
Reducing Bloom Filter CPU Overhead
in LSM-Trees on Modern Storage Devices

Zichen Zhu, Ju Hyoung Mun, Aneesh Raman, Manos Athanassoulis
zczhu@bu.edu, jmun@bu.edu, aneeshr@bu.edu, mathan@bu.edu

presenta(on at DAMON 2021

mailto:zczhu@bu.edu
mailto:jmun@bu.edu
mailto:aneeshr@bu.edu
mailto:mathan@bu.edu

Log-Structured Merge Trees

Widely adopted because they balance read performance and inges6on

2

3

Where does the time go?

0

1

2

3

4

5

6

7

8

9

SSD PCIe SSD NVM

La
te

nc
y/

lo
ok

up
 (μ

s)

BF Data Other

0

1

2

3

4

5

6

7

8

9

SSD PCIe SSD NVM

La
te

nc
y/

lo
ok

up
 (μ

s)

BF Data Other

4

Where does the 5me go?

5

0

1

2

3

4

5

6

7

8

9

SSD PCIe SSD NVM

La
te

nc
y/

lo
ok

up
 (μ

s)

BF Data Other

Where does the 5me go?

The time spent on Bloom filters dominates for faster storage.

buffer

Log-Structured Merge Trees

6

buffer buffer L1

L2

L3

Log-Structured Merge Trees

7

buffer buffer L1

L2

L3

exponentially larger capacity

size ratio = T

Log-Structured Merge Trees

8

buffer buffer L1

L2

L3

exponentially larger capacity

size ratio = T

fence
pointers

Bloom
filters

Log-Structured Merge Trees

9

buffer buffer L1

L2

L3

get(k)

k

Log-Structured Merge Trees

fence
pointers

Bloom
filters

10

buffer buffer L1

L2

L3

get(k)

k

Log-Structured Merge Trees

fence
pointers

Bloom
filters

11

k

buffer buffer L1

L2

L3

get(k)

Log-Structured Merge Trees

fence
pointers

Bloom
filters

12

k

buffer buffer L1

L2

L3

get(k)

Log-Structured Merge Trees

fence
pointers

Bloom
filters

13

k

buffer buffer L1

L2

L3

get(k)

Log-Structured Merge Trees

fence
pointers

Bloom
filters

All queries use a BF!

14

k

buffer buffer L1

L2

L3

get(k)

Log-Structured Merge Trees

fence
pointers

Bloom
filters

All queries use a BF!
What is the cost of querying a Bloom filter?

15

Bloom Filter Query Cost

𝑥?

𝑚-bit vector

𝑚-bit vector
𝑛 elements are store
𝑘 hash indexes

𝑘 ⋅ 𝑇! + 𝑇" + 𝛼 ⋅ 𝑓# ⋅ 𝑇$ + 1 − 𝛼 ⋅ 𝑇$

ℎ!(𝑥)

ℎ"(𝑥)
ℎ#(𝑥)

16

the fraction of empty queries

Hashing >me Probing time Data access >me

Bloom Filter Query Cost

𝑥?

𝑚-bit vector

𝑚-bit vector
𝑛 elements are store
𝑘 hash indexes

𝑘 ⋅ 𝑇! + 𝑇" + 𝛼 ⋅ 𝑓# ⋅ 𝑇$ + 1 − 𝛼 ⋅ 𝑇$

ℎ!(𝑥)

ℎ"(𝑥)
ℎ#(𝑥)

17

Bloom Filter Query Cost

𝑥?

𝑚-bit vector

𝑚-bit vector
𝑛 elements are store
𝑘 hash indexes

the fraction of empty queries

𝑘 ⋅ 𝑇! + 𝑇" + 𝛼 ⋅ 𝑓# ⋅ 𝑇$ + 1 − 𝛼 ⋅ 𝑇$

ℎ!(𝑥)

ℎ"(𝑥)
ℎ#(𝑥)

18

Bloom Filter Query Cost

𝑥?

𝑚-bit vector

𝑚-bit vector
𝑛 elements are store
𝑘 hash indexes

the fraction of empty queries

𝑘 ⋅ 𝑇! + 𝑇" + 𝛼 ⋅ 𝑓# ⋅ 𝑇$ + 1 − 𝛼 ⋅ 𝑇$

ℎ!(𝑥)

ℎ"(𝑥)
ℎ#(𝑥)

19

Bloom Filter Query Cost

𝑥?

𝑚-bit vector

𝑚-bit vector
𝑛 elements are store
𝑘 hash indexes

𝑘 ⋅ 𝑇! + 𝑇" + 𝛼 ⋅ 𝑓# ⋅ 𝑇$ + 1 − 𝛼 ⋅ 𝑇$

ℎ!(𝑥)

ℎ"(𝑥)
ℎ#(𝑥)

empty
20

non-empty

Bloom Filter Query Cost

𝑚-bit vector

𝑚-bit vector
𝑛 elements are store
𝑘 hash indexes

𝑘 ⋅ 𝑇! + 𝑇" + 𝛼 ⋅ 𝑓# ⋅ 𝑇$ + 1 − 𝛼 ⋅ 𝑇$

𝑥?

ℎ!(𝑥)

ℎ"(𝑥)
ℎ#(𝑥)

21

𝑘 ⋅ 𝑇! + 𝑇" + 𝛼 ⋅ 𝑓# ⋅ 𝑇$ + 1 − 𝛼 ⋅ 𝑇$

Bloom Filter Query Cost

𝑚-bit vector

𝑚-bit vector
𝑛 elements are store
𝑘 hash indexes

a single hash function,
followed by much cheaper bitwise operations

𝑥?

ℎ!(𝑥)

ℎ"(𝑥)
ℎ#(𝑥)

22

Bloom Filter Query Cost

𝑚-bit vector

𝑚-bit vector
𝑛 elements are store
𝑘 hash indexes

Given hash func:on, ℎ
𝑔$ 𝑥 = ℎ 𝑥 + 𝑖 ⋅ 𝛿
𝛿 = h(𝑥) << 17 | h(𝑥) >> 15

𝑘 ⋅ 𝑇! + 𝑇" + 𝛼 ⋅ 𝑓# ⋅ 𝑇$ + 1 − 𝛼 ⋅ 𝑇$

𝑥?

𝑔!(𝑥)

𝑔"(𝑥)
𝑔#(𝑥)

23

Bloom Filter False Posi5ve Rate

𝑘 vs. single
hash func/on

24

𝑘 vs. single
hash function

Bloom Filter False Positive Rate

FPR close-to-theoretical

25

8 16 32 64 128 256 512
Key Size (bytes)

0.0

0.5

1.0

L
at

en
cy

/l
oo

ku
p

(µ
s)

All k MM64 HSAll k MM64 HS

Bloom Filter Lookup Latency

𝑘 vs. single
hash func/on

26

8 16 32 64 128 256 512
Key Size (bytes)

0.0

0.5

1.0

L
at

en
cy

/l
oo

ku
p

(µ
s)

All k MM64 HSAll k MM64 HS

Bloom Filter Lookup Latency

𝑘 vs. single
hash function

k
times

27

What is the Lookup Cost in LSM-Trees?

28

Leveling
read-op6mized

Tiering
write-op6mized

29

What is the Lookup Cost in LSM-Trees?

Leveling
read-optimized

Tiering
write-op>mized

1 run per level T runs per level

30

1 run per level
Lookup cost in level 𝑖, 𝒯 𝑖

Lookup Cost in a Leveled LSM-Tree

31

1 run per level

Lookup Cost in a Leveled LSM-Tree

32

Lookup cost in level 𝑖, 𝒯 𝑖
・ empty (𝛼!)

・ non-empty (1 − 𝛼!)

𝛼. ⋅ (𝑇/ + 𝑇0 + 𝑓1 ⋅ 𝑇2)

1 − 𝛼. ⋅ (𝑇/ + 𝑇0 + 𝑇2)

1 run per level

Lookup Cost in a Leveled LSM-Tree

𝒯 𝑖 = 𝑇! + 𝑇" + 𝛼(⋅ 𝑓# ⋅ 𝑇$ + 1 − 𝛼(⋅ 𝑇$

33

Lookup cost in level 𝑖, 𝒯 𝑖
・ empty (𝛼!)

・ non-empty (1 − 𝛼!) +
𝛼. ⋅ (𝑇/ + 𝑇0 + 𝑓1 ⋅ 𝑇2)

1 − 𝛼. ⋅ (𝑇/ + 𝑇0 + 𝑇2)

1 run per level

Lookup Cost in a Leveled LSM-Tree

𝑐𝑜𝑠𝑡 ≈ 𝐿 − 345
643

⋅ 𝑇/ + 𝑇0 + 𝐿 − 345
643

− 1 + 𝛼 ⋅ (𝑓1 ⋅ 𝑇2) + 1 − 𝛼 ⋅ 𝑇2

34

Lookup cost in level 𝑖, 𝒯 𝑖
・ empty (𝛼!)

・ non-empty (1 − 𝛼!) +
𝛼. ⋅ (𝑇/ + 𝑇0 + 𝑓1 ⋅ 𝑇2)

1 − 𝛼. ⋅ (𝑇/ + 𝑇0 + 𝑇2)

1 run per level
Lookup cost in level 𝑖, 𝒯 𝑖
・ empty (𝛼!)

・ non-empty (1 − 𝛼!)

Lookup Cost in a Leveled LSM-Tree

𝑐𝑜𝑠𝑡 ≈ 𝐿 − 345
643

⋅ 𝑇/ + 𝑇0 + 𝐿 − 345
643

− 1 + 𝛼 ⋅ (𝑓1 ⋅ 𝑇2) + 1 − 𝛼 ⋅ 𝑇2

35

+
𝛼. ⋅ (𝑇/ + 𝑇0 + 𝑓1 ⋅ 𝑇2)

1 − 𝛼. ⋅ (𝑇/ + 𝑇0 + 𝑇2)

Bloom filter cost

𝑐𝑜𝑠𝑡 ≈ 𝐿 − 345
643

⋅ 𝑇/ + 𝑇0 + 𝐿 − 345
643

− 1 + 𝛼 ⋅ (𝑓1 ⋅ 𝑇2) + 1 − 𝛼 ⋅ 𝑇2

1 run per level
Lookup cost in level 𝑖, 𝒯 𝑖
・ empty (𝛼!)

・ non-empty (1 − 𝛼!)

Lookup Cost in a Leveled LSM-Tree

36

+
𝛼. ⋅ (𝑇78 + 𝑓1 ⋅ 𝑇2)

1 − 𝛼. ⋅ (𝑇78 + 𝑇2)

Data access
due to false posi2ves

Bloom filter cost

1 run per level
Lookup cost in level 𝑖, 𝒯 𝑖
・ empty (𝛼!)

・ non-empty (1 − 𝛼!)

Lookup Cost in a Leveled LSM-Tree

37

+
𝛼. ⋅ (𝑇78 + 𝑓1 ⋅ 𝑇2)

1 − 𝛼. ⋅ (𝑇78 + 𝑇2)

Data access

𝑐𝑜𝑠𝑡 ≈ 𝐿 − 345
643

⋅ 𝑇/ + 𝑇0 + 𝐿 − 345
643

− 1 + 𝛼 ⋅ (𝑓1 ⋅ 𝑇2) + 1 − 𝛼 ⋅ 𝑇2
Data access

due to false posi2ves
Bloom filter cost

1 run per level
Lookup cost in level 𝑖, 𝒯 𝑖
・ empty (𝛼!)

・ non-empty (1 − 𝛼!)

Hashing accumulates as 𝑳 grows (larger data size)

Lookup Cost in a Leveled LSM-Tree

38

+
𝛼. ⋅ (𝑇78 + 𝑓1 ⋅ 𝑇2)

1 − 𝛼. ⋅ (𝑇78 + 𝑇2)
∝ 𝑳

𝑐𝑜𝑠𝑡 ≈ 𝐿 − 345
643

⋅ 𝑇/ + 𝑇0 + 𝐿 − 345
643

− 1 + 𝛼 ⋅ (𝑓1 ⋅ 𝑇2) + 1 − 𝛼 ⋅ 𝑇2

Hashing is more prominent for empty queries

1 run per level ・ empty (𝛼!)

・ non-empty (1 − 𝛼!)

Lookup cost in level 𝑖, 𝒯 𝑖

Lookup Cost in a Leveled LSM-Tree

39

+
𝛼. ⋅ (𝑇78 + 𝑓1 ⋅ 𝑇2)

1 − 𝛼. ⋅ (𝑇78 + 𝑇2)

𝑐𝑜𝑠𝑡 ≈ 𝐿 − 345
643

⋅ 𝑇78 + 𝐿 − 345
643

− 1 + 𝛼 ⋅ (𝑓1 ⋅ 𝑇2) + 1 − 𝛼 ⋅ 𝑇2

Storage Access vs. Hashing

40

Operation Latency Normalized
4KB access on SDD 113 𝜇𝑠 706×
4KB access on PCIe SDD 10 𝜇𝑠 62.5×
4KB access on emulated NVM 𝟐𝟓𝟎 𝐧𝐬 𝟏. 𝟓𝟔×
4KB access on Memory 160 ns 1×
Murmur Hash of 1KB 235 ns 1.47×

Storage Access vs. Hashing

10% faster than NVM

41

Operation Latency Normalized
4KB access on SDD 113 𝜇𝑠 706×
4KB access on PCIe SDD 10 𝜇𝑠 62.5×
4KB access on emulated NVM 𝟐𝟓𝟎 𝐧𝐬 𝟏. 𝟓𝟔×
4KB access on Memory 160 ns 1×
Murmur Hash of 1KB 𝟐𝟑𝟓 𝒏𝒔 𝟏. 𝟒𝟕×

Storage Access vs. Hashing

10% faster than NVM

What is the time spent hashing as we move to faster devices?

42

Operation Latency Normalized
4KB access on SDD 113 𝜇𝑠 706×
4KB access on PCIe SDD 10 𝜇𝑠 62.5×
4KB access on emulated NVM 𝟐𝟓𝟎 𝐧𝐬 𝟏. 𝟓𝟔×
4KB access on Memory 160 ns 1×
Murmur Hash of 1KB 𝟐𝟑𝟓 𝒏𝒔 𝟏. 𝟒𝟕×

Hashing Overhead in a Leveled LSM-Tree

0.0 0.2 0.4 0.6 0.8 1.0
Empty point lookup ratio (Æ)

0.0

0.5

1.0

E
x
ec

u
ti
on

ti
m

e
b
re

ak
d
ow

n
SSD (113 µs)

slow PCIe SSD (50 µs)

fast PCIe SSD (10 µs)

emulated NVM (250ns)

memory (160 ns)

hashing I/O

SSD (113 µs)

slow PCIe SSD (50 µs)

fast PCIe SSD (10 µs)

emulated NVM (250ns)

memory (160 ns)

0.0 0.2 0.4 0.6 0.8 1.0
Empty point lookup ratio (Æ)

0.0

0.5

1.0

E
x
ec

u
ti
on

ti
m

e
b
re

ak
d
ow

n
SSD (113 µs)

slow PCIe SSD (50 µs)

fast PCIe SSD (10 µs)

emulated NVM (250ns)

memory (160 ns)

hashing I/O

SSD (113 µs)

slow PCIe SSD (50 µs)

fast PCIe SSD (10 µs)

emulated NVM (250ns)

memory (160 ns)

In SSDs, hashing is over 10% for all empty lookups
43

Hashing Overhead in a Leveled LSM-Tree

0.0 0.2 0.4 0.6 0.8 1.0
Empty point lookup ratio (Æ)

0.0

0.5

1.0

E
x
ec

u
ti
on

ti
m

e
b
re

ak
d
ow

n
SSD (113 µs)

slow PCIe SSD (50 µs)

fast PCIe SSD (10 µs)

emulated NVM (250ns)

memory (160 ns)

hashing I/O

SSD (113 µs)

slow PCIe SSD (50 µs)

fast PCIe SSD (10 µs)

emulated NVM (250ns)

memory (160 ns)

0.0 0.2 0.4 0.6 0.8 1.0
Empty point lookup ratio (Æ)

0.0

0.5

1.0

E
x
ec

u
ti
on

ti
m

e
b
re

ak
d
ow

n
SSD (113 µs)

slow PCIe SSD (50 µs)

fast PCIe SSD (10 µs)

emulated NVM (250ns)

memory (160 ns)

hashing I/O

SSD (113 µs)

slow PCIe SSD (50 µs)

fast PCIe SSD (10 µs)

emulated NVM (250ns)

memory (160 ns)

44

Hashing is getting more dominant

Hashing Overhead in a Leveled LSM-Tree

0.0 0.2 0.4 0.6 0.8 1.0
Empty point lookup ratio (Æ)

0.0

0.5

1.0

E
x
ec

u
ti
on

ti
m

e
b
re

ak
d
ow

n
SSD (113 µs)

slow PCIe SSD (50 µs)

fast PCIe SSD (10 µs)

emulated NVM (250ns)

memory (160 ns)

hashing I/O

SSD (113 µs)

slow PCIe SSD (50 µs)

fast PCIe SSD (10 µs)

emulated NVM (250ns)

memory (160 ns)

0.0 0.2 0.4 0.6 0.8 1.0
Empty point lookup ratio (Æ)

0.0

0.5

1.0

E
x
ec

u
ti
on

ti
m

e
b
re

ak
d
ow

n
SSD (113 µs)

slow PCIe SSD (50 µs)

fast PCIe SSD (10 µs)

emulated NVM (250ns)

memory (160 ns)

hashing I/O

SSD (113 µs)

slow PCIe SSD (50 µs)

fast PCIe SSD (10 µs)

emulated NVM (250ns)

memory (160 ns)

45

Hashing is getting more dominant

Hashing Overhead in a Leveled LSM-Tree

0.0 0.2 0.4 0.6 0.8 1.0
Empty point lookup ratio (Æ)

0.0

0.5

1.0

E
x
ec

u
ti
on

ti
m

e
b
re

ak
d
ow

n
SSD (113 µs)

slow PCIe SSD (50 µs)

fast PCIe SSD (10 µs)

emulated NVM (250ns)

memory (160 ns)

hashing I/O

SSD (113 µs)

slow PCIe SSD (50 µs)

fast PCIe SSD (10 µs)

emulated NVM (250ns)

memory (160 ns)

0.0 0.2 0.4 0.6 0.8 1.0
Empty point lookup ratio (Æ)

0.0

0.5

1.0

E
x
ec

u
ti
on

ti
m

e
b
re

ak
d
ow

n
SSD (113 µs)

slow PCIe SSD (50 µs)

fast PCIe SSD (10 µs)

emulated NVM (250ns)

memory (160 ns)

hashing I/O

SSD (113 µs)

slow PCIe SSD (50 µs)

fast PCIe SSD (10 µs)

emulated NVM (250ns)

memory (160 ns)

46

Hashing is getting more dominant

Hashing Overhead in a Leveled LSM-Tree

0.0 0.2 0.4 0.6 0.8 1.0
Empty point lookup ratio (Æ)

0.0

0.5

1.0

E
x
ec

u
ti
on

ti
m

e
b
re

ak
d
ow

n
SSD (113 µs)

slow PCIe SSD (50 µs)

fast PCIe SSD (10 µs)

emulated NVM (250ns)

memory (160 ns)

hashing I/O

SSD (113 µs)

slow PCIe SSD (50 µs)

fast PCIe SSD (10 µs)

emulated NVM (250ns)

memory (160 ns)

0.0 0.2 0.4 0.6 0.8 1.0
Empty point lookup ratio (Æ)

0.0

0.5

1.0

E
x
ec

u
ti
on

ti
m

e
b
re

ak
d
ow

n
SSD (113 µs)

slow PCIe SSD (50 µs)

fast PCIe SSD (10 µs)

emulated NVM (250ns)

memory (160 ns)

hashing I/O

SSD (113 µs)

slow PCIe SSD (50 µs)

fast PCIe SSD (10 µs)

emulated NVM (250ns)

memory (160 ns)

Hashing is getting more dominant
47

Lookup Cost in a Tiered LSM-Tree

Lookup cost in level 𝑖, 𝒯 𝑖
T runs per level ・ empty (𝛼!)

・ non-empty (1 − 𝛼!)

𝛼! ⋅ 𝑇 ⋅ (𝑇" + 𝑇# + 𝑓$ ⋅ 𝑇%)

1 − 𝛼! ⋅
𝑇 + 1
2

⋅ 𝑇" + 𝑇# + 1 − 𝛼! ⋅ 𝑇%

𝑐𝑜𝑠𝑡 ≈ 𝑇 ⋅ 𝐿 − 6;3
< 1 − 𝛼 ⋅ 𝑇78

+ 𝑇 ⋅ 𝐿 − 1 − 𝛼 ⋅ 𝑇 + 1 ⋅ 𝑓1 ⋅ 𝑇2
+ 1 − 𝛼 ⋅ 𝑇2

48

Bloom filter cost

Data access due to false positives
Data access

Lookup Cost in a Tiered LSM-Tree

Lookup cost in level 𝑖, 𝒯 𝑖
T runs per level ・ empty (𝛼!)

・ non-empty (1 − 𝛼!)

𝛼! ⋅ 𝑇 ⋅ (𝑇" + 𝑇# + 𝑓$ ⋅ 𝑇%)

1 − 𝛼! ⋅
𝑇 + 1
2

⋅ 𝑇" + 𝑇# + 1 − 𝛼! ⋅ 𝑇%

𝑐𝑜𝑠𝑡 ≈ 𝑇 ⋅ 𝐿 − 6;3
< 1 − 𝛼 ⋅ 𝑇/ + 𝑇0

+ 𝑇 ⋅ 𝐿 − 1 − 𝛼 ⋅ 𝑇 + 1 ⋅ 𝑓1 ⋅ 𝑇2
+ 1 − 𝛼 ⋅ 𝑇2

49

Bloom filter cost

Data access due to false posi3ves
Data access

∝ 𝑻 ⋅ 𝑳

Hashing Overhead in a Tiered LSM-Tree

Similar, but hashing is more pronounced.

50

Hashing Overhead in a Tiered LSM-Tree

How can we reduce the hashing overhead in LSM-trees?

51

Hash Sharing in Leveled LSM-Trees

get(k) k kh

h

h

h

SST A

SST B

SST C

SST A

SST B

SST C

BF

BF

BF

Data

Data

Data

BF

BF

BF

Data

Data

Data

MemBufL0

L1

L2

L3

SST A

SST B

SST C

(a) Query path (b) Hashing in a query (c) Shared hashing in a query

52

Hash Sharing in Leveled LSM-Trees

get(k) k kh

h

h

h

SST A

SST B

SST C

SST A

SST B

SST C

BF

BF

BF

Data

Data

Data

BF

BF

BF

Data

Data

Data

MemBufL0

L1

L2

L3

SST A

SST B

SST C

(a) Query path (b) Hashing in a query (c) Shared hashing in a query

The same hash function
is calculated multiple
times which brings CPU
overhead. 53

Hash Sharing in Leveled LSM-Trees

get(k) k kh

h

h

h

SST A

SST B

SST C

SST A

SST B

SST C

BF

BF

BF

Data

Data

Data

BF

BF

BF

Data

Data

Data

MemBufL0

L1

L2

L3

SST A

SST B

SST C

(a) Query path (b) Hashing in a query (c) Shared hashing in a query

The same hash function
is calculated multiple
times which brings CPU
overhead.

A single hash digest
can be reused to avoid
expensive hash
calcula6ons.

54

Theoretical Gain w.r.t. Evolving Storage Devices
𝐺𝑎𝑖𝑛 =

𝑐𝑜𝑠𝑡 − 𝑐𝑜𝑠𝑡%&'()
𝑐𝑜𝑠𝑡 ×100%

55

40%

6%

1%≈0%

Theoretical Gain w.r.t. Evolving Storage Devices
𝐺𝑎𝑖𝑛 =

𝑐𝑜𝑠𝑡 − 𝑐𝑜𝑠𝑡%&'()
𝑐𝑜𝑠𝑡 ×100%

56

40%

6%

1%≈0%

The gain increases rapidly for faster storage devices

Experiment Setting

Parameters Default Value

Workload

Entry size (key + value) 1KB-2KB
Data volume 22GB
Empty query ratio (𝛼) 100%
Query distribution Uniform

LSM
File size 2 MB
Size ratio 10
Bits per key 10

Build an LSM prototype
(RocksDB’s fast local BF).

1M point queries (report avg
latency of 5 experiments)

Use PCIe SSD (10 𝜇s) with direct
I/O by default

57

Workload: Entry size: 2KB, #Entries: 11M
Tuning: Bits per key: 10, Size ratio: 10, Storage: PCIe SSD

Uniform Query Distribution

Impact of the key size

58

Workload: Entry size: 2KB, #Entries: 11M
Tuning: Bits per key: 10, Size ra>o: 10, Storage: PCIe SSD

Uniform Query Distribution

Impact of the key size

59

Workload: Entry size: 2KB, #Entries: 11M
Tuning: Bits per key: 10, Size ratio: 10, Storage: PCIe SSD

Uniform Query Distribution

Impact of the key size

60

Workload: Entry size: 2KB, #Entries: 11M
Tuning: Bits per key: 10, Size ra>o: 10, Storage: PCIe SSD

As key size grows, the gain
increases up to 20%

Uniform Query Distribution

Impact of the key size

61

For skewed empty query workload, the
gain increases up to 60%

Workload: Entry size: 2KB, #Entries: 11M
Tuning: Bits per key: 10, Size ratio: 10, Storage: PCIe SSD

As key size grows, the gain
increases up to 20%

Uniform Query Distribu3on Zipfian Query Distribution

Impact of the key size

62

Workload:
Key size: 64B
Entry size: 1KB
#Entries: 22M

Tuning:
Bits per key: 10
Size ratio: 2

Storage: PCIe SSD

Impact of #levels

63

The gain initially increases as #level grows, and then plateaus

Workload:
Key size: 64B
Entry size: 1KB
#Entries: 22M

Tuning:
Bits per key: 10
Size ra>o: 2

Storage: PCIe SSD

Impact of #levels

64

Workload:
Key size: 64B
Entry size: 1KB
#Entries: 22M

Tuning:
Bits per key: 10
Size ratio: 10

direct I/O

Impact of storage device

65

Hash sharing leads
to higher gain for

faster storage.

Workload:
Key size: 64B
Entry size: 1KB
#Entries: 22M

Tuning:
Bits per key: 10
Size ra>o: 10

direct I/O

Impact of storage device

66

Workload:
Entry size: 1KB
#Entries: 22M
Empty query ratio (𝛼) : 1

Tuning:
Bits per key: 10
Size ratio: 10

Impact of the I/O cost of empty queries

For slow storage, high I/O cost of
empty queries leads to smaller gain

Slow storage

Fast storage

67

I/O cost of empty queriesHigh Low

Workload:
Entry size: 1KB
#Entries: 22M
Empty query ratio (𝛼) : 1

Tuning:
Bits per key: 10
Size ratio: 10

Impact of the I/O cost of empty queries

For slow storage, high I/O cost of
empty queries leads to smaller gain

Slow storage

Fast storage

For fast storage,
the gain does not
depend on the
cost of empty
queries

68

I/O cost of empty queriesHigh Low

Workload:
Entry size: 1KB
#Entries: 22M
Empty query ratio (𝛼) : 1

Tuning:
Bits per key: 10
Size ratio: 10

Impact of the I/O cost of empty queries

For slow storage, high I/O cost of
empty queries leads to smaller gain

Slow storage

Fast storage

For fast storage,
the gain does not
depend on the
cost of empty
queries

Fast storage leads to
high gain. Even for

slower storage, if the
cost of empty queries
is low (low FPR), the

gain is high

69

I/O cost of empty queriesHigh Low

Workload: Entry size: 1KB, #Entries: 22M
Tuning: Bits per key: 10, Size ratio: 10

Storage: PCIe SSD (D)

Impact of empty lookup ratio (𝜶)

70

The gain on PCIe SSD increases
as α increases

Workload: Entry size: 1KB, #Entries: 22M
Tuning: Bits per key: 10, Size ratio: 10

Storage: PCIe SSD (D)

Impact of empty lookup ratio (𝜶)

71

The gain on PCIe SSD increases
as α increases

Workload: Entry size: 1KB, #Entries: 22M
Tuning: Bits per key: 10, Size ratio: 10

Storage: PCIe SSD (D) Storage: RAM disk

Impact of empty lookup ratio (𝜶)

The benefit is pronounced when it comes
to a RAM disk

72

The gain on PCIe SSD increases
as α increases

Workload: Entry size: 1KB, #Entries: 22M
Tuning: Bits per key: 10, Size ratio: 10

Storage: PCIe SSD (D) Storage: RAM disk

Impact of empty lookup ratio (𝜶)

The benefit is pronounced when it comes
to a RAM disk

Overall, hash sharing has more impact for faster devices which
is further exacerbated for empty queries. 73

Conclusion
q BFs dominate LSM query latency

for fast storage

Conclusion
q BFs dominate LSM query latency

for fast storage

q Develop a query cost model to
quantify and predict the amount of
time on hashing and data accessing

Conclusion
q BFs dominate LSM query latency

for fast storage

q Develop a query cost model to
quantify and predict the amount of
time on hashing and data accessing

q Reduce hashing, by sharing it
across BFs and levels, leading to
performance gains up to 40%

Leveling

Tiering

≈0%

≈0% 1%

2%

6%

40%

17%

54%

Conclusion
q BFs dominate LSM query latency

for fast storage

q Develop a query cost model to
quantify and predict the amount of
time on hashing and data accessing

q Reduce hashing, by sharing it
across BFs and levels, leading to
performance gains up to 40%

Thank you! https://github.com/BU-DiSC/BF-Shared-Hashing

Leveling

Tiering

≈0%

≈0% 1%

2%

6%

40%

17%

54%

