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Log-Structured Merge Trees

Widely adopted because they balance read performance and inges6on
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Where does the time go?
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Where does the 5me go?
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Where does the 5me go?

The time spent on Bloom filters dominates for faster storage. 
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What is the cost of querying a Bloom filter?
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Bloom Filter Query Cost

𝑥?

𝑚-bit vector

𝑚-bit vector
𝑛 elements are store
𝑘 hash indexes

𝑘 ⋅ 𝑇! + 𝑇" + 𝛼 ⋅ 𝑓# ⋅ 𝑇$ + 1 − 𝛼 ⋅ 𝑇$

ℎ!(𝑥)

ℎ"(𝑥)
ℎ#(𝑥)
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the fraction of empty queries

Hashing >me Probing time Data access >me
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𝑘 ⋅ 𝑇! + 𝑇" + 𝛼 ⋅ 𝑓# ⋅ 𝑇$ + 1 − 𝛼 ⋅ 𝑇$

Bloom Filter Query Cost

𝑚-bit vector

𝑚-bit vector
𝑛 elements are store
𝑘 hash indexes

a single hash function, 
followed by much cheaper bitwise operations
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Bloom Filter Query Cost

𝑚-bit vector

𝑚-bit vector
𝑛 elements are store
𝑘 hash indexes

Given hash func:on, ℎ
𝑔$ 𝑥 = ℎ 𝑥 + 𝑖 ⋅ 𝛿
𝛿 = h(𝑥) << 17 | h(𝑥) >> 15

𝑘 ⋅ 𝑇! + 𝑇" + 𝛼 ⋅ 𝑓# ⋅ 𝑇$ + 1 − 𝛼 ⋅ 𝑇$
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Bloom Filter False Posi5ve Rate

𝑘 vs. single 
hash func/on
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𝑘 vs. single 
hash function

Bloom Filter False Positive Rate

FPR close-to-theoretical

25



8 16 32 64 128 256 512
Key Size (bytes)

0.0

0.5

1.0

L
at

en
cy

/l
oo

ku
p

(µ
s)

All k MM64 HSAll k MM64 HS

Bloom Filter Lookup Latency

𝑘 vs. single 
hash func/on

26



8 16 32 64 128 256 512
Key Size (bytes)

0.0

0.5

1.0

L
at

en
cy

/l
oo

ku
p

(µ
s)

All k MM64 HSAll k MM64 HS

Bloom Filter Lookup Latency

𝑘 vs. single 
hash function

k 
times

27



What is the Lookup Cost in LSM-Trees?
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Leveling 
read-op6mized 

Tiering 
write-op6mized
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What is the Lookup Cost in LSM-Trees?



Leveling
read-optimized 

Tiering
write-op>mized 

1 run per level T runs per level 
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1 run per level 
Lookup cost in level 𝑖, 𝒯 𝑖

Lookup Cost in a Leveled LSM-Tree
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1 run per level 

Lookup Cost in a Leveled LSM-Tree
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Lookup cost in level 𝑖, 𝒯 𝑖
・ empty (𝛼!)

・ non-empty (1 − 𝛼!)

𝛼. ⋅ (𝑇/ + 𝑇0 + 𝑓1 ⋅ 𝑇2)

1 − 𝛼. ⋅ (𝑇/ + 𝑇0 + 𝑇2)



1 run per level 

Lookup Cost in a Leveled LSM-Tree

𝒯 𝑖 = 𝑇! + 𝑇" + 𝛼( ⋅ 𝑓# ⋅ 𝑇$ + 1 − 𝛼( ⋅ 𝑇$
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1 run per level 

Lookup Cost in a Leveled LSM-Tree

𝑐𝑜𝑠𝑡 ≈ 𝐿 − 345
643

⋅ 𝑇/ + 𝑇0 + 𝐿 − 345
643

− 1 + 𝛼 ⋅ (𝑓1 ⋅ 𝑇2) + 1 − 𝛼 ⋅ 𝑇2
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+
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Bloom filter cost
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Data access
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1 run per level 
Lookup cost in level 𝑖, 𝒯 𝑖
・ empty (𝛼!)

・ non-empty (1 − 𝛼!)

Hashing accumulates as 𝑳 grows  (larger data size)

Lookup Cost in a Leveled LSM-Tree
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Hashing is more prominent for empty queries

1 run per level ・ empty (𝛼!)
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Lookup Cost in a Leveled LSM-Tree
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Storage Access vs. Hashing

40

Operation Latency Normalized
4KB access on SDD 113 𝜇𝑠 706×
4KB access on PCIe SDD 10 𝜇𝑠 62.5×
4KB access on emulated NVM 𝟐𝟓𝟎 𝐧𝐬 𝟏. 𝟓𝟔×
4KB access on Memory 160 ns 1×
Murmur Hash of 1KB 235 ns 1.47×
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Storage Access vs. Hashing

10% faster than NVM 

What is the time spent hashing as we move to faster devices?
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Hashing Overhead in a Leveled LSM-Tree
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In SSDs, hashing is over 10% for all empty lookups
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Lookup Cost in a Tiered LSM-Tree

Lookup cost in level 𝑖, 𝒯 𝑖
T runs per level ・ empty (𝛼!)

・ non-empty (1 − 𝛼!)

𝛼! ⋅ 𝑇 ⋅ ( 𝑇" + 𝑇# + 𝑓$ ⋅ 𝑇%)

1 − 𝛼! ⋅
𝑇 + 1
2

⋅ 𝑇" + 𝑇# + 1 − 𝛼! ⋅ 𝑇%

𝑐𝑜𝑠𝑡 ≈ 𝑇 ⋅ 𝐿 − 6;3
< 1 − 𝛼 ⋅ 𝑇78

+ 𝑇 ⋅ 𝐿 − 1 − 𝛼 ⋅ 𝑇 + 1 ⋅ 𝑓1 ⋅ 𝑇2
+ 1 − 𝛼 ⋅ 𝑇2

48

Bloom filter cost

Data access due to false positives
Data access
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Lookup cost in level 𝑖, 𝒯 𝑖
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Bloom filter cost

Data access due to false posi3ves
Data access

∝ 𝑻 ⋅ 𝑳



Hashing Overhead in a Tiered LSM-Tree

Similar, but hashing is more pronounced.
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Hashing Overhead in a Tiered LSM-Tree

How can we reduce the hashing overhead in LSM-trees?
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Hash Sharing in Leveled LSM-Trees
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(a)  Query path (b)  Hashing in a query (c)  Shared hashing in a query 
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Hash Sharing in Leveled LSM-Trees
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The same hash function 
is calculated multiple 
times which brings CPU 
overhead. 53



Hash Sharing in Leveled LSM-Trees
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(a)  Query path (b)  Hashing in a query (c)  Shared hashing in a query 

The same hash function 
is calculated multiple 
times which brings CPU 
overhead. 

A single hash digest 
can be reused to avoid 
expensive hash 
calcula6ons. 
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Theoretical Gain w.r.t. Evolving Storage Devices
𝐺𝑎𝑖𝑛 =

𝑐𝑜𝑠𝑡 − 𝑐𝑜𝑠𝑡%&'()
𝑐𝑜𝑠𝑡 ×100%
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Theoretical Gain w.r.t. Evolving Storage Devices
𝐺𝑎𝑖𝑛 =

𝑐𝑜𝑠𝑡 − 𝑐𝑜𝑠𝑡%&'()
𝑐𝑜𝑠𝑡 ×100%
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The gain increases rapidly for faster storage devices



Experiment Setting

Parameters Default Value

Workload

Entry size (key + value) 1KB-2KB
Data volume 22GB
Empty query ratio (𝛼) 100%
Query distribution Uniform

LSM
File size 2 MB
Size ratio 10
Bits per key 10

Build an LSM prototype 
(RocksDB’s fast local BF).

1M point queries (report avg
latency of 5 experiments)

Use PCIe SSD (10 𝜇s) with direct 
I/O by default
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Workload: Entry size: 2KB, #Entries: 11M
Tuning: Bits per key: 10, Size ratio: 10, Storage: PCIe SSD

Uniform Query Distribution

Impact of the key size
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Workload: Entry size: 2KB, #Entries: 11M
Tuning: Bits per key: 10, Size ra>o: 10, Storage: PCIe SSD

Uniform Query Distribution

Impact of the key size
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Workload: Entry size: 2KB, #Entries: 11M
Tuning: Bits per key: 10, Size ratio: 10, Storage: PCIe SSD

Uniform Query Distribution

Impact of the key size

60



Workload: Entry size: 2KB, #Entries: 11M
Tuning: Bits per key: 10, Size ra>o: 10, Storage: PCIe SSD

As key size grows, the gain 
increases up to 20%

Uniform Query Distribution

Impact of the key size
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For skewed empty query workload, the 
gain increases up to 60% 

Workload: Entry size: 2KB, #Entries: 11M
Tuning: Bits per key: 10, Size ratio: 10, Storage: PCIe SSD

As key size grows, the gain 
increases up to 20%

Uniform Query Distribu3on Zipfian Query Distribution

Impact of the key size
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Workload:
Key size: 64B
Entry size: 1KB
#Entries: 22M

Tuning:
Bits per key: 10
Size ratio: 2

Storage: PCIe SSD

Impact of #levels
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The gain initially increases as #level grows, and then plateaus

Workload:
Key size: 64B
Entry size: 1KB
#Entries: 22M

Tuning:
Bits per key: 10
Size ra>o: 2

Storage: PCIe SSD

Impact of #levels
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Workload:
Key size: 64B
Entry size: 1KB
#Entries: 22M

Tuning:
Bits per key: 10
Size ratio: 10

direct I/O 

Impact of storage device
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Hash sharing leads 
to higher gain for 

faster storage. 

Workload:
Key size: 64B
Entry size: 1KB
#Entries: 22M

Tuning:
Bits per key: 10
Size ra>o: 10

direct I/O 

Impact of storage device
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Workload:
Entry size: 1KB
#Entries: 22M
Empty query ratio (𝛼) : 1

Tuning:
Bits per key: 10
Size ratio: 10

Impact of the I/O cost of empty queries

For slow storage, high I/O cost of 
empty queries leads to smaller gain

Slow storage

Fast storage
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Workload:
Entry size: 1KB
#Entries: 22M
Empty query ratio (𝛼) : 1

Tuning:
Bits per key: 10
Size ratio: 10

Impact of the I/O cost of empty queries

For slow storage, high I/O cost of 
empty queries leads to smaller gain

Slow storage

Fast storage

For fast storage, 
the gain does not 
depend on the 
cost of empty 
queries
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Workload:
Entry size: 1KB
#Entries: 22M
Empty query ratio (𝛼) : 1

Tuning:
Bits per key: 10
Size ratio: 10

Impact of the I/O cost of empty queries

For slow storage, high I/O cost of 
empty queries leads to smaller gain

Slow storage

Fast storage

For fast storage, 
the gain does not 
depend on the 
cost of empty 
queries

Fast storage leads to 
high gain. Even for 

slower storage, if the 
cost of empty queries 
is low (low FPR), the 

gain is high
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Workload: Entry size: 1KB, #Entries: 22M
Tuning: Bits per key: 10, Size ratio: 10

Storage: PCIe SSD (D)

Impact of empty lookup ratio (𝜶)
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The gain on PCIe SSD increases 
as α increases

Workload: Entry size: 1KB, #Entries: 22M
Tuning: Bits per key: 10, Size ratio: 10

Storage: PCIe SSD (D)

Impact of empty lookup ratio (𝜶)
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The gain on PCIe SSD increases 
as α increases

Workload: Entry size: 1KB, #Entries: 22M
Tuning: Bits per key: 10, Size ratio: 10

Storage: PCIe SSD (D) Storage: RAM disk

Impact of empty lookup ratio (𝜶)

The benefit is pronounced when it comes 
to a RAM disk
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The gain on PCIe SSD increases 
as α increases

Workload: Entry size: 1KB, #Entries: 22M
Tuning: Bits per key: 10, Size ratio: 10

Storage: PCIe SSD (D) Storage: RAM disk

Impact of empty lookup ratio (𝜶)

The benefit is pronounced when it comes 
to a RAM disk

Overall, hash sharing has more impact for faster devices which 
is further exacerbated for empty queries. 73
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Conclusion
q BFs dominate LSM query latency 

for fast storage

q Develop a query cost model to 
quantify and predict the amount of 
time on hashing and data accessing

q Reduce hashing, by sharing it 
across BFs and levels, leading to 
performance gains up to 40%

Thank you! https://github.com/BU-DiSC/BF-Shared-Hashing
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