern key-value stores that main-
tain application data persistently typically use a Log-Structured-
Merge-tree (LSM-tree) [27] as their storage layer. In contrast to
traditional storage paradigms that involve in-place updates to per-
sistent storage, LSM-trees perform out-of-place updates thereby
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Figure 1: State-of-the-art LSM-tree based key-value stores are
not tuned along the Pareto curve. As a result, they are unable to
maximize throughput. In contrast, Monkey is tuned along the
Paretro Frontier, and it can navigate it to find the best trade-off
for a given application to maximize throughput.

enabling (1) high throughput for updates [29] and (2) good space-
efficiency as data is stored compactly [14] (as they do not need to
keep free space at every node to allow in-place updates). They do
so by buffering all updates in main memory, flushing the buffer
to disk as a sorted run whenever it fills up, and organizing disk-
resident runs into a number of levels of increasing sizes. To bound
the number of runs that a lookup probes to find a target key, runs of
similar sizes (i.e., at the same level) are sort-merged and pushed to
the next deeper level when the current one becomes full. To speed
up point lookups, which are common in practice [6], every run has
an associated Bloom filter in main memory that probabilistically
allows to skip a run if it does not contain the target key. In addi-
tion, every run has a set of fence pointers in main memory that map
values to disk pages of the run (effectively maintaining min-max
information for each page of a run) and thereby allow searching
a run for a target key in a single I/O. This design is adopted in a
wide number of modern key-value stores including LevelDB [19]
and BigTable [12] at Google, RocksDB [15] at Facebook, Cassan-
dra [21], HBase [5] and Accumulo [3] at Apache, Voldemort [25]
at LinkedIn, Dynamo [13] at Amazon, WiredTiger [34] at Mon-
goDB, and bLSM [29] and cLSM [18] at Yahoo. Various relational
stores today also support this design. For example, MySQL can
run on RocksDB using MyRocks [14], which prefixes keys to indi-
cate which table they belong to and maps from SQL commands to
RocksDB commands. Moreover, SQLite recently changed its stor-
age engine from a B-tree in SQLite3 to an LSM-tree in SQLite4,
meaning that every table is now an LSM-tree [31].
The Problem: Suboptimal Design Tuning. In this paper, we
closely investigate the design space of LSM-trees and show that
LSM-based key-value stores exhibit an intrinsic trade-off among
lookup cost, update cost, and main memory footprint (as discussed
for various data structures in [8, 7]). Existing systems strike a sub-
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optimal trade-off among these metrics. Figure 1 shows this graph-
ically using cost models (described later) and the default configu-
ration settings for several state-of-the-art systems as found in their
latest source code and documentation. Existing systems are not
tuned along the optimal Pareto curve beyond which it is impossible
to improve lookup cost without harming update cost and vice versa
with a given main memory budget. As a result, they cannot maxi-
mize throughput for a given main memory budget and application
workload.

We pinpoint the problem to the fact that all LSM-based key-value
stores suboptimally co-tune the core design choices in LSM-trees:
the merge policy, the size ratio between levels, the buffer size, and
the Bloom filters’ false positive rates.

The first problem is that existing designs assign the same false
positive rate (i.e., number of bits per element) to every Bloom filter
regardless of the size of the run that it corresponds to. Our insight
is that the worst-case point lookup cost over the whole LSM-tree
is proportional to the sum of the false positive rates of all filters.
Assigning equal false positive rates to all filters, however, does not
minimize this sum. The reason is that maintaining the same false
positive rate across all runs means that larger runs have proportion-
ally larger Bloom filters, whereas the I/O cost of probing any run is
the same regardless of its size (due to each run having fence point-
ers in main memory that allow direct access to the relevant disk
page). As a result, the runs at the largest level take up the majority
of the overall memory budget allocated to the Bloom filters without
yielding a significant reduction in lookup cost.

The second problem is that the relationship between the different
design knobs and performance is non-linear, and so it is difficult to
co-tune the various design options in the LSM-tree design space
to optimize performance. For example, the available main mem-
ory budget cannot only be used to increase Bloom filter accuracy
but it can also be used to increase the size of the LSM-tree buffer
(which implies better lookup performance as there are fewer levels
to probe and better update performance as there are fewer levels
to merge entries through). However, it is unclear how to allocate a
fixed main memory budget among these structures to strike the best
balance. In addition, it is possible to trade between lookup cost and
update cost by varying the size ratio between levels and by switch-
ing the merge policy between leveling and tiering, which support
one run per level vs. multiple runs per level respectively. Again,
however, it is difficult to predict how a given change would impact
performance given the complexity of the design space.

The Solution: Monkey. In this paper, we map the design space
of LSM-trees. This allows us (1) to holistically tune critical design
knobs thereby achieving performance along the Pareto curve (as
shown in Figure 1), and (2) to accurately navigate the Pareto curve
to find the best trade-off for a given application.

We introduce Monkey: Optimal Navigable Key-Value Store.
Monkey reaches the Pareto curve by using a novel analytical solu-
tion that minimizes lookup cost by allocating main memory among
the Bloom filters so as to minimize the sum of their false positive
rates. The core idea is setting the false positive rate of each Bloom
filter to be proportional to the number of entries in the run that it
corresponds to (meaning that the false positive rates for shallower
levels are exponentially decreasing). The intuition is that any given
amount of main memory allocated to Bloom filters of larger runs
brings only a relatively minor benefit in terms of how much it can
decrease their false positive rates (to save I/Os). On the contrary,
the same amount of memory can have a higher impact in reducing
the false positive rate for smaller runs. We show analytically that
this way shaves a factor of O(L) from the worst-case lookup cost,

where L is the number of LSM-tree levels. The intuition is that the
false positive rates across the levels form a geometric series, and
its sum converges to a constant that is independent of L. The num-
ber of levels is O log( N·E

Mbu f f er
)), where N is the number of entries,

E is the size of entries, and Mbu f f er is the size of the buffer. This
has two important benefits: (1) lookup cost scales better with the
number and size of entries, and (2) lookup cost is independent of
the buffer size thereby removing the contention in how to allocate
main memory between the filters and the buffer. Therefore, Mon-
key scales better and is easier to tune.

The second key point in Monkey is navigating the Pareto curve
to find the optimal balance between lookup cost and update cost un-
der a given main memory budget and application workload (lookup
over update ratio). To do so, we map the design space and envi-
ronmental parameters that affect this balance, and we capture the
worst-case cost of lookups and updates as concise closed-form ex-
pressions. While all existing major key-value store implementa-
tions expose numerous tuning knobs, Monkey is novel in that it al-
lows precise navigation of the design space with predictable results,
making it easy to set-up or adapt a key-value store installation.
Contributions. In summary, our contributions are as follows.

• In Section 3, we show that key-value stores backed by an
LSM-tree exhibit a navigable trade-off among lookup cost,
update cost, and main memory footprint; yet state-of-the-
art key-value stores are not tuned along the optimal trade-off
curve because they do not allocate main memory optimally
among the Bloom filters and the LSM-tree’s buffer.

• In Section 4, we introduce Monkey, an LSM-tree based key-
value store that optimizes lookup cost by allocating main
memory among the Bloom filters so as to minimize the sum
of their false positive rates. We show analytically that Mon-
key’s Bloom filter tuning (1) reduces the asymptotic com-
plexity of lookup cost thereby scaling better for large datasets,
and (2) removes the dependence of lookup cost on the LSM-
tree’s buffer size thereby simplifying system tuning.

• We identify the tuning and environment parameters that de-
termine worst-case performance and model worst-case lookup
and update costs as closed-form expressions. We show how
to use these models to find the holistic tuning that (1) max-
imizes throughput under a uniformly random workload with
any lookup/update ratio, and (2) maximize the lower-bound
on throughput for any other workload.

• We also show how to use the model to answer what-if design
and environmental questions. For instance, if we change (i)
the main memory budget, (ii) the proportion of reads and
writes in the workload, (iii) the number and/or size of data
entries, or (iv) the underlying storage medium (e.g., flash vs.
disk), how should we adapt the LSM-tree design, and what
is the impact on performance?

• In Section 5, we evaluate Monkey using an implementation
on top of LevelDB by applying a wide range of application
lookup patterns (i.e., targeting existing vs non-existing keys
and varying temporal localities). Monkey improves lookup
latency by 50%−80% in these experiments.

Online Demo. To provide further understanding of the impact of
Monkey we provide an online interactive demo1.

1http://daslab.seas.harvard.edu/monkey/
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Term Description Unit

N Total number of entries entries

L Number of levels levels

B Number of entries that fit into a disk page entries

E Size of an entry bits

P Size of the buffer in disk pages pages

T Size ratio between adjacent levels

Tlim Size ratio value at which point L converges to 1

M Total amount of main memory in system bits

Mbuffer Main memory allocated to the buffer bits

Mfilters Main memory allocated to the Bloom filters bits

Mpointers Main memory allocated to the fence pointers bits

0

1

2

L

Level                     Main Memory                   Secondary Storage       Capacity

lookup buffer   filters  

P !	B !	T0

P !	B !	T1

P !	B !	T2

…

M =  Mbuffer + Mfilters + Mpointers

fence 
pointers

P !	B !	TL = N! #$%
#

Total = N

… ……

…

Figure 2: Overview of an LSM-tree and list of terms used throughout the paper.

2. BACKGROUND
This section provides the necessary background on LSM-trees.

An LSM-tree stores key-value pairs. A key identifies an object of
the application and allows retrieving its value. For the discussion
in this paper both keys and values are stored inside the LSM-tree,
although it is also possible to store large values outside of the LSM-
tree and point to them using fixed-width pointers attached to keys
[26]. For ease of presentation, all figures in this paper show only
keys but can be thought of as key-value pairs.
Buffering Updates. Figure 2 illustrates an LSM-tree and a list of
terms used throughout the paper. An LSM-tree consists concep-
tually of L levels. Level 0 refers to an in-memory buffer, and the
rest of the levels refer to data in secondary storage. An LSM-tree
optimizes for inserts, updates, and deletes (henceforth just referred
to as updates) by immediately storing them in the buffer at Level 0
without having to access secondary storage (there is a flag attached
to each entry to indicate if it is a delete). If an update refers to a key
which already exists in the buffer then the original entry is replaced
in-place and only the latest one survives.

When the buffer’s capacity is reached, its entries are sorted by
key into an array and flushed to Level 1 in secondary storage. We
refer to such arrays as runs. We denote the number of bits of main
memory allocated to the buffer as Mbu f f er , and we define it as
Mbu f f er = P ·B ·E, where B is the number of entries that fit into a
disk page, P is the amount of main memory in terms of disk pages
allocated to the buffer, and E is the average size of data entries. For
example, in LevelDB the default buffer size is 2 MB.

The runs at Level 1 and higher are immutable. Each Level i has a
capacity threshold of B ·P ·T i entries, where T is a tuning parameter
denoting the size ratio between the capacities of adjacent levels.
Thus, levels have exponentially increasing capacities by a factor of
T . The overall number of levels is given by Equation 1.

L =
⌈

logT

(
N ·E

Mbu f f er
· T −1

T

)⌉
(1)

The size ratio T has a limiting value of Tlim, where Tlim = N·E
Mbu f f er

.
The value of T can be set anywhere between 2 and Tlim. As T
approaches Tlim, the number of levels L approaches 1.
Merge Operations. To bound the number of runs that a lookup has
to probe, an LSM-tree organizes runs among the different levels
based on their sizes, and it merges runs of similar sizes (i.e., at
the same level). There are two possible merge policies: leveling
and tiering [20]. The former optimizes more for lookups and the
latter more for updates. With leveling, there is at most one run
per Level i, and any run that is moved from Level i− 1 to Level
i is immediately sort-merged with the run at Level i, if one exists.
With tiering, up to T runs can accumulate at Level i, at which point
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Figure 3: Before and after a recursive merge with tiered and
leveled LSM-trees where the size ratio T is set to 3, and B ·P,
the number of entries that fit into the buffer, is set to 2.

these runs are sort-merged. The essential difference is that a leveled
LSM-tree merges runs more greedily and therefore gives a tighter
bound on the overall number of runs that a lookup has to probe,
but this comes at the expense of a higher amortized update cost.
Figure 3 compares the behavior of merge operations for tiering and
leveling when the size ratio T is set to 3.

If multiple runs that are being sort-merged contain entries with
the same key, only the entry from the most recently-created (youngest)
run is kept because it is the most up-to-date. Thus, the resulting run
may be smaller than the cumulative sizes of the original runs. When
a merge operation is finished, the resulting run moves to Level i+1
if Level i is at capacity.

Lookups. A point lookup starts from the buffer and traverses the
levels from lowest to highest (and the runs within those levels from
youngest to oldest in the case of tiering). When it finds the first
matching entry it terminates. There is no need to look further be-
cause entries with the same key at older runs are superseded. A
zero-result lookup (i.e., where the target key does not exist) incurs
a potentially high I/O cost because it probes all runs within all lev-
els. In contrast, a range lookup requires sort-merging all runs with
an overlapping key range to identify and ignore superseded entries.

Probing a Run. In the original LSM-tree design from 1996 [27],
each run is structured as a compact B-tree. Over the past two
decades, however, main memory has become cheaper, so modern
designs simply store an array of fence pointers in main memory
with min/max information for every disk page of every run [15,
19]. Maintaining a flat array structure is much simpler and leads
to good search performance in memory (binary search as each run
is sorted). Given that the LSM-tree is on disk, these in-memory
binary searches are not in the critical path of performance (I/O is).
Thus, a lookup initially searches the fence pointers. If it is a point
lookup, it then reads the appropriate disk page with one I/O, or
if it is a range lookup it begins a scan from this page. The size
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Technique Point Lookup Cost Update Cost

(1) Log O( N·E
Mbu f f er

· e
M f ilters

N ) O( 1
B )

(2) Tiering O(T · logT (
N·E

Mbu f f er
) · e

M f ilters
N ) O( 1

B · logT (
N·E
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))
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N·E
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) · e
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Figure 4: LSM-tree design space: from a log to a sorted array.

of the fence pointers is modest. For example, with 16 KB disk
pages and 4 byte pointers, the fence pointers are smaller by ≈ 4
orders of magnitude than the raw data size. Stated formally, we
denote the amount of main memory occupied by the fence pointers
as Mpointers, and we assume throughout this work that Mpointers is
O(N

B ) thereby guaranteeing that probing a run takes O(1) disk I/O
for point lookups.
Bloom Filters. To speed up point queries, every run has a corre-
sponding Bloom filter [10] in main memory. A point lookup probes
a run’s filter before accessing the run in secondary storage. If the
filter returns negative, the target key does not exist in the run, and
so the lookup skips accessing the run and saves one I/O. If a fil-
ter returns positive, then the target key may exist in the run, so the
lookup probes the run at a cost of one I/O. If the run actually con-
tains the key, the lookup terminates. Otherwise, we have a “false
positive” and the lookup continues to probe the next run. False
positives increase the I/O cost of lookups. The false positive rate
(FPR) depends on (1) the number of entries in a run, and (2) the
number of bits in main memory allocated to the run’s filter. This
relationship is captured by the following equation [32]2.

FPR = e−
bits

entries ·ln(2)2
(2)

To the best of our knowledge, all LSM-tree based key-value stores
use the same number of bits-per-entry across all Bloom filters. This

means that a lookup probes on average O(e−
M f ilters

N ) of the runs,
where M f ilters is the overall amount of main memory allocated to

the filters. As M f ilters approaches 0 or infinity, the term O(e−
M f ilters

N )

approaches 1 or 0 respectively. All implementations that we know
of use 10 bits per entry for their Bloom filters by default [3, 4, 5,
15, 19, 29]. The corresponding false positive rate is ≈ 1%. With
this tuning, an average entry size of 128 bytes (typical in practice
[2]) entails the Bloom filters being≈ 2 orders of magnitude smaller
than the raw data size.
Cost Analysis. We now analyze the worst-case I/O cost complex-
ity of updates and lookups for both a tiered and a leveled LSM-
tree. First, we explain how we measure these costs. For updates,
we measure the amortized worst-case I/O cost, which accounts for
the merge operations that an entry participates in after it is up-
dated. For lookups, measure the zero-result average worst-case
2Equation 2 assumes a Bloom filter that uses the optimal number of
hash functions ( bits

entries ln(2)) that minimizes the false positive rate.

I/O cost, which is the expected number of I/Os performed by a
lookup to a key that does not exist in the LSM-tree. We focus on
zero-result lookups because (1) they are very common in practice
[11, 29] (e.g., insert-if-not-exist queries [29]), and (2) they incur
the maximum pure I/O overhead (i.e., read I/Os that do not find rel-
evant entries to a lookup). For the rest of the paper, our use of the
terms worst-case lookups and updates follows these definitions un-
less otherwise specified. We later also model the worst-case costs
of non-zero-result lookups and range lookups for completeness.

For a tiered LSM-tree, the worst-case lookup cost is given by

O(L ·T · e−
M f ilters

N ) I/Os, because there are O(L) levels, O(T ) runs per
level, the cost of probing each run is one I/O due to the fence point-

ers, and we probe on average only O(e−
M f ilters

N ) of the runs. The
worst-case update cost is O( L

B ) I/Os, because each entry partici-
pates in O(L) merge operations, i.e., one per level, and the I/O cost
of copying one entry during a merge operation is O( 1

B ), since each
write I/O copies O(B) entries into the new run.

For a leveled LSM-tree, the worst-case lookup cost is given by

O(L · e−
M f ilters

N ) I/Os, because there are O(L) levels, there is one run
per level, the cost of probing a run is one I/O due to the fence

pointers, and we probe O(e−
M f ilters

N ) of the runs on average. The
worst-case update cost is O( T ·L

B ) because each update is copied O(T )
times per level and through O(L) levels overall.

3. LSM-TREE DESIGN SPACE
In this section, we describe critical trade-offs and tuning con-

tentions in the LSM-tree design space. Our contributions in this
paper are enabled by a detailed mapping of this space. We intro-
duce a visualization for the design space, and we use this visual-
ization to identify contentions among tuning knobs. In the next
section, we resolve these contentions with the design of Monkey.

A summary of the design space of LSM-trees and the impact on
lookup and update costs is shown in Figure 4. These costs depend
on multiple tuning parameters: (1) the merge policy (tiering vs.
leveling), (2) the size ratio T between levels, (3) the allocation of
main memory among the buffer Mbu f f er and the Bloom filters, and
(4) the allocation of M f ilters among each of the different Bloom
filters. The main observation from Figure 4 is that:

The design space of LSM trees spans everything between a
write-optimized log to a read-optimized sorted array.

The question is how can we accurately navigate this design space
and what is the exact impact of each design decision? To approach
an answer to these questions we move on to discuss Figure 4 and
the contention among the various design decisions in more detail.
Tuning the Merge Policy and Size Ratio. The first insight about
the design space is that when the size ratio T is set to 2, the com-
plexities of lookup and update costs for tiering and leveling become
identical. As we increase T with tiering/leveling respectively, up-
date cost decreases/increases whereas lookup cost increases/dec-
reases. To generate Figure 4, we plugged all combinations of the
merge policy and the size ratio into the complexity equations in
Rows 2 and 3 of the table, and we plotted point lookup cost against
update cost for corresponding values of the merge policy and size
ratio. We did not plot the curve to scale, and in reality the markers
are much closer to the graph’s origin. However, the shape of the
curve and its limits are accurate. The dotted and solid lines cor-
respond to partitions of the design space that are accessible using
tiering and leveling respectively. These lines meet when the size ra-
tio T is set to 2, and they grow farther apart in opposing directions
as T increases. This shows that tiering and leveling are comple-
mentary methods for navigating the same trade-off continuum.
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As the size ratio T approaches its limit value Tlim, the number of
levels L approaches 1. When L is 1, a tiered LSM-tree degenerates
to log (left top in the graph of Figure 4) while a leveled LSM-tree
degenerates to sorted array (right bottom in the graph of Figure 4).
A log is an update-friendly data structure while a sorted array is a
read-friendly one. In this way, an LSM-tree can be tuned anywhere
between these two extremes in terms of their performance proper-
ties. This is a characteristic of the design space we bring forward
and heavily utilize in this paper.
Tuning Main Memory Allocation. The limits of the curve in Fig-
ure 4 are determined by the allocation of main memory among the
filters M f ilters and the buffer Mbu f f er. Getting the memory alloca-
tion right is of critical importance. Main memory today is com-
posed of DRAM chips, which cost ≈ 2 orders of magnitude more
than disk in terms of price per bit, and this ratio is increasing as an
industry trend [24]. Moreover, DRAM consumes ≈ 4 times more
power per bit than disk during runtime [33]. As a result, the main
memory occupied by the Bloom filters and buffer accounts for a
significant portion of a system’s (infrastructure and running) cost
and should be carefully utilized.
Design Space Contentions. Overall, we identify three critical per-
formance contentions in the LSM-tree design space.

Contention 1 arises in how we allocate a given amount of main
memory M f ilters among the different Bloom filters. By reallocating
main memory from one filter to another, we reduce and increase the
false positive rates of the former and latter filters respectively. How
do we optimally allocate M f ilters among the different Bloom filters
to minimize lookup cost?

Contention 2 arises in how to allocate the available main memory
between the buffer and the filters. As indicated by the complexity
table in Figure 4, allocating a more main memory to the buffer on
one hand decreases both lookup cost and update cost, but on the
other hand it decreases the Bloom filters’ accuracy thereby increas-
ing lookup cost. How do we strike the best balance?

Contention 3 arises in how to tune the size ratio and merge pol-
icy. This is complicated because workloads consist of different pro-
portions of (1) updates, (2) zero-result lookups, (3) non-zero-result
lookups, and (4) range lookups of different selectivities. Decreas-
ing the size ratio under tiering and increasing the size ratio under
leveling improves lookup cost and degrades update cost, but the
impact and rate of change on the costs of different operation types
is different. How do we find the best size ratio and merge policy
for a particular application workload?
The State of the Art. All LSM-tree based key-value stores that we
know of apply static and suboptimal decisions regarding the above
contentions. The Bloom filters are all tuned the same, the Buffer
size relative to the Bloom filters size is static, and the size ratio and
merge policy are also static [3, 4, 5, 15, 19, 29]. We refer to these
stores collectively as the state of the art. Although they differ from
each other in various respects (e.g. centralized vs. decentralized
architectures, different consistency guarantees, different data mod-
els, etc), these design aspects are orthogonal to this work. In the
next section, we introduce Monkey, which improves upon the state
of the art by resolving these contentions and being able to quickly,
accurately, and optimally navigate the LSM-tree design space.

4. MONKEY
In this section, we present Monkey in detail. Monkey is an LSM-

tree based key-value store whose novelty is being able to reach and
navigate the Pareto curve to find the best possible balance between
the costs of lookups and updates for any given main memory bud-
get, workload and storage medium. It maximizes throughput for
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Figure 5: The design of Monkey impacts performance in three
ways: (a), it reaches the Pareto curve by optimally tuning the
Bloom filters, (b) it predicts how changes in environmental pa-
rameters and main memory utilization reposition the Pareto
curve, and (c) it finds the point on the Pareto curve that maxi-
mizes worst-case throughput for a given application.

uniformly random workloads, and it maximizes the lower-bound
on throughput for all other workloads. Monkey achieves this by
(1) resolving the contentions in the LSM-tree design space, and (2)
using models to optimally trade among lookup cost, update cost,
and main memory footprint. Below we give a high level summary
of the main design elements and performance impact of Monkey
before we move forward to describe each one of them in depth.
Design Knobs. Monkey transforms the design elements that im-
pact worst-case behavior into tuning knobs, and it can alter its be-
havior by adjusting them. Those knobs comprise: (1) the size ratio
among levels T , (2) the merge policy (leveling vs. tiering), (3) the
false positive rates p1...pL assigned to Bloom filters across differ-
ent levels, and (4) the allocation of main memory M between the
buffer Mbu f f er and the filters M f ilters. Monkey can co-tune these
knobs to optimize throughput, or in order to favor one performance
metric over another if needed by the application (e.g., a bound on
average lookup or update latency). Figure 5 shows the performance
effects achieved by Monkey.
Minimizing Lookup Cost. The first core design element in Mon-
key is optimal allocation of main memory across Bloom filters to
minimize lookup cost. The key insight is that lookup cost is propor-
tional to the sum of the false positive rates (FPR) of all the Bloom
filters. In Section 4.1, we show how to tune filters across levels
differently to minimize this sum. Figure 5 (a) shows visually the
impact this change brings. It achieves faster reads than the state
of the art for any main memory budget, and so it shifts the entire
trade-off curve vertically down to the Pareto curve.
Performance Prediction. The second design element in Mon-
key is the ability to predict how changing a design decision or
an environmental parameter would impact worst-case performance.
We achieve this in Section 4.2 by deriving closed-form models for
the worst-case I/O costs of lookups and updates in terms of the
LSM-tree design space knobs. For instance, the models predict
how changing the overall amount of main memory or its allocation
would reposition the Pareto curve, as shown Figure 5 (b). We de-
rive an analogous model for the state of the art as a baseline and
show that Monkey dominates it.
Autotuning. The third design element in Monkey is the ability to
holistically self-tune to maximize the worst-case throughput. We
achieve this in two steps. First, in Section 4.3 we use asymptotic
analysis to map the design space and thereby devise a rule for how
to allocate main memory between the buffer and the filters. Second,
in Section 4.4 we model worst-case throughput with respect to (1)
our models for lookup cost and update cost, (2) the proportion of
lookups and updates in the workload, and (3) the costs of reads
and writes to persistent storage. We introduce an algorithm that
quickly searches the Pareto curve for the balance between lookup
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Term Description Unit
pi False positive rate (FPR) for filters at level i
R Worst-case zero-result point lookup cost I/O
Rfiltered Worst-case zero-result point lookup cost to levels with filters I/O
Runfiltered Worst-case zero-result point lookup cost to levels with no filters I/O
V Worst-case non-zero-result point lookup cost I/O
W Worst-case update cost I/O
Q Worst-case range lookup cost I/O
Mthreshold Value of Mfilters below which pL (FPR at level L) converges to 1 bits
ɸ Cost ratio between a write and a read I/O to persistent storage
s Proportion of entries in a range lookup
Lfiltered Number of levels with Bloom filters
Lunfiltered Number of levels without Bloom filters
𝑀" Amount of main memory to divide among filters and buffer bits

L
filtered

L
unfiltered

Level State-of-the-art Monkey

1 p1 p1

2 p2 = p1 p2 = p1 · T1

3 p3 = p1 p3 = p1 · T2

… … …

… … …

L-1 pL-1 = p1 pL-1 = 1

L pL-1 = p1 pL-1 = 1

Figure 6: Overview of how Monkey allocates false positive rates p1, p2...pL to Bloom filters in proportion to the number of key-value
pairs in a given level, and a further list of terms used to describe Monkey.

and update cost that maximizes the worst-case throughput. This
property is visually shown in Figure 5 (c).
Using Monkey. We present Monkey as a key-value store. Our
work, though, is applicable to any kind of application where one
would use an LSM-tree (see discussion on this in Appendix A).

4.1 Minimizing Lookup Cost
We now continue to discuss how Monkey minimizes the worst-

case lookup cost. We focus for now on zero-result lookups since
they incur the highest possible pure I/O overhead (i.e., I/Os that do
no useful work), and so minimizing their worst-case cost allows
achieving robust performance, and we later show experimentally
that it also significantly improves performance in other cases (e.g.,
non-zero-result lookups and workload skew).

Figure 6 gives a list of terms that we use to describe Monkey.
We denote R as the worst-case expected I/O cost of a zero-result
point lookup. We first show that R is equal to the sum of the false
positive rates (FPRs) of all Bloom filters. We then show how to
tune the Bloom filters’ FPRs across different levels to minimize this
sum, subject to a constraint on the overall amount of main memory
M f ilters. We assume a fixed entry size E throughout this section; in
Appendix C we give a iterative optimization algorithm that quickly
finds the optimal FPR assignment even when the entry size is vari-
able or changes over time.
Modeling Average Worst-Case Lookup Cost. The average num-
ber (i.e., expected value) of runs probed by a zero-result lookup is
the sum of the FPRs of all Bloom filters. Equation 3 expresses this
sum in terms of the FPRs p1...pL assigned to filters at different lev-
els. With leveling every level has at most one run and so R is simply
equal to the sum of FPRs across all levels. With tiering there are at
most T − 1 runs at every level (when the T th run arrives from the
previous level it triggers a merge operation and a push to the next
level). The FPR for all runs at the same level in tiering is the same
because they have the same size.

R =

{
(T −1)·∑L

i=1 pi, with leveling

(T −1) ·∑L
i=1 pi, with tiering

where 0 < pi ≤ 1

(3)

Modeling Main Memory Footprint. We now model the total
main memory footprint for the bloom filters in terms of the FPRs
p1, p2...pL of the different levels. To do so, we first rearrange Equa-
tion 2 in terms of the number of bits in a filter: bits = −entries ·
ln(FPR)
ln(2)2 . This equation captures the cumulative size of any number

of Bloom filters that have the same FPRs, and so we can apply it

out-of-the-box for both leveling (one Bloom filter per level) and for
tiering (T −1 Bloom filters per level). We do so by identifying and
plugging in the number of entries and the FPR for each level. As
shown in Figure 2, the last level of an LSM-tree has at most N · T−1

T
entries, and in general Level i has at most N

T L−i · T−1
T entries because

smaller levels have exponentially smaller capacities by a factor of
T . Thus, the amount of main memory occupied by filters at Level
i is at most − N

T L−i · T−1
T · ln(pi)

ln(2)2 bits. The overall amount of main
memory allocated cumulatively to all Bloom filters is the sum of
this expression over all levels, as captured by Equation 4.

M f ilters =−
N

ln(2)2 ·
T −1

T
·

L

∑
i=1

ln(pi)

T L−i (4)

Minimizing Lookup Cost with Monkey. Using Equations 3 and
4, we can calculate the average worst-case lookup cost R and main
memory footprint M f ilters for any assignment of FPRs across the
different levels. To minimize R with respect to M f ilters, we first
tackle the converse yet equivalent problem for ease of exposition:
finding the optimal assignment of FPRs p1...pL across the differ-
ent levels that minimizes M f ilters for any user-specified value of R.
This amounts to a multivariate constrained optimization problem.
In Appendix B, we solve it by applying the method of Lagrange
Multipliers on Equations 3 and 4. The result appears in Equations
5 and 6 for leveled and tiered designs respectively3.

Leveling

pi =





1, if i > L f iltered

(R−Lun f iltered )·(T−1)

T L f iltered+1−i , else

for 0 < R≤ L

and 1≤ i≤ L

and L f iltered = L−max(0,bR−1c)
(5)

Tiering

pi =





1, if i > L f iltered

R−Lun f iltered ·(T−1)

T L f iltered+1−i , else

for 0 < R≤ L · (T −1)

and 1≤ i≤ L

and L f iltered = L−max(0,b R−1
T−1 c)

(6)

Figure 6 illustrates how Monkey optimally assigns FPRs to Bloom
filters across different levels using Equations 5 and 6. In general,
the optimal FPR at Level i is T times higher than the optimal FPR
at Level i− 1. In other words, the optimal FPR for level i is pro-
portional to the number of elements at level i. The intuition is that
the I/O cost of probing any run is the same regardless of its size
(due to the fence pointers we only fetch the qualifying disk page),

3In the next subsection, we show how to express Equations 5 and 6
in terms of M f ilters rather than R.
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yet the amount of main memory needed for achieving a low FPR at
deeper levels is significantly higher since they have exponentially
more entries. It is therefore better to set relatively more bits per
entry (i.e., a lower FPR) to the filters at smaller levels. In contrast,
state-of-the-art LSM-based key-value stores assign the same FPR
to Bloom filters across all the different levels.

The higher we set the lookup cost R, the less main memory for
the Bloom filters we need. As shown in Figure 6, the mechanism
through which this works in Monkey is that for higher values of R
more of the Bloom filters at the deepest levels cease to exist as their
optimal FPRs converge to 1. We denote the number of levels with
and without filters as L f iltered and Lun f iltered respectively (note that
L = L f iltered +Lun f iltered). Equations 5 and 6 are adapted to find the
optimal division between L f iltered and Lun f iltered and to prescribe
FPRs to the shallowest L f iltered levels based on smaller version of
the problem with L f iltered levels.

In summary, Monkey minimizes the main memory footprint for
the Bloom filters for a given lookup cost R by (1) finding the op-
timal number of levels L f iltered to which Bloom filters should be
allocated, and (2) setting the FPR for each of these levels to be
proportional to its capacity. Through these steps it achieves the
performance effect shown in Figure 5 (a).

4.2 Predicting Lookup and Update Costs
We now move forward to map the design space of LSM-trees

in a way that allows to accurately predict the impact of the vari-
ous design decisions. To do so, we model lookup and update cost
in closed-form expressions with respect to all the tuning knobs in
the Monkey design space. We also demonstrate analytically that
Monkey dominates the state-of-the-art designs.
Modeling Zero-Result Lookup Cost (R). To derive a closed-form
expression for the zero-result lookup cost R in Monkey, we plug the
optimal false positive rates in Equations 5 and 6 into Equation 4,
simplify, and rearrange. The complete derivation is in Appendix
B.1, and the result is Equation 7. This equation assumes a fixed
entry size (we lift this restriction in Appendix C).

R = R f iltered +Run f iltered

R f iltered =





T
T

T−1

T −1
· e−

M f ilters
N ·ln(2)2·T Lun f iltered

with leveling

T
T

T−1 · e−
M f ilters

N ·ln(2)2 ·T Lun f iltered with tiering

Run f iltered =

{
Lun f iltered , with leveling

Lun f iltered · (T −1), with tiering

(7)

To demystify Equation 7, note that the additive terms R f iltered
and Run f iltered correspond to the average number of runs probed
in the levels with and without filters respectively. Also recall that
when the size ratio T is set to 2, tiering and leveling behave identi-
cally, and so the two versions of the equation for tiering and level-
ing produce the same result.

Lun f iltered =





0, Mthreshold ≤M f ilters
⌈

logT

(
Mthreshold
M f ilters

)⌉
, Mthreshold

T L ≤M f ilters ≤Mthreshold

L, 0≤M f ilters ≤ Mthreshold
T L

Mthreshold =
N

ln(2)2 ·
ln(T )
(T −1)

(8)
Next, we derive Equation 8, which gives the number of deeper

levels for which there are no filters. To do so, we first derive the
threshold value Mthreshold of main memory at which the FPR of

filters at the last level (i.e., Level L) converge to 1 (see bottom of
Equation 8). The complete derivation is in Appendix B.1. The
optimal value of Lun f iltered given by Equation 8 can be plugged
into Equation 7 to compute R.
Modeling Worst-Case Non-Zero-Result Lookup Cost (V). Us-
ing Equation 7 for the average worst-case zero-result lookup cost
R, we can now also model the average worst-case cost V of a non-
zero-result lookup, which finds the target key in the oldest run. To
model this cost, we subtract pL, the FPR of the oldest run’s filter,
and instead add 1 to account for reading one page of this run.

V = R− pL +1 (9)

Modeling Worst-Case Update Cost (W). To model the worst-case
update cost, we assume a worst-case update pattern where an en-
try is updated at most once within a period of N application writes.
Thus, no entry is eliminated before getting merged into the largest
level. Using arithmetic series, we model the amortized worst-case
number of merge operations that an entry participates in per level as
≈ T−1

T and≈ T−1
2 with tiering and leveling respectively. We multi-

ply this by L since each entry moves through L levels, and we divide
by B since each write I/O moves B entries from the original runs to
the resulting run. Finally, we account for reading the original runs
in order to merge them, and also that write I/Os to secondary stor-
age on some storage devices (e.g., flash) are more expensive than
reads, by multiplying by (1+φ), where φ is the cost ratio between
writes and reads. The overall I/O cost is captured by Equation 10.
When T is set to 2, tiering and leveling behave identically, so the
two parts of the equation produce the same result.

W =





L
B ·

(T−1)
2 · (1+φ), with leveling

L
B ·

(T−1)
T · (1+φ), with tiering

(10)

Modeling Worst-Case Range Lookup Cost (Q). A range lookup
involves doing L or L · (T − 1) disk seeks (one per run) for level-
ing and tiering respectively. Each seek is followed by a sequential
scan. The cumulative number of pages scanned over all runs is
s · N

B , where s is the average proportion of all entries included in
range lookups. Hence, the overall range lookup cost Q in terms of
pages reads is as follows.

Q =





s · N
B +L, with leveling

s · N
B +L · (T −1), with tiering

(11)

Modeling the State of the Art. We now derive an analogous model
for existing state-of-the-art designs. The models for V , W , and
Q are the same as for Monkey, namely Equations 9, 10 and 11,
because Monkey’s core design does not alter these operations. To
model the worst-case expected point lookup I/O cost, we set all
false positive rates p1, p2...pL in Equation 3 to be equal to each
other. The complete derivation and resulting closed-form Equation
26 are in Appendix E.
Monkey Dominates Existing Designs. We now have two cost
models for lookup cost with Monkey (Equations 7 and 8) and with
the state of the art (Equation 26). In Figure 7, we compare Monkey
against the state of the art by plotting the zero-result lookup cost as
we vary M f ilters with these equations. Although we keep the terms
in the figure general, the curves are drawn for an LSM-tree with
512 TB of data; the number of entries N is 235, the entry size E is
16 bytes, the size ratio T is 4, the buffer size B ·P ·E is 2 MB, and
we vary M f ilters from 0 to 35 GB.

Monkey dominates the state of the art in terms of lookup cost for
any overall amount of main memory allocated to the filters. The
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Merge policy Update State of the Art Lookup Cost Monkey Lookup Cost (R)
Cost (W ) M f ilters ≤Mthreshold Mthreshold ≤M f ilters

Mthreshold
T L ≤M f ilters ≤Mthreshold Mthreshold ≤M f ilters

(a) (b) (c) (d) (e)

(1) Tiering (T = Tlim) O( 1
B ) O( N·E

Mbu f f er
) O( N·E

Mbu f f er
· e−

M f ilters
N ) O( N·E

Mbu f f er
) O( N·E

Mbu f f er
· e−

M f ilters
N )

(2) Tiering (2≤ T < Tlim) O( 1
B · logT (

N·E
Mbu f f er

)) O(T · logT (
N·E

Mbu f f er
)) O(T · logT (

N·E
Mbu f f er

) · e−
M f ilters

N ) O(T · logT (
N

M f ilters
)) O(T · e−

M f ilters
N )

(3) Leveling (2≤ T < Tlim) O( T
B · logT (

N·E
Mbu f f er

)) O(logT (
N·E

Mbu f f er
)) O(logT (

N·E
Mbu f f er

) · e−
M f ilters

N ) O(logT (
N

M f ilters
)) O(e−

M f ilters
N )

(4) Leveling (T = Tlim) O( 1
B · N·E

Mbu f f er
) O(1) O(e−

M f ilters
N ) O(1) O(e−

M f ilters
N )

Table 1: Asymptotic analysis reveals that (1) lookup cost in Monkey scales better than the state of the art with respect to the number
and size of data entries, (2) lookup cost in Monkey is independent of the LSM-tree’s buffer size, and (3) Monkey and the state of the
art both degenerate into a log and sorted array with tiering and leveling respectively as the size ratio T is pushed to its limit.
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Figure 7: Monkey dominates the state of the art in terms of
lookup cost R for all values of M f ilters.

reason is that it allocates this memory optimally among the Bloom
filters to minimize the average number of read I/Os per lookup.

As M f ilters in Figure 7 approaches 0, Monkey and the state of
the art both degenerate into an LSM-tree with no Bloom filters, and
so their curves meet. The term X in the figure is used to adjust the
terms for leveling and tiering. The two curves look identical except
that the curve for tiering is vertically stretched upwards by a factor
of T −1 since there are T −1 more runs per level.

4.3 Scalability and Tunability
We now continue by exploring and mapping the design space for

Monkey using asymptotic analysis. We show that lookup cost in
Monkey scales better than in the state of the art with respect to data
volume. We also show that Monkey removes the dependence of
lookup cost on the buffer size thereby simplifying tuning.
Complexity Analysis. In Table 1, we express the models for worst-
case lookup cost and update cost using big O notations. We do so
by applying standard simplification rules on Equations 7 and 8 for
R in Monkey, on Equation 26 for lookup cost in the state of the art,
and on Equation 10 for update cost in both.

The complexity of worst-case lookup cost for Monkey is differ-
ent depending on whether M f ilters is greater or lower than Mthreshold .
To understand why, recall that R in Equation 7 is expressed as the
sum of two additive terms, R f iltered and Run f iltered . As long as
M f ilters > Mthreshold , there are filters at all levels and so Run f iltered
is zero and R f iltered is the dominant term. Moreover, by plugging
in Mthreshold for M f ilters in Equation 7, we observe that the value
of R f iltered can be at most O(1) for leveling and at most O(T ) for
tiering. However, as the number of entries N increases relative to
M f ilters, eventually M f ilters drops below Mthreshold . At this point
Run f iltered becomes non-zero and comes to dominate R f iltered be-
cause its value is at least O(1) with leveling and O(T ) with tiering
when M f ilters =Mthreshold , and it increases up to O(L) with leveling
and O(L ·T ) with tiering as N increases. Thus, the complexity of
worst-case lookup cost R is O(R f iltered) when M f ilters > Mthreshold ,
and otherwise it is O(Run f iltered).
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Figure 8: Monkey dominates the state of the art for any merge
policy and size ratio.

The condition M f ilters > Mthreshold can be equivalently stated

as having the number of bits per element M f ilters
N > 1

ln(2)2 · ln(T )
T−1 .

The value of 1
ln(2)2 · ln(T )

T−1 is at most 1.44 when T is equal to 2.
Hence, we can say more concretely that the complexity of worst-
case lookup cost R is O(R f iltered) when the number of bits-per-
element is above 1.44, and otherwise it is O(Run f iltered). In modern
key-value stores, the number of bits-per-element is typically 10, far
above 1.44, and so for most practical purposes the complexity of
Monkey is O(R f iltered).

To enable an apples to apples comparison, we also express the
complexity of lookup cost for the state of the art separately for
when M f ilters is lower and greater than Mthreshold (Column b and
c respectively in Table 1). We observe that when M f ilters is lower
than Mthreshold , the complexity of lookup cost converges to that of
an LSM-tree with no filters.

Comparing Monkey to the State of the Art. We first compare
Monkey to the state of the art when M f ilters ≥Mthreshold (Columns c
and e in Table 1). Monkey shaves a factor of O(L) from the com-
plexity of lookup cost for both tiering and leveling (Rows 2 and 3 in
Table 1). Note that we express O(L) in Table 1 as O(logT (

N·E
Mbu f f er

)) as
per Equation 1. In other words, lookup cost R in Monkey is asymp-
totically independent of the number of levels L of the LSM-tree.
The intuition is that the FPRs for smaller levels are exponentially
decreasing, and so the expected cost of probing filters across the
levels converges to a multiplicative constant. Shaving a factor of
O(L) from lookup cost has three important benefits.

1. As long as we scale the Bloom filters’ footprint with the
number of data entries (i.e., keep the ratio M f ilters

N fixed as
N increases), lookup cost in Monkey stays fixed whereas in
the state of the art it increases at a logarithmic rate. In this
way, Monkey dominates the state of the art by an increas-
ingly large margin as the number of entries increases.
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Figure 9: Monkey simplifies tuning by eliminating the depen-
dence of lookup cost on the buffer size.

2. Lookup cost is independent of the entry size, and so it does
not increase for data sets with larger entry sizes.

3. Lookup cost is independent of the buffer size. This simpli-
fies tuning relative to the state of the art, because we do not
need to carefully balance main memory allocation between
the buffer and filters to optimize lookup performance.

Next, we compare Monkey to the state of the art when M f ilters ≤
Mthreshold . In the state of the art (Column b, Rows 2 and 3 in Table
1), lookup cost decreases at a logarithmic rate as Mbu f f er increases
because it absorbs more of the smaller levels. In Monkey (Col-
umn d, Rows 2 and 3), lookup cost decreases at a logarithmic rate
as M f ilters increases since more of the deeper levels have Bloom
filters. Monkey improves upon the state of the art by shaving an
additive factor of O(logT (E)) from lookup cost, where E is the en-
try size. The reason is that Bloom filters are only sensitive to the
number of entries rather than their sizes. This means that lookup
cost in Monkey does not increase for data sets with larger entries.

Monkey dominates the state of the art for all data sets and tun-
ings because it allocates main memory optimally among the Bloom
filters thereby minimizing lookup cost.

Exploring Limiting Behavior. We now focus on the limiting be-
havior of the lookup cost with respect to the size ratio. This is
shown in Rows 1 and 4 of Table 1. We also plot Figure 8 to help
this discussion. Figure 8 is an extension of Figure 4 from Section
2 where we mapped the design space of LSM-trees with respect to
the impact on lookup and update cost. Figure 4 includes Monkey
in addition to the existing state of the art. As T approaches its limit
value of Tlim for both leveling and tiering, the number of levels L
approaches 1. When T = Tlim, Monkey and the state of the art both
degenerate into a log and a sorted array with tiering and leveling re-
spectively, and so their performance characteristics converge. For
all other values of T in-between, Monkey dominates the state of the
art by reducing the lookup cost, hence reaching the Pareto curve.
Analyzing Main Memory Allocation. We now analyze the impact
of allocating main memory between the filters and buffer on lookup
and update cost. In Figure 9, we plot lookup cost and update cost
with Monkey and the state of the art as we vary the relative sizes of
the buffer and the filters4. We define the amount of main memory
excluding the fence pointers that is to be divided between the fence
pointers and buffer as M̂ bits, and so M̂ = Mbu f f er +M f ilters. On the
4The limits on the y-axis are drawn for M f ilters > Mthreshold .

x-axis (log scale), we increase Mbu f f er at the expense of M f ilters
from one disk page (B ·E bits) to M̂ bits, in which case the Bloom
filters cease to exist (i.e., M f ilters = 0). While the terms in the figure
are general, the curves are drawn using our models in Subsection
4.2 for the configuration outlined at the end of the subsection. The
term X is used to adjust the y-axis for leveling and tiering.

The top part of Figure 9 reveals that Bloom filters in the state of
the art actually harm lookup performance for a significant portion
of the space because the main memory that they occupy is better-
off allocated to the buffer. Monkey removes this performance con-
tention thereby simplifying system tuning by making lookup cost
independent of the buffer size, provided that M f ilters >

Mthreshold
T L

as per Equation 8. As the buffer continues to grow, however, the
Bloom filters shrink and eventually cease to exist, at which point
the curves for Monkey and the state-of-the-art converge. The bot-
tom part of Figure 9 illustrates that increasing the buffer size de-
creases update cost but incurs diminishing returns as the update
cost decreases at a logarithmic rate. The overall insight is that it is
desirable to set the buffer size as large as possible to reduce update
cost while still keeping it below the point where it begins to signif-
icantly harm lookup cost. We mark this in Figure 9 as the “sweet
spot”. In the next subsection, we give a strategy for how to allocate
main memory among the filters and buffer using this insight.

4.4 Tuning Based on Workload,
Hardware and SLAs

We now show how to navigate the LSM-tree design space. Mon-
key achieves this by being able to precisely trade among lookup
cost, update cost, and main memory footprint by controlling four
tuning parameters: the merge policy (tiering vs. leveling), the size
ratio, the amount of main memory allocated to the filters, and the
amount of main memory allocated to the buffer. We show how to
tune these parameters with respect to the dataset (number and size
of entries), the workload (proportion of lookups and updates), and
the storage medium (cost ratio between reads and writes, and size
of disk blocks). We model the worst-case throughput in terms of
these parameters, and we devise an algorithm that finds the tuning
that maximizes throughput. In Table 2 we list new terms.
Modeling Throughput. First, we model the average operation cost
θ by weighting the zero-result point lookup cost R, the non-zero
result point lookup cost V , the range lookup cost Q, and the update
cost W from Equations 7, 9, 10 and 11 by their proportion in the
workload represented by the terms r, v, q and w respectively (note
that r+ v+q+w = 1). The result is Equation 12.

θ = r ·R+ v ·V +q ·Q+w ·W (12)

To obtain the worst-case throughput τ, we take the inverse of the
average operation cost θ multiplied by Ω, the amount of time to
perform a read to secondary storage. The result is Equation 13.

τ = 1/(θ ·Ω) (13)

Tuning the Size Ratio and Merge Policy. The merge policy and
size ratio are complementary means of navigating the same trade-
off continuum. We devise a divide and conquer algorithm that lin-
earizes this continuum into a single dimension and finds the tuning
that maximizes throughput. Figure 10 illustrates an example of
the first three iterations of the algorithm to find the optimal tuning
marked as “target”. In Appendix D we give the full algorithm

The algorithm first sets T to 2 and computes θ for this tuning. It
then iteratively divides the space into two and computes θ1 and θ2
for the center of each. If either θ1 or θ2 is smaller than θ, we narrow
down on that partition of the space in the next iteration. Otherwise,
we remain at the same point, but we probe points that are twice as
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Term Definition Units
r Proportion of zero-result point lookups
v Proportion of non-zero-result point lookups
w Proportion of updates
q Proportion of range lookups
M̂ Main memory to divide between the filters and buffer bits
θ Average operation cost in terms of lookups I/O
Ω Time to read a page from persistent storage sec
τ Worst-case throughput I/O / sec

Table 2: Table of terms used for tuning.
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Figure 10: Monkey divides and conquers the design space to
find the tuning that maximizes throughput.

close to the current point. This algorithm runs in O(log2(Tlim)) time
since there are O(Tlim) possible tunings and since we halve the size
of the problem in each iteration. In practice, it runs in milliseconds.

Using this algorithm, we can also impose upper-bounds on lookup
cost or update cost to support different service-level agreements
(SLAs). To do so, the algorithm discards configurations for which
either lookup or update cost exceeds an imposed upper-bound. This
is analogous to restricting the search space by setting a horizontal
limit for lookup cost or a vertical limit for update cost in Figure 10.
Tuning Main Memory Allocation. We introduce a three-step strat-
egy for allocating the available main memory M̂ between the buffer
and filters. Equation 8 shows that when M f ilters <

Mthreshold
T L the filters

are too small to yield any benefit, and so step one is to always al-
locate the first min(M̂, Mthreshold

T L ) bits of M̂ to the buffer. In step two,
we allocate 5% to the buffer and 95% to the filters of the remaining
main memory. This method approximates the sweet spot in Figure
9. We continue following step two until the I/O overhead due to
false positives becomes negligible (e.g., compared to the CPU and
RAM overhead of probing a Bloom filter, which we approximate
to be in the order of a microsecond). In a disk-based system, seek
latency is ≈ 10 milliseconds. This means that when the sum of
false positives R in Equation 7 reaches the order of 10−4, the aver-
age contribution of I/O to lookup latency becomes ≈ 1 µs, which is
insignificant compared to other system overheads. The analogous
threshold value of R for a flash-based system is 10−2 since a read
I/O to a flash device is in the order of tens to hundreds of microsec-
onds. If there is more main memory in our budget beyond step two,
we allocate it to the buffer to further reduce update cost.

5. EXPERIMENTAL ANALYSIS
We now proceed to experimentally evaluate Monkey against state-

of-the-art designs. We first show that Monkey’s method of tun-
ing the Bloom filters significantly reduces lookup cost across the
whole design space and for various workloads. We then demon-
strate Monkey’s ability to navigate the design space to find the de-
sign that maximizes throughput for a given application workload.

Experimental Setup. For experimentation we use a machine with
a 500GB 7200RPM disk, 32GB DDR4 main memory, and 4 2.7GHz
cores with 8MB L3 cache. The machine is running 64-bit Ubuntu
16.04 LTS, and we run the experiments on an ext4 partition with
journaling turned off.
Implementation. We implemented Monkey on top of LevelDB,
which is a well-known and widely used LSM-tree based key-value
store, representative of the state of the art. The current implemen-
tation of LevelDB comprises a fixed point in the design space. It
only supports leveling as a merge policy, it has a fixed, hard-coded
size ratio, and it assigns the same FPR to filters across all levels.
We implemented Monkey by adding support for tiering, different
size ratios, and optimal FPRs for filters across different levels (by
embedding our algorithm from Appendix C). To enable an apples
to apples comparison, in all experiments Monkey only differs from
LevelDB in how it allocates Bloom filters, and we use the same
default values for all other parameters. The default configuration
is: size ratio is 2 (the size ratio at which leveling and tiering be-
have identically); buffer size is 1 MB; the overall amount of main
memory allocated to all Bloom filters is M f ilters

N = 5 bits per element
(though Monkey allocates these bits differently across different lev-
els). We vary these parameters one at a time to compare across a
wide range of the design space. Similarly to recent versions of
RocksDB we implemented direct I/O to be able to fully control the
memory budget. In addition, all reported experiments in the main
part of the paper are set with the block cache of LevelDB and Mon-
key disabled. This represents a worst case scenario where there is
not enough memory for a cache and it allows us to measure the im-
pact of Monkey on the pure LSM-tree structure. In Appendix F, we
show that Monkey maintains its advantages when there is enough
memory to devote to a block cache.
Default Set-up. Unless otherwise mentioned the default experi-
mental set-up is as follows. The database is initially empty. We in-
sert 1GB of key-value entries where each entry is 1KB in size. The
entries are uniformly randomly distributed across the key space and
inserted at a random order. After the initialization phase, we issue
16K zero-result point lookups which are uniformly randomly dis-
tributed across the key space. (We repeat several variations of this
set-up with different data sizes and query workloads).
Metrics. We repeat each experimental trial (data loading and queries)
three times. For each trial, we measure the average lookup latency
and the number of I/Os per lookup. The error bars in our figures
represent one standard deviation for lookup latency across trials.
Monkey Scales Better with Data Volume. In the first experiment,
we show that Monkey improves lookup latency by an increasing
margin as the data volume grows. We set up this experiment by
repeating the default experimental setup multiple times, each time
using more data entries.

Results are shown in Figure 11 (A). Lookup latency for the Lev-
elDB increases at a logarithmic rate as the number of data entries
increases, as predicted by our cost model in Section 4.3. The reason
is that with more data entries the number of levels in the LSM-tree
increases at a logarithmic rate, and lookup latency for LevelDB is
proportional to the number of levels. In contrast, Monkey maintains
a stable lookup latency as the number of entries increases, as also
predicted by our cost models. The reason is that Monkey assigns
exponentially decreasing FPRs to filters at lower levels, and so the
average number of I/Os per lookup converges to a constant that is
independent of the number of levels. Overall, Monkey dominates
LevelDB by up to 80%, and its margin of improvement increases as
the number of entries grows. The horizontal dotted line in Figure
11 (A) shows how lookup latency corresponds to disk I/Os. The
average number of I/Os per lookup is lower than one because the
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Figure 11: Monkey improves lookup cost under any (A) number of entries, (B) entry size, (C) amount of memory, (D) lookup locality,
and (F) merge policy and size ratio. It navigates the design space to find the design that maximizes throughput (F).

lookups target non-existing keys, and so they do not issue I/Os most
of the time due to the filters.

Figure 11 (B) depicts results for a similar experiment, with the
difference that this time we keep the number of data entries fixed
and we instead increase the entry size. This has the same impact on
performance and for the same reasons as described above.
Monkey Needs Less Main Memory. In this experiment, we show
that Monkey can match the performance of LevelDB using signif-
icantly less main memory. We set up this experiment by repeating
the default experimental setup multiple times, each time using a
different number of bits-per-entry ratio allocated to the filters. The
results are shown in Figure 11 (C). When the number of bits per en-
try is set to 0, both Monkey and LevelDB degenerate into an LSM-
tree with no filters, and so lookup cost is the same. As we increase
the number of bits per entry, Monkey significantly reduces lookup
latency. Eventually, the filters for both systems become so accu-
rate that the number of I/Os drops to nearly 0, at which point the
curves nearly converge. Overall, with the exception of the extreme
case of no memory budget for the filters, Monkey can match the
performance of LevelDB with a smaller memory footprint (up to
≈ 60% smaller in this experiment, though the asymptotic improve-
ment of Monkey implies that the margin of improvement increases
as a function of the number of entries).
Monkey Improves Lookup Cost for Different Workloads. This
experiment shows that Monkey significantly improves lookup la-
tency for non-zero-result lookups across a wide range of tempo-
ral locality in the query workload. To control temporal locality,
we define a coefficient c ranging from 0 to 1 whereby c percent
of the most recently updated entries receive (1− c) percent of the
lookups. When c is set to 0.5, the workload is uniformly randomly
distributed. When it is above 0.5, recently updated entries receive
most of the lookups, and when it is below 0.5 the least recently
updated entries receive most of the lookups. We set up this exper-
iment by repeating the experimental setup multiple times, with the
difference that during the query phase we issue lookups to existing
keys based on the temporality coefficient.

The results are shown in Figure 11 (D). For both Monkey and
LevelDB, each lookup involves at least one I/O for the target key,
and so lookup latency comprises at least one disk seek. We mark
this source of latency using the dotted gray line, which represents
the approximate time to perform one seek on our hard disk. Any
contribution to latency above this line arises due to false positives.

A key observation in Figure 11 (D) is that lookup latency for
both Monkey and LevelDB is largely insensitive to temporal local-
ity. The reason is that in an LSM-tree the most recently updated
entries are at the shallower levels, which have exponentially lower
capacities than the largest level. Hence, even a lookup for the most
recently updated 10% of the entries has to probe most levels on
average. The curve for LevelDB slightly decreases as temporal lo-
cality increases because a lookup traverses fewer levels on average
before finding the target key and terminating, and so fewer false
positives take place. For Monkey, lookup latency is even less sensi-
tive to temporal locality. The reason is that all but the last level have
significantly lower FPRs than for LevelDB. Even though a lookup
traverses fewer levels on average before terminating as temporal lo-
cality increases, the low FPRs at these lower levels mean that false
positives are rare, and so they contribute very modestly to latency
in all cases. In this way, Monkey improves lookup latency by up to
30% in this experiment for non-zero-result lookups across a wide
range of temporal locality in the query workload.

Monkey Reaches the Pareto Curve. In this experiment, we show
that Monkey reaches the Pareto frontier and is therefore able to nav-
igate a better trade-off continuum between update cost and zero-
result lookup cost. We set up this experiment by repeating the ex-
perimental setup multiple times, each time using a different con-
figuration of size ratio and merge policy. We measure the average
latencies of lookups and updates and plot them against each other
for Monkey and LevelDB. The result is shown in Figure 11 (E).
The key observation is that for any configuration, Monkey achieves
a significantly lower lookup cost than LevelDB due the tuning of its
Bloom filters, as predicted by our analysis in Section 4.3. Hence,
Monkey shifts the trade-off curve downwards to the Pareto fron-
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tier. As a result, Monkey improves lookup cost by up to 60%, and
this gain can be traded for an improvement of up to 70% in update
cost by adjusting the size ratio and merge policy to become more
update-friendly.
Monkey Navigates the Design Space to Maximize Throughput.
In our next experiment we demonstrate Monkey’s ability to navi-
gate the design space to find a configuration that maximizes through-
put for a given application workload. We set up this experiment as
follows. We repeat the default experimental setup multiple times,
with the difference that during the query processing phase we vary
the ratio of zero-result lookups to updates from 10% to 90%. We
compare two instances of Monkey to LevelDB. The first, named
Fixed Monkey, is the default configuration of Monkey that we have
experimented with so far. The second, named Navigable Monkey,
is the full version that navigates the design space to find the merge
policy to size ratio that gives the balance between lookup cost and
update cost (and the corresponding optimal Bloom filters’ alloca-
tion) that maximizes throughput. LevelDB and Fixed Monkey have
a fixed size ratio of 2 (i.e., the point in the space at which leveling
and tiering behave identically).

Results are shown in Figure 11 (F). For each data point in Nav-
igable Monkey, we show the configuration that it adopts (T stands
for tiering, L for leveling, and the number is the size ratio). A key
observation is that the curve for Navigable Monkey is bell-shaped.
The reason is that the more extreme the workload tends towards one
operation type, the more possible it is to achieve a higher through-
put as a single configuration handles most operations well. Overall,
Fixed Monkey significantly improves upon LevelDB, and Naviga-
ble Monkey significantly improves on Fixed Monkey. Navigable
Monkey more than doubles throughput relative to LevelDB by be-
ing able to reach the Pareto curve and to navigate the design space.

6. RELATED WORK
LSM-Based Key-Value Stores. As state-of-the-art LSM-tree based
key-value stores [4, 12, 15, 18, 19, 21, 29, 34], Monkey uses Bloom
filters in main memory to probabilistically enable lookups to skip
probing runs of the LSM-tree that do not contain a target key. State-
of-the-art LSM-tree based key-value stores assign the same false
positive rate to every Bloom filter regardless of the size of the run
that it corresponds to [4, 12, 15, 18, 19, 21, 29, 34]. In this work,
we observe that worst-case lookup cost is proportional to the sum
of the false positive rates of all filters. Assigning equal false posi-
tives rates to all of them, however, does not minimize this sum.

In contrast, Monkey minimizes the sum of false positive rates
by setting the false positive rate for each Bloom filter to be pro-
portional to the number of entries in the run that it corresponds
to (meaning that runs at shallower levels have exponentially lower
false positive rates). This reduces the asymptotic complexity of
worst-case lookup cost, and in practice it reduces lookup latency
by at least 50%−80% without losing anything.
Holistic Tuning. Existing LSM-tree based key-value stores do not
allow to easily trade among lookup cost, update cost and main
memory footprint. For example, LevelDB [19] hard-codes the size
ratio between levels to 10 with leveled compaction, RocksDB [15]
and LSM-trie [35] only enable leveled or tiered compaction respec-
tively, and they use a fixed number of bits per element for all Bloom
filters. WiredTiger [34] supports dynamic values for size ratio hav-
ing as starting point 15, however, it also uses a fixed number of
bits per element for all Bloom filters (setting as default 16 bits
per element). In addition, the balance between lookup cost, up-
date cost and main memory footprint depends on a combination of
interdependent tuning and environmental parameters that must be

precisely co-tuned. In this way, tuning in existing key-value stores
becomes effectively a trial and error process that depends on intu-
ition and experience of highly qualified engineers.

Monkey represents a step to make this process more automatic
and easy. It exposes critical tuning knobs that influence worst-
case lookup cost, update cost, and main memory footprint. More-
over, it uses novel worst-case closed-form models that enable opti-
mizing throughput and answering what-if questions regarding how
changes in environmental parameters affect performance.

Recent complementary work [23] uses a numeric method to es-
timate update cost in a leveled LSM-tree when there is a skew in
the update pattern. We do one step further here; we model both
lookup cost and update costs under both leveled and tiered LSM-
trees thereby enabling a holistic tuning over the entire design space.
De-amortizing Merge Operations. To maintain stable performance,
all LSM-tree based key-value stores spread the work done by merge
operations over time. Some stores pace merge operations directly
with respect to application updates [9, 22, 29]. Others partition
a run into multiple files (i.e., often called Sorted String Tables or
SSTables for short) and merge one file at a time with the set of files
in the next level that have overlapping ranges [4, 12, 15, 18, 19, 21,
29, 34]. Other recent work [1] proposes merging runs on dedicated
servers. Since our work focuses on the total amount of work done
by merge operations rather than how this work is scheduled, any of
the above techniques can be used in conjunction with Monkey.
Reducing Merge Overheads. To reduce the volume of data that
is copied during merge operations, WiscKey [26] decouples values
from keys and stores values on a separate log. This technique is
compatible with Monkey’s core design, but it would require adapt-
ing the cost models to account for (1) only merging keys, and (2)
having to access the log during lookups.

VT-tree [30] proposes to avoid including portions of runs that
do not overlap during merge operations. This technique is used in
major key-value stores, where an SSTable is simply moved to the
next level if there are no SSTables in the next level with overlapping
key-ranges [4, 12, 15, 19, 21, 29]. Our implementation on top of
LevelDB takes advantage of this technique.
In-Memory Stores. Key-value stores such as Redis [28] and Mem-
cached [17] store application data in main memory rather than per-
sistently in secondary storage. We have focused on mapping the
design space of persistent key-value stores in this paper, and so this
work is orthogonal to in-memory efforts. However, given that sim-
ilar trade-offs exist in a pure in-memory environment in order to
minimize cache-misses, we expect that a similar study to map the
design space of in-memory key-value stores can be beneficial.

7. CONCLUSION
We show that LSM-tree based key-value stores exhibit an intrin-

sic trade-off among lookup cost, update cost, and main memory
footprint. However, all existing designs strike a suboptimal and
difficult to tune balance among these metrics. We present Monkey,
an LSM-based key-value store that reaches the Pareto performance
curve by allocating the Bloom filters so as to minimize the worst-
case lookup cost. Monkey uses a closed-form model to navigate
the design space to find the holistic tuning that maximizes through-
put under a given main memory budget, application workload, and
storage medium.
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APPENDIX
A. HOW TO USE MONKEY

In this paper, we present Monkey as a key-value store. Our
work, though, is applicable to any kind of application where one
would use an LSM-tree. We summarize below the kinds of scenar-
ios where our study can prove useful.
Any LSM-Based Key-Value Store. Any LSM-based key-value
store can adopt the Monkey way of assigning false positive rates
across its bloom-filters so that it can reach the optimal Pareto curve.
Tuning of LSM-Trees. The closed form formulas provided in this
paper can be used to statically tune key-value stores for a given sce-
nario (read/write ratio). As long as the tuning knobs are exposed,
any key-value store can use these formulas to be tuned along the
Pareto curve.
Adaptive Key-Value Stores. A future class of key-value stores
may adaptively switch from one tuning setting to another one. The
formulas provided in this paper can be the seed for taking these
decisions (along with the transformation costs).
Any LSM-Tree Application. LSM-trees are used in many appli-
cations. Any scenario can benefit from our analysis to improve
throughput if the performance of the LSM-tree for point lookups is
in the critical path.

B. OPTIMAL FALSE POSITIVE RATES
In this appendix, we derive the optimal false positive rates (FPRs)

p1...pL by optimizing lookup cost R in Equation 3 with respect to
the main memory footprint M f ilters in Equation 4. To do so, we
use the method of Lagrange Multipliers to find the FPRs that min-
imize Equation 4 subject to Equation 3 as a constraint. We show
the detailed derivation for leveling, and we then give the result for
tiering as it is a straight-forward repetition of the process with the
formulation of Equation 3 for tiering. We first express Equation 3
for leveling and Equation 4 in the standard form:

g(pL...p1,R) = pL + pL−1 + ...+ p1−R

y(pL...p1,N,T ) =− N
ln(2)2 ·

T −1
T
·

L

∑
i=1

ln(pi)

T L−i

We can now express the Lagrangian in terms of these functions:

L(pL...p1,N,T,R,λ) = y(pL...p1,N,T )+λ ·g(pL...p1,R)

Next, we differentiate the Lagrangian with respect to each of the
FPRs p1...pL, and we set every partial derivative to 0. Thus, we
arrive to the following system of equations.

N
ln(2)2 ·λ ·

T −1
T

= PL−i ·T i

We equate these equations to eliminate the constants.

PL ·T 0 = PL−1 ·T 1 = ...= P1 ·T L−1

We now express all of the optimal FPRs in terms of the optimal
FPR for Level L: PL.
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PL−i =
PL

T i

Next, we express Equation R in terms of only T and PL by plug-
ging these FPRs into Equation 3. We observe that R is now ex-
pressed in terms of a geometric series. We simplify it using the
formula for the sum of a geometric series up to L elements.

R =
pL

T 0 +
pL

T 1 + ...+
pL

T L−1

= pL ·
( 1

T )
L−1

1
T −1

(14)

We now rearrange in and express generically in terms of the FPR
for Level i. The result appears in Equations 15 and 16 for leveled
and tiered LSM-trees respectively. These equations take R, T and
L as parameters, and they return FPR prescriptions for any Level i
such that the least possible amount of main memory M f ilters is used
to achieve the user-specified value of R.

Leveling

pi =
R

T L−i ·
T L−1

T L−1
· (T −1)

for 0 < R≤ T L−1
T L−1 ·

1
T −1

and 1≤ i≤ L
(15)

Tiering

pi =
R

T L−i ·
T L−1

T L−1
· (T −1)

for 0 < R≤ T L−1
T L−1 ·(T −1)

and 1≤ i≤ L
(16)

The key difference between Equations 15 and 16 is that the op-
timal false positive rate prescribed to any Level i is (T − 1) lower
under tiering than under leveling. The reason is that with tiering
each level contains (T − 1) runs, and so the false positive rate has
to be (T −1) times lower to keep R fixed.
Supporting the Whole Range for R. The highest possible value
of R is the number of runs in the LSM-tree: L and L · (T − 1) for
leveling and tiering respectively. Nevertheless, Equations 15 and
16 are undefined when R is set above T L−1

T L−1 · 1
T−1 under leveling

and T L−1
T L−1 under tiering. The reason is that as R grows beyond these

bounds, the FPR prescriptions begin to exceed 1. This violates the
constraint that a false positive rate can be at most 1.

We now show how to adapt Equations 15 and 16 to handle larger
values of R. The first key insight is that the FPR at level i is strictly
greater than the FPR at level i−1. This means that as R grows, pi
converges to 1 before pi−1. Therefore, as R increases the FPRs con-
verge to 1 for the different levels in the order of deepest to shallow-
est. Hence, we can denote Lun f iltered as the number of levels from
level L and down whose FPRs converged to 1, whereas L f iltered is
the number of levels from Level 1 and up with FPRs lower than
1. This partitioning of the levels is shown in Figure 6. Note that
L = L f iltered +Lun f iltered .

The second key insight is that the sum of FPRs for the filtered
levels L f iltered can never be greater than 2 with leveling or 2 · (T −
1) with tiering because the FPR at the largest of these levels with
filters is at most 1, and the rest of the FPRs are exponentially de-
creasing. This means that if R is greater than these bounds, then
Lun f iltered must be non-zero. In fact, it implies that Lun f iltered is
equal to max(0,bR−1c) with leveling and to max(0,b R−1

T−1 c) with
tiering.

The third key insight is that we can now apply Equations 15 and
16 on a smaller version of the problem with Lun f iltered levels with
Bloom filters and where the sum of false positives for these levels is
R−Lun f iltered with leveling and R−Lun f iltered ·(T−1) with tiering.

Our adaptations appear in Equations 17 and 18 respectively. We use
Lu to denote Lun f iltered in these equations for brevity.

Leveling

pi =





1, if i > L−Lu

R−Lu
T (L−Lu)−i ·

T (L−Lu)−1 ·(T−1)
T (L−Lu)−1

,else

for 0 < R≤ L

and 1≤ i≤ L

and Lu = max(0,bR−1c)
(17)

Tiering

pi =





1, if i > L−Lu

R−Lu·(T−1)
T (L−Lu)−i · T (L−Lu)−1

T (L−Lu)−1
, else

for 0 < R≤ L · (T −1)

and 1≤ i≤ L

and Lu = max(0,b R−1
T−1 c)

(18)

Simplification. As the number of levels L grows, Equations 15 and
16 converge to Pi =

R
T L−i+1 · (T −1) with leveling and to Pi =

R
T L−i+1

with tiering. These simplified equations already accurately approx-
imate the optimal false positive rates when L is ≈ 5 or above. We
can use this insight to simplify Equations 17 and 18 into Equa-
tions 5 and 6, which appear in Section 4.1. For practical analysis
and implementations we recommend using Equations 17 and 18.

B.1 Modeling Memory Footprint and
Lookup Cost

We now show how to derive a closed-form model for main mem-
ory utilization for the filters M f ilters and for lookup cost R in Mon-
key. We begin with the assumption that there are filters at all levels,
but we later extend the model to also support the case where there
are no filters at all levels (i.e., Lun f iltered = 0). Our step-by-step
example is for leveling, but the case for tiering is identical, except
we need to use Equation 6 rather than Equation 5. We first plug
in the optimal false positive rates in Equation 5 (for leveling) into
Equation 4, which gives the main memory utilization by the Bloom
filters with respect to the false positive rates.

M f ilters =−
N

ln(2)2 ·
T −1

T
·
(

L

∑
i=0

1
T i ln

(
R

T −1
T 1+i

))

We then apply logarithm operations to get the following:

M f ilters =−
N

ln(2)2 ·
T −1

T
· ln


R1+ 1

T + 1
T 2 +... · (T −1)1+ 1

T + 1
T 2 +...

T
1

T 0 + 2
T 1 + 3

T 2 +...




To simplify the above equation, we apply the formula for the sum
of geometric series to infinity on the exponents of the numerator,
and we apply the sum of an arithmetico-geometric series to infinity
on the exponents of the denominator. We get the following after
some further simplification.

M f ilters =





N
ln(2)2 · ln

(
T

T
T−1

R · (T −1)

)
with leveling

N
ln(2)2 · ln

(
T

T
T−1

R

)
with tiering

(19)

We now extend this equation to the case where Lun f iltered > 0.
In this case, the filters for Bloom filters whose FPRs converged to
zero take up no space, and so we only need to find the amount of
space occupied by filters in the shallower L f iltered levels. To do so,
we adjust Equation 19 by applying it on a smaller version of the
problem with N/T Lun f iltered entries (i.e., the number of entries in the
shallower L f iltered levels), and we discount the I/Os to the unfiltered
levels by subtracting the number of runs in those levels from R.
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M f ilters =





N
ln(2)2 ·T Lun f iltered

· ln
(

T
T

T−1

(R−Lun f iltered) · (T −1)

)
for leveling

N
ln(2)2 ·T Lun f iltered

· ln
(

T
T

T−1

R−Lun f iltered · (T −1)

)
for tiering

(20)

Lookup Cost. We now rearrange Equation 19 to be in terms of
lookup cost R.

R f iltered =





T
T

T−1

T −1
· e−

M f ilters
N ·ln(2)2

with leveling

T
T

T−1 · e−
M f ilters

N ·ln(2)2
with tiering

(21)

The above equation is still not adapted to the case where M f ilters
is so low that some of the filters at deeper levels cease to exist. To
adapt it to this case, we first of all find the threshold point Mthreshold
at which the FPR for filters at the highest level has converged to
1. To do so, we plug in the bounds for R which are T

T−1 and T
under tiering and leveling respectively into Equation 19. The result
simplifies into the following for both leveling and tiering.

Mthreshold = N · 1
(T −1)

· ln(T )
ln(2)2

As M drops below Mthreshold , every time that it is reduced by a
factor of T , the filters at the next deeper level converge to 1. Thus,
we can compute the number of levels with no filters as shown in
Equation 22.

Lun f iltered =





0, Mthreshold ≤M f ilters

dlogT

(
Mthreshold
M f ilters

)
e, Mthreshold

T L ≤M f ilters ≤Mthreshold

L, 0≤M f ilters ≤ Mthreshold
T L

(22)

Now, in the deepest levels with no filters, we need to probe every
runs, which is Lun f iltered with leveling and (T −1) ·Lun f iltered with
tiering. In the levels with filters, the average number of runs we
must probe is equivalent to the sum of their false positives, and so
we can apply Equation 21 on a smaller version of the problem with
N/T Lun f iltered levels. This becomes Equation 7 in Section 4.2.

C. AUTO-TUNING THE FILTERS
In Section 4.1 we showed that the optimal FPRs are proportional

to the number of entries in each level. Our analysis assumed that
the entry size is fixed, and so we could easily infer the number of
elements in each level and thereby allocate the optimal FPR to its
filters. In practice, however, the average entry size may be variable,
or it may change over time. If this is the case, we can no longer infer
the number of elements in each level. To handle this, we extend
the implementation of Monkey to record the number of entries for
each run as metadata. We then use this metadata to find the optimal
false positive rates using Algorithm 1 (and auxiliary Algorithms 2
and 3). Algorithm 1 takes as parameters (1) the overall amount
of main memory M f ilters to allocate the Bloom filters, and (2) a
runs vector with one pair for each run where runs[i].entries is the
number of entries and runs[i].bits is the number of bits allocated
to the Bloom filter of the ith run. The algorithm iteratively moves
main memory among the different Bloom filters until the sum of

their false positives is minimized. This algorithm does not need
to run often, and it takes a fraction of a second to execute on our
experimentation platform.

1 AutotuneFilters (M f ilters,runs)
2 ∆ = M f ilters;
3 runs[0] = M f ilters;
4 R = runs.length−1+ eval(runs[0].bits,runs[0].entries);
5 while ∆≥ 1 do
6 Rnew = R;
7 for int i = 0; i < runs.length−1; i++ do
8 for int j = i+1; i < runs.length; j++ do
9 Rnew = TrySwitch(runs[i],runs[ j],∆,min);

10 Rnew = TrySwitch(runs[ j],runs[i],∆,min);
11 end
12 end
13 if Rnew == R then
14 ∆ = ∆/2;
15 R = Rnew;
16 end
17 return R;

Algorithm 1: Allocate M f ilters to minimize the sum of FPRs.

1 TrySwitch (run1, run2, ∆, R)
2 Rnew = R− eval(run1.bits,run1.entries)− eval(run2.bits,run2.entries)+

eval(run1.bits+∆,run1.entries)+ eval(run2.bits−∆,run2.entries);
3 if Rnew < R and run2.bits−∆ > 0 then
4 R = Rnew;
5 run1.bits += ∆;
6 run2.bits−= ∆;
7 return R;
Algorithm 2: Moves ∆ bits to run1 from run2 if it reduces R.

1 eval (bits, entries)
2 return e−(bits/entries)·ln(2)2

;
Algorithm 3: Returns the false positive rate of a Bloom filter.

D. AUTO-TUNING THE SIZE RATIO AND
MERGE POLICY

In this Appendix, we give the complete auto-tuning algorithm.
This algorithm linearizes the tuning space into one dimension and
performs a binary search over it. It consists of Algorithm 5, which
computes the normalized operation cost θ. The body of the algo-
rithm is in Algorithm 4, where we perform the binary search over
the tuning space.

E. BASELINE
In this Appendix we model the expected zero-result point lookup

I/O cost for the state of the art Rart . First we derive equations that
reflect how the state of the art assigns false positive rates to fil-
ters under both leveling and tiering. We do so by setting all false
positive rates p1, p2...pL in Equation 3 to be equal to each other,
simplifying, and rearranging. The results are Equations 23 and 24.

Leveling

pi =
Rart

L

for 0 < Rart ≤ L

and 1≤ i≤ L

(23)

Tiering

pi =
Rart

L · (T −1)

for 0 < Rart ≤ L · (T −1)
and 1≤ i≤ L

(24)

Second, we plug the false positive rates in Equations 23 and 24
into Equation 4 and simplify by applying logarithm operations and
sums of geometric series. The result is shown in Equation 25.
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(A)

no cache

(B)

20% cache

(C)

40% cache

≈1 I/Os per lookup

Figure 12: Monkey maintains its advantages with a block cache, and it can also utilize a cache to query recently touched keys.

1 Autotune ()
2 i = 0;
3 θ = compute(i) ;
4 ∆ = 1

2 · N·E
Mbu f f er

;

5 while ∆≥ 1 do
6 θ1 = compute(i+∆) ;
7 θ2 = compute(i−∆) ;
8 if θ1 < θ and θ1 < θ2 then
9 θ = θ1 ;

10 i = i+∆;
11 else if θ2 < θ then
12 θ = θ2 ;
13 i = i−∆;
14 ∆ = ∆/2;
15 end
16 Tbest = | i |+ 2;
17 mergebest = if i > 0 then tiering else leveling;

Algorithm 4: Finding the best size ratio and merge policy.

1 compute (i)
2 T =| i |+2;
3 merge = if i > 0 then tiering else leveling;
4 θ = θ(T,merge); // Equation 12
5 return θ ;

Algorithm 5: Linearizing the tuning space.

M f ilters =
N

ln(2)2 · (1−T−L) · ln
(

L
Rart

)
(25)

As L grows, the Equation converges into the following:

M f ilters =
N

ln(2)2 · ln
(

L
Rart

)

We can now rearrange in terms of R, for both leveling and tiering.

Rart =





L · e−M f ilters
N ·ln(2)2

, with leveling

L · (T −1) · e−M f ilters
N ·ln(2)2

, with tiering

for 0 < M f ilters ≤ N ·E

(26)

The corresponding big O notations of Rart are O(L ·e−M f ilters
N ) for

leveling and O(L ·T · e−M f ilters
N ) for tiering.

F. CACHING
In all experiments in the main part of the paper both LevelDB

and Monkey do not use a cache. We do that by explicitly disabling
the block cache from within LevelDB. We use this setup in order
to isolate the impact of the new strategy for Bloom filter allocation
to assess the potential of Monkey and its impact on the pure LSM-
tree structure. In this experiment, we enable the block cache and we

show that Monkey (1) maintains its advantage and (2) can utilize a
cache when recently accessed keys are queried.

We set-up this experiment as follows. We activate the block
cache feature of LevelDB, which caches recently accessed data
blocks (16 KB in our setup). We use three different settings whereby
the block cache size is 0%, 20% and 40% of the overall data vol-
ume. We repeat the default data loading setup from the main part
of the paper. Once data is loaded, we warm up the cache using
non-zero-result lookups with different temporal localities. To con-
trol temporal locality, we use the temporality coefficient c (as in the
experiment for Figure 11 (D) in Section 5) whereby c percent of the
most recently updated entries receive (1−c) percent of all lookups.
When the cache is warm (i.e., full), we continue issuing the same
workload and measure average lookup time. In this way, we test
for various workloads in terms of how frequently accessed keys we
query. By varying this parameter we are able to test various cases
in terms of the utility of the cache.

The results are shown in Figure 12. Figure 12 (A) serves as a ref-
erence by depicting performance when no cache is used. This is the
same as we have observed in previous experiments with Monkey
outperforming LevelDB across the whole workload range. We ob-
serve the same overall behavior with Monkey outperforming Lev-
elDB across the two other graphs in Figure 12 (B) and (C) when the
cache is enabled. The difference here is that when we query very
recently accessed keys, these keys will likely exist in the cache and
so they will not be processed through the LSM-tree. As a result,
as we query more recently accessed items, both Monkey and Lev-
elDB nearly converge. Monkey can utilize the cache for frequently
accessed items in the same way as LevelDB. An additional prop-
erty is that even when lookups mostly target a small set of entries
with a cumulative size that is much smaller than the overall cache
size (e.g., when c is set to 0.9 in Figure 12 (B) and (C)), Monkey
still maintains a small advantage (that collectively for many queries
becomes important). The reason is that the cache cannot store the
full set of frequently accessed entries and thereby eliminate I/O for
accessing them; it is a block cache and so it stores one 16 KB data
block for every recently accessed 1 KB key-value entry.5

Overall, Monkey can utilize the cache and maintains its perfor-
mance advantage due to better allocation of the false positive rates
across the Bloom filters. The Bloom filters and the cache mitigate
largely different sources of latency: false positives and true posi-
tives respectively. In this work we focused on tuning the Bloom
filters to reduce and control the rate of I/Os due to false positives.
Further investigation could be beneficial to also tune the cache to
reduce and control the rate of I/Os due to true positives.

5Further research to design a cache that caches key-value pairs in-
stead of blocks could be more effective although there might be
side-effects with cache maintenance.
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