Reducing Bloom Filter CPU Overhead in LSM-Trees on Modern Storage Devices

Zichen Zhu, Ju Hyoung Mun, Aneesh Raman, Manos Athanassouli
zczhu@bu.edu, jmun@bu.edu, aneeshr@bu.edu, mathan@bu.edu

presentation at DAMON 2021
Log-Structured Merge Trees

Widely adopted because they balance read performance and ingestion
Where does the time go?

![Latency/lookup (μs) Diagram]

- **SSD**
 - BF: 2
 - Data: 5
 - Other: 1

- **PCIe SSD**
 - BF: 2
 - Data: 4
 - Other: 1

- **NVM**
 - BF: 3
 - Data: 1
 - Other: 1
Where does the time go?
Where does the time go?

The time spent on Bloom filters dominates for faster storage.
Log-Structured Merge Trees

buffer
Log-Structured Merge Trees

buffer

L1
L2
L3
Log-Structured Merge Trees

buffer

L1

L2

L3

size ratio = T

exponentially larger capacity
Log-Structured Merge Trees

- Buffer
- Bloom filters
- Fence pointers
- L1
- L2
- L3
- Exponentially larger capacity
- Size ratio = T
Log-Structured Merge Trees

get(k)

buffer

Bloom filters

fence pointers

L1

L2

L3

k
Log-Structured Merge Trees

get(k)

buffer

Bloom filters

fence pointers

L1

L2

L3

k
Log-Structured Merge Trees

get(k)

buffer

Bloom filters

fence pointers

L1

L2

L3

k
Log-Structured Merge Trees

get(k)

buffer

Bloom filters

fence pointers

L1

L2

L3

k
Log-Structured Merge Trees

get(k)

buffer

Bloom filters

fence pointers

L1

L2

L3

k

All queries use a BF!
Log-Structured Merge Trees

get(k)

buffer

Bloom filters

fence pointers

L1

L2

L3

k

All queries use a BF!

What is the cost of querying a Bloom filter?
Bloom Filter Query Cost

m-bit vector
n elements are stored
k hash indexes

x?

$h_1(x)$
$h_2(x)$
$h_3(x)$

the fraction of empty queries

$$k \cdot T_H + T_P + \alpha \cdot f_p \cdot T_D + (1 - \alpha) \cdot T_D$$

Hashing time Probing time Data access time
Bloom Filter Query Cost

m-bit vector
n elements are stored
k hash indexes

\[k \cdot T_H + T_P + \alpha \cdot f_p \cdot T_D + (1 - \alpha) \cdot T_D \]
Bloom Filter Query Cost

m-bit vector
n elements are stored
k hash indexes

\[k \cdot T_H + T_P + \alpha \cdot f_p \cdot T_D + (1 - \alpha) \cdot T_D \]

the fraction of empty queries
Bloom Filter Query Cost

- m-bit vector
- n elements are stored
- k hash indexes

The fraction of empty queries is given by:

$$k \cdot T_H + T_P + \alpha \cdot f_p \cdot T_D + (1 - \alpha) \cdot T_D$$

- $h_1(x)$
- $h_2(x)$
- $h_3(x)$

The fraction of empty queries.
Bloom Filter Query Cost

- An m-bit vector
- n elements are stored
- k hash indexes

\[
\begin{align*}
k \cdot T_H &+ T_P + \alpha \cdot f_p \cdot T_D + (1 - \alpha) \cdot T_D \\
\end{align*}
\]

- empty
- non-empty
Bloom Filter Query Cost

\[k \cdot T_H + T_P + \alpha \cdot f_p \cdot T_D + (1 - \alpha) \cdot T_D \]

- \(m \)-bit vector
- \(n \) elements are stored
- \(k \) hash indexes

Diagram:
- \(x \)?
- \(h_1(x) \)
- \(h_2(x) \)
- \(h_3(x) \)
Bloom Filter Query Cost

\[k \cdot T_H + T_p + \alpha \cdot f_p \cdot T_D + (1 - \alpha) \cdot T_D \]

- \(m \)-bit vector
- \(n \) elements are stored
- \(k \) hash indexes

A single hash function, followed by much cheaper bitwise operations.
Bloom Filter Query Cost

m-bit vector
n elements are stored
k hash indexes

Given hash function, h

$g_i(x) = h(x) + i \cdot \delta$

$\delta = h(x) \ll 17 \lor h(x) \gg 15$

$k \cdot T_H + T_P + \alpha \cdot f_p \cdot T_D + (1 - \alpha) \cdot T_D$
Bloom Filter False Positive Rate

k vs. single hash function
k vs. single hash function

FPR close-to-theoretical
Bloom Filter Lookup Latency

k vs. single hash function
Bloom Filter Lookup Latency

k vs. single hash function

Latency/lookup (μs)

Key Size (bytes)

8 16 32 64 128 256 512

All k MM64 HS

k times
What is the Lookup Cost in LSM-Trees?
What is the Lookup Cost in LSM-Trees?

Leveling
read-optimized

Tiering
write-optimized
Leveling
read-optimized

1 run per level

Tiering
write-optimized

T runs per level
Lookup Cost in a Leveled LSM-Tree

1 run per level

Lookup cost in level i, $\mathcal{T}(i)$
Lookup Cost in a Leveled LSM-Tree

1 run per level

Lookup cost in level i, $\mathcal{T}(i)$

- empty (α_i)
 \[\alpha_i \cdot (T_H + T_P + f_p \cdot T_D) \]

- non-empty ($1 - \alpha_i$)
 \[(1 - \alpha_i) \cdot (T_H + T_P + T_D) \]
Lookup Cost in a Leveled LSM-Tree

1 run per level

Lookup cost in level i, $\mathcal{J}(i)$

- empty (α_i)
 $$\alpha_i \cdot (T_H + T_P + f_p \cdot T_D)$$

- non-empty ($1 - \alpha_i$)
 $$(1 - \alpha_i) \cdot (T_H + T_P + T_D)$$

$$\mathcal{J}(i) = T_H + T_P + \alpha_i \cdot f_p \cdot T_D + (1 - \alpha_i) \cdot T_D$$
Lookup Cost in a Leveled LSM-Tree

1 run per level

Lookup cost in level i, $\mathcal{T}(i)$
- empty (α_i)
 \[\alpha_i \cdot (T_H + T_P + f_p \cdot T_D) \]
- non-empty ($1 - \alpha_i$)
 \[(1 - \alpha_i) \cdot (T_H + T_P + T_D) \]

\[
\text{cost} \approx \left(L - \frac{1-\alpha}{T-1} \right) \cdot (T_H + T_P) + \left(L - \frac{1-\alpha}{T-1} - 1 + \alpha \right) \cdot (f_p \cdot T_D) + (1 - \alpha) \cdot T_D
\]
Lookup Cost in a Leveled LSM-Tree

1 run per level

Lookup cost in level i, $\mathcal{T}(i)$

\[
\begin{align*}
\text{empty} & \quad \alpha_i \cdot (T_H + T_P + f_p \cdot T_D) \\
\text{non-empty} & \quad (1 - \alpha_i) \cdot (T_H + T_P + T_D)
\end{align*}
\]

\[
\text{cost} \approx \left(L - \frac{1-\alpha}{T-1} \right) \cdot (T_H + T_P) + \left(L - \frac{1-\alpha}{T-1} - 1 + \alpha \right) \cdot (f_p \cdot T_D) + (1 - \alpha) \cdot T_D
\]

Bloom filter cost
Lookup Cost in a Leveled LSM-Tree

1 run per level

Lookup cost in level i, $\mathcal{T}(i)$
- empty (α_i)
 $\alpha_i \cdot (T_{BF} + f_p \cdot T_D)$
- non-empty ($1 - \alpha_i$)
 $(1 - \alpha_i) \cdot (T_{BF} + T_D)$

\[
\text{cost} \approx \left(L - \frac{1-\alpha}{T-1}\right) \cdot (T_H + T_P) + \left(L - \frac{1-\alpha}{T-1} - 1 + \alpha\right) \cdot (f_p \cdot T_D) + (1 - \alpha) \cdot T_D
\]

Bloom filter cost

Data access due to false positives
Lookup Cost in a Leveled LSM-Tree

1 run per level

Lookup cost in level i, $\mathcal{T}(i)$
- empty (α_i)
 $$\alpha_i \cdot (T_{BF} + f_p \cdot T_D)$$
- non-empty ($1 - \alpha_i$)
 $$(1 - \alpha_i) \cdot (T_{BF} + T_D)$$

$$cost \approx \left(L - \frac{1 - \alpha}{T - 1} \right) \cdot (T_H + T_P) + \left(L - \frac{1 - \alpha}{T - 1} - 1 + \alpha \right) \cdot (f_p \cdot T_D) + (1 - \alpha) \cdot T_D$$

Bloom filter cost

Data access due to false positives

Data access
Lookup Cost in a Leveled LSM-Tree

1 run per level

Lookup cost in level i, $\mathcal{T}(i)$
- empty (α_i)
 \[\alpha_i \cdot (T_{BF} + f_p \cdot T_D) \]
- non-empty ($1 - \alpha_i$)
 \[(1 - \alpha_i) \cdot (T_{BF} + T_D) \]

\[\propto L \]

\[\text{cost} \approx \left(L - \frac{1-\alpha}{T-1} \right) \cdot (T_H + T_P) + \left(L - \frac{1-\alpha}{T-1} - 1 + \alpha \right) \cdot (f_p \cdot T_D) + (1 - \alpha) \cdot T_D \]

Hashing accumulates as L grows (larger data size)
Lookup Cost in a Leveled LSM-Tree

1 run per level

Lookup cost in level \(i \), \(T(i) \)
- empty \(\alpha_i \)
 \[\alpha_i \cdot (T_{BF} + f_p \cdot T_D) \]
- non-empty \(1 - \alpha_i \)
 \[(1 - \alpha_i) \cdot (T_{BF} + T_D) \]

\[
\text{cost} \approx \left(L - \frac{1-\alpha}{T-1} \right) \cdot (T_{BF}) + \left(L - \frac{1-\alpha}{T-1} - 1 + \alpha \right) \cdot (f_p \cdot T_D) + (1 - \alpha) \cdot T_D
\]

Hashing is more prominent for empty queries
Storage Access vs. Hashing

<table>
<thead>
<tr>
<th>Operation</th>
<th>Latency</th>
<th>Normalized</th>
</tr>
</thead>
<tbody>
<tr>
<td>4KB access on SDD</td>
<td>113 µs</td>
<td>706×</td>
</tr>
<tr>
<td>4KB access on PCIe SDD</td>
<td>10 µs</td>
<td>62.5×</td>
</tr>
<tr>
<td>4KB access on emulated NVM</td>
<td>250 ns</td>
<td>1.56×</td>
</tr>
<tr>
<td>4KB access on Memory</td>
<td>160 ns</td>
<td>1×</td>
</tr>
<tr>
<td>Murmur Hash of 1KB</td>
<td>235 ns</td>
<td>1.47×</td>
</tr>
</tbody>
</table>
Storage Access vs. Hashing

<table>
<thead>
<tr>
<th>Operation</th>
<th>Latency</th>
<th>Normalized</th>
</tr>
</thead>
<tbody>
<tr>
<td>4KB access on SDD</td>
<td>113 μs</td>
<td>706×</td>
</tr>
<tr>
<td>4KB access on PCIe SDD</td>
<td>10 μs</td>
<td>62.5×</td>
</tr>
<tr>
<td>4KB access on emulated NVM</td>
<td>250 ns</td>
<td>1.56×</td>
</tr>
<tr>
<td>4KB access on Memory</td>
<td>160 ns</td>
<td>1×</td>
</tr>
<tr>
<td>Murmur Hash of 1KB</td>
<td>235 ns</td>
<td>1.47×</td>
</tr>
</tbody>
</table>

10% faster than NVM
Storage Access vs. Hashing

<table>
<thead>
<tr>
<th>Operation</th>
<th>Latency</th>
<th>Normalized</th>
</tr>
</thead>
<tbody>
<tr>
<td>4KB access on SDD</td>
<td>113 μs</td>
<td>706×</td>
</tr>
<tr>
<td>4KB access on PCIe SDD</td>
<td>10 μs</td>
<td>62.5×</td>
</tr>
<tr>
<td>4KB access on emulated NVM</td>
<td>250 ns</td>
<td>1.56×</td>
</tr>
<tr>
<td>4KB access on Memory</td>
<td>160 ns</td>
<td>1×</td>
</tr>
<tr>
<td>Murmur Hash of 1KB</td>
<td>235 ns</td>
<td>1.47×</td>
</tr>
</tbody>
</table>

10% faster than NVM

What is the time spent hashing as we move to faster devices?
Hashing Overhead in a Leveled LSM-Tree

In SSDs, hashing is over 10% for all empty lookups
Hashing Overhead in a Leveled LSM-Tree

Execution time breakdown

- SSD (113 μs)
- slow PCIe SSD (50 μs)
- fast PCIe SSD (10 μs)
- emulated NVM (250ns)
- memory (160 ns)
- hashing
- I/O

Empty point lookup ratio (α)

Hashing is getting more dominant
Hashing Overhead in a Leveled LSM-Tree

Execution time breakdown

- SSD (113 µs)
- fast PCIe SSD (10 µs)
- memory (160 ns)
- slow PCIe SSD (50 µs)
- emulated NVM (250 ns)
- hashing
- I/O

Empty point lookup ratio (α)

Hashing is getting more dominant
Hashing Overhead in a Leveled LSM-Tree

Execution time breakdown

![Chart showing execution time breakdown with various components: SSD (113 μs), slow PCIe SSD (50 μs), fast PCIe SSD (10 μs), emulated NVM (250ns), memory (160 ns), hashing, and I/O.]

Empty point lookup ratio (α)

Hashing is getting more dominant
Hashing Overhead in a Leveled LSM-Tree

Execution time breakdown

Empty point lookup ratio (α)

Hashing is getting more dominant
Lookup Cost in a Tiered LSM-Tree

\(T \) runs per level

Lookup cost in level \(i \), \(T'(i) \)
- empty (\(\alpha_i \))
 \[
 \alpha_i \cdot T \cdot (T_H + T_P + f_p \cdot T_D)
 \]
- non-empty (\(1 - \alpha_i \))
 \[
 (1 - \alpha_i) \cdot \frac{T + 1}{2} \cdot (T_H + T_P) + (1 - \alpha_i) \cdot T_D
 \]

\[
\text{cost} \approx \left(T \cdot L - \frac{T + 1}{2} (1 - \alpha)\right) \cdot (T_{BF}) \quad \text{Bloom filter cost}
\]
\[
+ \left(T \cdot L - (1 - \alpha) \cdot (T + 1)\right) \cdot (f_p \cdot T_D) \quad \text{Data access due to false positives}
\]
\[
+ (1 - \alpha) \cdot T_D \quad \text{Data access}
\]
Lookup Cost in a Tiered LSM-Tree

Lookup cost in level i, $\mathcal{T}(i)$

- empty (α_i)
 \[
 \alpha_i \cdot T \cdot (T_H + T_P + f_p \cdot T_D)
 \]
- non-empty ($1 - \alpha_i$)
 \[
 (1 - \alpha_i) \cdot \frac{T + 1}{2} \cdot (T_H + T_P) + (1 - \alpha_i) \cdot T_D
 \]

Cost:

\[
\text{cost} \approx \left(T \cdot L - \frac{T + 1}{2} (1 - \alpha) \right) \cdot (T_H + T_P) + \left(T \cdot L - (1 - \alpha) \cdot (T + 1) \right) \cdot (f_p \cdot T_D) + (1 - \alpha) \cdot T_D
\]

$\propto T \cdot L$

Bloom filter cost

Data access due to false positives

Data access
Hashing Overhead in a Tiered LSM-Tree

Similar, but hashing is more pronounced.
How can we reduce the hashing overhead in LSM-trees?
Hash Sharing in Leveled LSM-Trees

(a) Query path

(b) Hashing in a query

(c) Shared hashing in a query
Hash Sharing in Leveled LSM-Trees

The same hash function is calculated multiple times which brings CPU overhead.
Hash Sharing in Leveled LSM-Trees

The same hash function is calculated multiple times which brings CPU overhead.

A single hash digest can be reused to avoid expensive hash calculations.
Theoretical Gain w.r.t. Evolving Storage Devices

Gain = \frac{\text{cost} - \text{cost}_{\text{share}}}{\text{cost}} \times 100\%

Gain

0% 10% 20% 30% 40% 50%

≈0% 1% 6% 40%

HDD SSD PCIe SSD NVM

Storage devices
Theoretical Gain w.r.t. Evolving Storage Devices

\[
Gain = \left(\frac{\text{cost} - \text{cost}_{\text{share}}}{\text{cost}} \right) \times 100\%
\]

The gain increases rapidly for faster storage devices.
Build an LSM prototype (RocksDB’s fast local BF).

1M point queries (report avg latency of 5 experiments)

Use PCIe SSD (10 μs) with direct I/O by default
Impact of the key size

Uniform Query Distribution

Workload: Entry size: 2KB, #Entries: 11M
Tuning: Bits per key: 10, Size ratio: 10, Storage: PCIe SSD
Impact of the key size

Workload: Entry size: 2KB, Entries: 11M
Tuning: Bits per key: 10, Size ratio: 10, Storage: PCIe SSD
Impact of the key size

Workload: Entry size: 2KB, #Entries: 11M

Tuning: Bits per key: 10, Size ratio: 10, Storage: PCIe SSD
Impact of the key size

Workload: Entry size: 2KB, #Entries: 11M
Tuning: Bits per key: 10, Size ratio: 10, Storage: PCIe SSD

As key size grows, the gain increases up to 20%
Impact of the key size

Workload: Entry size: 2KB, #Entries: 11M
Tuning: Bits per key: 10, Size ratio: 10, Storage: PCIe SSD

As key size grows, the gain increases up to 20%

For skewed empty query workload, the gain increases up to 60%
Impact of #levels

Workload:
Key size: 64B
Entry size: 1KB
#Entries: 22M

Tuning:
Bits per key: 10
Size ratio: 2
Storage: PCIe SSD
Impact of #levels

The gain initially increases as #level grows, and then plateaus.

Workload:
- Key size: 64B
- Entry size: 1KB
- #Entries: 22M

Tuning:
- Bits per key: 10
- Size ratio: 2

Storage:
- PCIe SSD
Impact of storage device

- **Workload:**
 - Key size: 64B
 - Entry size: 1KB
 - #Entries: 22M

- **Tuning:**
 - Bits per key: 10
 - Size ratio: 10
Hash sharing leads to higher gain for faster storage.

Workload:
- Key size: 64B
- Entry size: 1KB
- #Entries: 22M

Tuning:
- Bits per key: 10
- Size ratio: 10
Impact of the I/O cost of empty queries

Workload:
Entry size: 1KB
#Entries: 22M
Empty query ratio (\(\alpha\)) : 1

Tuning:
Bits per key: 10
Size ratio: 10

For slow storage, high I/O cost of empty queries leads to smaller gain.
Impact of the I/O cost of empty queries

Workload:
- Entry size: 1KB
- #Entries: 22M
- Empty query ratio (α): 1

Tuning:
- Bits per key: 10
- Size ratio: 10

For slow storage, high I/O cost of empty queries leads to smaller gain.

For fast storage, the gain does not depend on the cost of empty queries.

Diagram:
- PCIe SSD(D) vs RAM
- Gain vs Bits per key (BPK)
- High I/O cost of empty queries
- Low I/O cost of empty queries
Impact of the I/O cost of empty queries

Workload:
- Entry size: 1KB
- #Entries: 22M
- Empty query ratio (α): 1

Tuning:
- Bits per key: 10
- Size ratio: 10

Fast storage leads to high gain. Even for slower storage, if the cost of empty queries is low (low FPR), the gain is high.
Impact of empty lookup ratio (α)

Storage: PCIe SSD (D)

Workload: Entry size: 1KB, #Entries: 22M
Tuning: Bits per key: 10, Size ratio: 10
Impact of empty lookup ratio (α)

Storage: PCIe SSD (D)

Workload: Entry size: 1KB, #Entries: 22M
Tuning: Bits per key: 10, Size ratio: 10

The gain on PCIe SSD increases as α increases
Impact of empty lookup ratio (α)

Storage: PCIe SSD (D)

- state-of-art
- Hash Sharing
- BF(hash+probe)
- data
- other

Storage: RAM disk

- state-of-art
- Hash Sharing
- BF(hash+probe)
- data
- other

The gain on PCIe SSD increases as α increases

The benefit is pronounced when it comes to a RAM disk

Workload: Entry size: 1KB, #Entries: 22M

Tuning: Bits per key: 10, Size ratio: 10
The gain on PCIe SSD increases as α increases.

Overall, hash sharing has more impact for faster devices which is further exacerbated for empty queries.

The benefit is pronounced when it comes to a RAM disk.
Conclusion

- BFs dominate LSM query latency for fast storage
Conclusion

- BFs dominate LSM query latency for fast storage

- Develop a query cost model to quantify and predict the amount of time on hashing and data accessing
Conclusion

- BFs dominate LSM query latency for fast storage

- Develop a query cost model to quantify and predict the amount of time on hashing and data accessing

- Reduce hashing, by sharing it across BFs and levels, leading to performance gains up to 40%
Conclusion

- BFs dominate LSM query latency for fast storage
- Develop a query cost model to quantify and predict the amount of time on hashing and data accessing
- Reduce hashing, by sharing it across BFs and levels, leading to performance gains up to 40%

Thank you!

https://github.com/BU-DiSC/BF-Shared-Hashing