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Abstract
Solid-State Drives (SSDs) have two key properties: (i) read/write
asymmetry, where writes are slower than reads, and (ii) access
concurrency, allowing multiple I/O operations in parallel to maxi-
mize the bandwidth. However, many applications treat reads and
writes equally and do not fully utilize the device concurrency, a
behavior observed in traditional database bufferpool managers.
To address this, we propose an Asymmetry & Concurrency-Aware
bufferpool manager (ACE) that batches writes based on the device’s
write concurrency and amortizes the high asymmetric write cost
by issuing them in parallel. ACE notably improves the application
performance (e.g., PostgreSQL) and is easy to integrate since it
can work as a wrapper around any existing page replacement pol-
icy. In this demonstration, we present a web simulation of the
ACE bufferpool manager integrated with three popular page re-
placement policies (LRU, CFLRU and LRU-WSR). The conference
participants can configure the simulation, view the real-time buffer-
pool animation and statistics, as well as run various experiments
to compare the performance of different page replacement poli-
cies and their ACE counterparts. The demonstration is available at
https://disc-projects.bu.edu/ACE/research.html.
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1 Introduction
Concurrency & Read/Write Asymmetry in SSDs. Solid-State
Disks (SSDs) have gained widespread adoption due to their fast
random access, high chip density, and low power consumption [1].
Additionally, their hierarchical internal architecture enables a high
degree of parallelism. Concurrent I/O operations are necessary to
fully utilize this potential and maximize the bandwidth [9]. For
example, there is a 40× increase in the observed read bandwidth of
a PCIe SSD (Dell P4510) when using full concurrency compared to
no concurrency [6]. The degree of concurrency (quantified by 𝑘) de-
pends on the device, access pattern and block size [6]. Furthermore,
since SSDs rely on NAND flash memory as their storage medium,
they are characterized by read/write asymmetry (quantified by 𝛼),
where writes can be up to one order of magnitude slower than
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reads [1]. However, some systems are not optimized for these traits,
leading to suboptimal use of SSD resources [5, 7].
Bufferpool Manager. Bufferpool is an important component of
the database management system (DBMS) that interacts with the
storage device. It maintains a set of pages in memory to reduce the
slow storage I/Os. When the requested page is not in the bufferpool,
it is fetched from the disk. If the bufferpool is full, the page replace-
ment policy selects a page for eviction, and writes it to the disk if
it is dirty. Therefore, one policy determines two distinct decisions:
(i) which page to evict and (ii) which page to write back. Some
bufferpool managers also employ a read-ahead policy to prefetch
pages. Overall, the design space of existing bufferpool manager
consists of two main components: (i) replacement policy (which
drives both eviction and writeback) and (ii) read-ahead policy.
Challenges. There are two major challenges associated with the
classical approach. First, existing bufferpool managers and popular
page replacement policies like LRU [4], Clock [3], FIFO [11] fail to
fully utilize the full SSD potential since these approaches do not
take advantage of the device concurrency, rather they write one
page at a time. Second, they do not account for read/write asymme-
try and treat reads and writes equally. For example, a dirty page
might be selected for eviction (and write-back) even if the incoming
page request was a read. However, since SSD writes take longer
than reads, exchanging a read for a write may be suboptimal [6].
Although there are flash-friendly approaches that evict clean pages
to reduce writes to the disk, such as CFLRU [10] and LRU-WSR [2],
they still exchange reads for writes.
Our approach. The research that led to this demonstration intro-
duces ACE [8], a novel bufferpool manager, that decouples write-
back decision from eviction and provides control over the number
of pages to evict or write-back concurrently. Figure 1(A) shows
the augmented bufferpool desgin space consisting of four parts: (i)
replacement algorithm, (ii) write-back policy, (iii) eviction policy,
and (iv) read-ahead policy. This design maintains two separate vir-
tual page orderings: one for write-back and the other for eviction.
Both virtual page orderings are determined by the underlying page
replacement algorithm, however, the write-back policy only tar-
gets the dirty pages. The write-back policy always writes multiple
dirty pages concurrently by utilizing the device’s write concurrency,
which in turn, amortizes the asymmetric write cost. The number
of pages selected for write-back depends on the optimal write con-
currency (𝑘𝑤) – how many writes the underlying SSD can perform
concurrently. The eviction policy evicts one or multiple pages at
the same time from the bufferpool to enable prefetching. A ma-
jor advantage of ACE is that it can be seamlessly integrated with
any existing page replacement policy and prefetching technique,
enabling our approach to augment any DBMS bufferpool manager.
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Figure 1: (A) The augmented bufferpool design space (RED denotes new components). (B) Abstract overview of ACE components.
(C) Workflow of LRU and ACE-LRU with and without prefetching, when 𝑛𝑤 = 𝑛𝑒 = 3.

Demonstration. Conference participants can interact with ACE
bufferpool manager in a web simulation, which provides the neces-
sary infrastructure to customize the workload (#operations, read-
heavy, write-heavy, skewness, etc.), configure SSD properties (size,
concurrency), vary the bufferpool size and select the page replace-
ment algorithm (LRU, CFLRU, LRU-WSR). The simulation provides
a real-time vizualization of the bufferpool state and various per-
formance metrics. This interface also allows the participants to
compare the performance of different page replacement policies
with their ACE implementations under different setups.

2 ACE Bufferpool Manager
Asymmetry & Concurrency-Aware Bufferpool Manager (ACE).
Figure 1(B) shows the architecture of ACE, a novel bufferpool design
that maximizes SSD utilization. The write-back policy exploits the
device’s write concurrency by writing pages in parallel, thus amor-
tizing the write cost. Similarly, the eviction policy allows evicting
multiple pages at once to allow concurrent prefetching and maxi-
mizes the read concurrency. ACE is easy to use and compatible with
any page replacement policy and prefetching algorithm. Figure 1(B)
shows that ACE is comprised of three components: (i) the Evictor,
(ii) the Writer, and (iii) the Reader. The evictor determines which
page(s) to evict, the writer writes dirty pages concurrently and the
reader prefetches pages. Now we discuss the working mechanism
of ACE and its components.
Operating Principle. Similar to a conventional bufferpool man-
ager when ACE recieves a page request, it first checks the bufferpool.
If the requested page is already present, the request is served imme-
diately. If the page is not found and the bufferpool is already full,
the page replacement policy selects a page to be evicted (referred
to as the top page). If the top page is clean, it is evicted as usual.
However, if the top page is dirty, ACE concurrently writes 𝒏𝒘 dirty
pages. The eviction depends on the prefetching configuration.
• enabled prefetching: ACE evicts 𝒏𝒆 pages, and concurrently
prefetches 𝒏𝒆 − 1 pages

• disabled prefetching: ACE evicts a single page
Writer exploits the parallelism of the storage device by concur-

rently writing back𝑛𝑤 pages. Through experimental evaluation, the
value of 𝑛𝑤 was set to 𝑘𝑤 (optimal write concurrency). 𝑘𝑤 writes
incur (almost) the same latency as a single write, effectively amor-
tizing the write cost and addressing the read/write asymmetry. The

pages selected for write-back are the next 𝑛𝑤 dirty pages that the
page replacement algorithm is likely to evict. Consequently, these
strategically batched writes ensure that subsequent page evictions
are cheap, as they are highly likely to target clean pages.

Evictor is responsible for selecting the pages to evict based on the
prefetching configuration. If the prefetcher is disabled, a single page
is evicted, otherwise𝑛𝑒 pages are evicted to allow the prefetching of
𝑛𝑒 − 1 pages. These pages are read concurrently, so a high 𝑛𝑒 value
can increase the read concurrency, however it may also reduce the
locality. To balance the trade-off, 𝑛𝑒 was empirically evaluated with
values ranging between 1 and read concurrency (𝑘𝑟 ). The optimal
value of 𝑛𝑒 was found to be 𝑘𝑤 , since previous write-back process
ensures that at least 𝑘𝑤 pages are clean.

Reader is responsible for prefetching pages from the storage
device. ACE can be integraded with any prefetching technique. Cur-
rently it has two prefetchers: a sequential prefetcher and a history
based prefetcher. In this demonstration, we disable prefetching since
prefetching is beneficial for only specific predictable workload.
ACE in action. Figure 1(C) demonstrates the workflow of LRU and
its ACE counterpart with prefetching disabled and enabled for a
device with write concurrency 3. In all cases the pages are ordered
from most recently used (mru) to least recently used (lru), where
D marks the dirty state and C marks the clean state. As the write
request for 𝑝7 arrives, the classical LRU policy evicts the top page 𝑝6
and fetches 𝑝7. As for ACE with or without prefetching, since 𝑛𝑤 = 3,
ACE selects 𝑝6 and two more least recently used dirty pages (𝑝2, 𝑝4)
for write-back. This maximizes the write concurrency, and allows
the subsequent evictions to target clean pages that do not require
expensive write-back. ACEwithout prefetching evicts only one page
from the buffferpool (𝑝6) while ACE with prefetching evicts 𝑛𝑒 = 3
pages (𝑝4, 𝑝5, 𝑝6) to prefetch two more pages (𝑝8 and 𝑝9).
Implementation and Result Summary.We implement ACE in
PostgreSQL 11.5 where the default page replacement policy is Clock
Sweep. We further implement 3 more page replacement policies
(LRU, CFLRU, LRU-WSR) and their ACE counterparts. We performed
extensive experimental evaluation of ACE. Some key findings are:
(i) ACE improves runtime by up to 32% for our synthetic workloads,
(ii) write-heavy workloads benefit the most from ACE, (iii) ACE
lowers runtime for any page replacement policy and any device
with concurrency, (iv) benefit is higher under memory pressure,
and (v) ACE accelerates TPC-C by 24%.
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Figure 2: The ACE demonstration UI allows the participants to (A) input workload, disk and bufferpool parameters, (B) control
speed and track progress of the simulation, (C) visualize the bufferpool page evictions and writeback along with how ACE
creates streak of clean pages due to concurrent writing, (D) compare the performance metrics of the algorithm and its ACE
implementation, and (E) run experiments while varying read/write ratio and bufferpool size to analyze ACE’s impact.

3 The Demonstration UI
The ACE bufferpool manager web interface allows the users to com-
pare the behavior of various page replacement policies with and
without ACE across diverse workloads and device settings. The in-
terface supports two types of experiments: (i) generic experiments
to visualize the buffer pool’s state in real-time as workloads exe-
cute while reporting various performance metrics and (ii) specific
experiments, which currently include varying (a) the read/write
ratio and (b) the bufferpool size. This allows the participants to see
the impact of ACE on different algorithms and the importance of
efficient writing in asymmetric environments.
Overview of the Interface. Figure 2 shows the ACE web interface
which is divided into 5 panels: (A) input panel, (B) control panel,
(C) animation panel, (D) performance panel, (E) experiment panel.

The input panel (A) allows the conference participants to spec-
ify the workload, configure SSD properties and experiment with

various bufferpool size. The participants can either select from the
pre-configured workloads (Small buffer, large buffer, Read-heavy,
Write-heavy, Very Skewed, Uniform) or define a custom workload.
The users can specify workload parameters like the number of oper-
ations, read/write ratio and workload skewness. Further, the partic-
ipants can configure the SSD parameters like device size, read/write
latency and the write concurrency of device, along with bufferpool
properties like the bufferpool size and the page replacement algo-
rithm. The demonstration currently supports three popular page
replacement algorithms: LRU, CFLRU and LRU-WSR.

Once the input panel is configured, participants can interact with
the simulation using the control panel (B), which allows them to
start, pause, or quick-finish the simulation. They can also control the
simulation speed, with options for fast, medium, and slow settings.
The progress bar shows the progression of the simulation which
can be fast-forwarded or back-tracked.
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When the participant presses ‘play’, the animation panel (C)
updates the bufferpool on the fly based on the configuration of the
input panel. The simulation illustrates the bufferpool state – how
pages are added, evicted, written and transition between clean and
dirty states. The clean pages are marked as gray and the red pages
are shown as red blocks. When the bufferpool becomes full and
ACE writes multiple dirty pages, the participants can observe how
a sequence of clean pages is formed, highlighted with a blue box.

The performance panel (D) displays the real-time statistics and
performance metrics for the selected replacement algorithm and its
ACE counterpart in a side-by-side manner. Some key performance
metrics include the number of write batches, buffer hits/misses,
read/write I/Os and disk pages read/written.

The demonstration also features two interactive experiments in
the experiment panel (E), allowing the users to compare all imple-
mented replacement policies with their ACE counterparts. As the
participants click ‘Run experiments’ after configuring the input, the
experiments are run and the results are displayed in two plots. The
left plot presents the workload latency as the workload read/write
ratio is varied and the right plot shows the workload latency as
the bufferpool size changes. Thus, participants can compare the
performance of all the replacement algorithms and their ACE imple-
mentations under different workload and bufferpool setup.

4 Demonstration Scenario
Scenario 1: Exploring ACE Bufferpool Simulation.We use the
default input parameters to simulate a small-scale workload where
the disk (SSD) size is 5000 pages and the bufferpool size is 100 pages
(2%). The workload is slightly read-heavy (60%) and skewed where
80% operations involve 15% of data. The SSD concurrency is set
to 12, meaning the SSD can perform 12 write operations without
hurting its latency. The default page replacemenet algorithm of the
simulated bufferpool is set to LRU.

The participant then initiates the demonstration using the con-
trol panel, and the demonstration UI illustrates the bufferpool state
of classical LRU and its ACE counterpart in the animation panel.
During the animation, the participants can observe various per-
formance metrics of the default LRU and the proposed ACE-LRU
side-by-side in the performance panel in real-time. The process of
page eviction and dirty page writing come into action when the
bufferpool becomes full. As ACE concurrently writes back multiple
dirty pages, the participants can observe how a sequence of clean
pages is formed in the LRU position of the bufferpool. We point out
that by having cleanmore pages in the LRU position, the subsequent
buffer misses become significantly cheap (no need to write to SSD)
which reduces unnecessary read stall. We further highlight that
the main benefit of ACE comes from concurrent writing – #write
batches metric in the performance panel. This benefit comes at the
cost of slightly increased disk writes – #disk pages written metric.
Scenario 2: Exploring CustomWorkloads. Next, we allow the
participant to create their own custom workload and choose any
page replacement policy from LRU, CFLRU and LRU-WSR. The
participants can specify their desired workload properties (#opera-
tions, read/write ratio and skewness) and device properties (SSD
size and concurrency). The participants can observe the bufferpool
simulation, page eviction/writing for the selected policy and its ACE
variant, as well as compare the two approaches based on various

metrics. We highlight how the selected page replacement policy
affects the workload setup and how ACE improves the performance
by exploiting the device concurrency.
Scenario 3: Impact of R/W ratio and Bufferpool size.We fur-
ther allow the participants to run two sets of experiments to in-
vestigate the impact of workload properties and bufferoool size on
all 3 page replacement policies and their ACE counterparts. As the
participants click the associated button in the experiment panel
while providing the relevant inputs, the system runs these experi-
ments and presents the results in two plots. From the left plot, the
participants can observe that ACE add-on demonstrates the highest
speedup (lowest runtime) under write-heavy workloads, which is
expected since ACE’s benefit comes from efficient writing. The par-
ticipants can also observe that ACE behaves similar to the classical
page replacement policies for read-only workloads. The plot on
the right side shows the performance graph for different buffer-
pool sizes. The participants can observe that ACE achieves higher
speedup for smaller bufferpool size because a smaller bufferpool
causes more evictions, which causes more writes. The participants
can hover over the plot data points to see the workload latency of
all approaches. Further, the plots have some interactive features
like pan/lasso/box select, zoom-in selected portions, download, etc.

5 Conclusion
Modern solid-state drives have properties like read-write asymmetry
and access concurrency, which are crucial to fully utilize the device.
We developed a DBMS bufferpool manager that considers these
properties and makes write-back decisions based on the SSD-at-
hand, thus utilizing the device’s full potential. In this demonstration,
we visualize how our proposed asymmetry/concurrency-aware
ACE bufferpool manager performs with popular page replacement
algorithms like LRU, CFLRU and LRU-WSR. This demonstration
allows the participants to analyze the impact of the ACE-paradigm
and how various setup (workload, SSD) affects ACE’s performance
improvements for different page replacement algorithms.
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