
A Parametric I/O Model

for Modern Storage Devices
Tarikul Islam Papon Manos Athanassoulis

papon@bu.edu mathan@bu.edu

presentation at DaMoN 2021

mailto:papon@bu.edu
mailto:mathan@bu.edu

Modeling Performance

“Algorithm/Data Structure X has O " # performance,
where # is the number of data pages on disk”

… is probably one of the most commonly read phrases in SIGMOD papers.

~5ns

~100ns

~1 ms

larger faster

Memory Hierarchy

Small, fast main memory
(size M)

Traditional I/O Model

Small, fast main memory
(size M) Large, slow external memory

Traditional I/O Model

Small, fast main memory
(size M) Large, slow external memory

One I/O at a time

Traditional I/O Model

Small, fast main memory
(size M) Large, slow external memory

Traditional I/O Model

0 access cost

Small, fast main memory
(size M) Large, slow external memory

Traditional I/O Model

Transfer cost
1 unit

0 access cost

Small, fast main memory
(size M) Large, slow external memory

Traditional I/O Model

Transfer cost
1 unit

0 access cost

total cost @ total # reads/writes to disk

Small, fast main memory
(size M) Large, slow external memory

Traditional I/O Model

Two (outdated) assumptions

o Symmetric cost for Read & Write to disk

o One I/O at a time

Hard Disk Drives

Hard Disk Drives
Two assumptions of Traditional I/O Model

Symmetric cost for Read
& Write to disk One I/O at a time

HDD Stopped Evolving

o Generally, the slowest component

o Slowest increase in performance

Device Size Seq B/W Time to read

HDD 1980 100 MB 1.2 MB/s ~ 1 min

HDD 2020 4 TB 125 MB/s ~ 9 hours

HDDs are moving deeper in the memory hierarchy, and new
algorithms are designed for new faster storage devices

How do these modern storage devices perform?

Solid State Drives & NVMs

SSDs

• SATA SSDs

• PCIe SSDs (NVMe SSDs)

• Zoned SSDs

• Open SSDs

NVMs

• PCM

• MRAM

• STT-RAM

• 3D Xpoint (Intel’s Optane)

Modern Storage Devices

Symmetric cost for Read & Write

One I/O at a time

Read/Write Asymmetry

Concurrency

Read/Write Asymmetry

Out-of-place updates cause invalidation

Invalidation causes garbage collection

Block 0 Block 1

Plane

Page 0

Page 1

Page 2

Page 0

Page 1

Page 2

Writes in SSD

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

A B C

D E F

G H Free

Free Free Free

Block 1

Writing in a free page isn’t costly!

Writes in SSD

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

A B C

D E F

G H Free

Free Free Free

Block 1

Update

A, B, C, D

Writes in SSD

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

E F

G H A’

B’ C’ D’

Block 1

Not all updates are costly!

Update

A, B, C, D

A B C

D

Writes in SSD

…

What if there is no space?

Block 0

E F

G H A’

B’ C’ D’

A B C

D

M’ N’ O’

P’ Q’ R’

Block N

M N O

P Q R

Writes in SSD

…

What if there is no space?

Garbage Collection!
Block 0

E F

G H A’

B’ C’ D’

A B C

D

M’ N’ O’

P’ Q’ R’

Block N

M N O

P Q R

Writes in SSD

What if there is no space?

Garbage Collection!
Block 0

Q’ R’ Free

Free Free Free

Free Free Free

Free Free Free

E F G

H A’ B’

C’ D’ M’

N’ O’ P’

Block N…

Writes in SSD

What if there is no space?

Garbage Collection!
Block 0

Q’ R’ Free

Free Free Free

Free Free Free

Free Free Free

E F G

H A’ B’

C’ D’ M’

N’ O’ P’

Block N…

Higher average update cost (due to GC) à Read/Write asymmetry

Writes in SSD

Intel Device Advertised Random
Read IOPS

Advertised Random
Write IOPS

Advertised
Asymmetry

D5-P4320 427k 36k 11.9

DC-P4500 626k 51k 12.3

DC-P4610 643k 199k 3.2

Optane 900P 550k 500k 1.1

Optane H10 330k 250k 1.3

Read/Write Asymmetry - Example

Asymmetry-Aware Algorithms

Read/Write Asymmetry

Concurrency

Internals of an SSD

Controller
Chip 1 Chip 2 Chip N

Chip 1 Chip 2 Chip N

…
…

…

Channel 1…

Channel N

…Die N
Plane1 PlaneN

Block 1

Block N

…

…Die 1
PlaneN

Page 1

Page N
…

Plane1

Parallelism at different levels (e.g. channel, chip, die, plane block, page)

Concurrency in SSD (simplified)

ControllerI/O
Requests

SSD

chips

channels

Benchmarking

Benchmarking
Tools

• Custom micro-benchmarking infrastructure

• fio

• Intel’s SPDK

Setup
• With File System

• Without File System

Measuring Asymmetry/Concurrency (With FS)

0

100

200

300

400

500

600

0 50 100 150 200 250 300

IO
PS

Threads

4K Random Read 8K Random Read×103Device: Dell P4510 (1TB)

Measuring Asymmetry/Concurrency (With FS)

For 4K random read,

Asymmetry: 2.8

Concurrency: 70

0

100

200

300

400

500

600

0 50 100 150 200 250 300

IO
PS

Threads

4K Random Read 4K Random Write

8K Random Read 8K Random Write
×103

2.8x

1.8x

Device: Dell P4510 (1TB)

Measuring Asymmetry/Concurrency (With FS)

For 8K random write,

Asymmetry: 1.8

Concurrency: 10

0

100

200

300

400

500

600

0 50 100 150 200 250 300

IO
PS

Threads

4K Random Read 4K Random Write

8K Random Read 8K Random Write
×103

2.8x

1.8x

Device: Dell P4510 (1TB)

Measuring Asymmetry/Concurrency (With FS)

Asymmetry and

concurrency depends

on request type and

access granularity

0

100

200

300

400

500

600

0 50 100 150 200 250 300

IO
PS

Threads

4K Random Read 4K Random Write

8K Random Read 8K Random Write
×103

2.8x

1.8x

Device: Dell P4510 (1TB)

Measuring Asymmetry/Concurrency (Without FS)

For 4K random reads,

Asymmetry: 3

Concurrency: 14

0

200

400

600

800

1000

0 10 20 30 40 50

IO
PS

Threads

4K Random Read 4K Random Write

8K Random Read 8K Random Write
×103

3x

3x

Device: Dell P4510 (1TB)

Measuring Asymmetry/Concurrency (Without FS)

0

200

400

600

800

1000

0 10 20 30 40 50

IO
PS

Threads

4K Random Read 4K Random Write

8K Random Read 8K Random Write
×103

3x

3x

Device: Dell P4510 (1TB)

Much stable

performance

without the

file system!

Can the File System be the Bottleneck?
Interrupt-based model

Request is
submitted to OS

Driver processes

the request

Data is read from

h/w to buffer

Interrupt is

generated
CPU is notified

Data is read
from the buffer

Can the File System be the Bottleneck?

0

80

160

240

320

400

0 1000 2000 3000

La
te

nc
y

(µ
s)

Bandwidth (MB/s)

4K RR (w/o FS)
4K RW (w/o FS)
4K RR (w FS)
4K RW (w FS)

3x

2.8x

1.7x

1.7x

32001900

Device: Dell P4510 (1TB)

Measuring Asymmetry/Concurrency

Modern Storage Devices

0

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16 18

A
sy

m
m

et
ry

 (R
an

do
m

 R
/W

)

Concurrency (#channels)

Optane Series
Non-Optane Series

Sequental
Asymmetry

5

1

Used Devices

Modern Storage Devices

0

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16 18

A
sy

m
m

et
ry

 (R
an

do
m

 R
/W

)

Concurrency (#channels)

Optane Series
Non-Optane Series

Sequental
Asymmetry

5

1

Used Devices

Most devices have
high asymmetry

How should the I/O model be adapted in light of

read/write asymmetry and concurrency?

Parametric I/O Model

PIO (M, k, a)

Main Memory
Size

Concurrency Asymmetry

Performance Analysis
We classify storage-intensive applications into four classes

• Unbatchable Reads, Unbatchable Writes

• Unbatchable Reads, Batchable Writes

• Batchable Reads, Unbatchable Writes

• Batchable Reads, Batchable Writes

Unbatchable Reads, Batchable Writes

• Can exploit write concurrency (kw) by batching writes

• Amortized cost per write following PIO is !"#

• Example: DBMS bufferpool

Unbatchable Reads, Batchable Writes

	1
	2

	3
	4

	5
	6

	7

	8

	1 	2 	3 	4 	5 	6 	7 	8

Conc.	Write	I/Os

S
p
ee
d
u
p

α	=	1
α	=	2

α	=	4
α	=	8

	1
	2

	3
	4

	5
	6

	7

	8

	1 	2 	3 	4 	5 	6 	7 	8

Conc.	Write	I/Os

S
p
ee
d
u
p

α	=	1
α	=	2

α	=	4
α	=	8

	1

	1.2

	1.4

	1.6

	1.8

	2

	1 	2 	3 	4 	5 	6 	7 	8

Conc.	Write	I/Os

S
p
ee
d
u
p

α	=	1
α	=	2

α	=	4
α	=	8

10% reads 50% reads 90% reads

Speedup increases with increasing concurrent I/Os

Speedup depends on asymmetry – gain is higher for a device with higher asymmetry

Batchable Reads, Unbatchable Writes

• Can exploit read concurrency (kr) by batching read

• Amortized cost per read following PIO is !"#

• Example: Graph traversal

Batchable Reads, Unbatchable Writes

	1

	1.2

	1.4

	1.6

	1.8

	2

	1 	2 	3 	4 	5 	6 	7 	8

Conc.	Read	I/Os

S
p
ee
d
u
p

α	=	1
α	=	2

α	=	4
α	=	8

	1

	1.2

	1.4

	1.6

	1.8

	2

	1 	2 	3 	4 	5 	6 	7 	8

Conc.	Read	I/Os

S
p
ee
d
u
p

α	=	1
α	=	2

α	=	4
α	=	8

	1

	2

	3

	4

	5

	6

	7

	8

	1 	2 	3 	4 	5 	6 	7 	8

Conc.	Read	I/Os

S
p
ee
d
u
p

α	=	1
α	=	2

α	=	4
α	=	8

10% reads 50% reads 90% reads

Speedup increases with increasing concurrent I/Os

Speedup depends on asymmetry – gain is higher for a device with lower asymmetry

Batchable Reads, Unbatchable Writes

• Can exploit both read and write concurrency (kr , kw)

• Amortized cost per read following PIO is !"#

• Amortized cost per write following PIO is $"%

• Example: LSM compaction

Batchable Reads, Batchable Writes

	2 	4 	6 	8
	2
	4
	6
	8

	2

	4

	6
	8

α	=	1 α	=	8

Conc.	Read	I/Os
Co
nc
.	W

rit
e	I
/O
s

S
p
ee
d
u
p

	2 	4 	6 	8
	2
	4
	6
	8

	2

	4

	6
	8

α	=	1 α	=	8

Conc.	Read	I/Os
Co
nc
.	W

rit
e	I
/O
s

S
p
ee
d
u
p

	2 	4 	6 	8
	2
	4
	6
	8

	2

	4

	6
	8

α	=	1 α	=	8

Conc.	Read	I/Os
Co
nc
.	W

rit
e	I
/O
s

S
p
ee
d
u
p

10% reads 50% reads 90% reads

Speedup increases with increasing concurrent I/Os, and depends on asymmetry

Impact of utilizing write concurrency is higher than utilizing read concurrency

Importance of using Proper k

	1

	1.1

	1.2

	1.3

	1.4

	1.5

	1.6

	0 	2 	4 	6 	8 	10 	12 	14 	16
S
p
ee
d
u
p

Concurrent	I/Os

Batched	Writes

k = 8

A sample application with unbatchable
reads and batchable writes

We use PCIe SSD (kw = 8) to run this
concurrency-aware application

Optimal speedup at the device
concurrency.

Know Thy Device

Exploit Device Concurrency

Use Concurrency with Care

It is suboptimal to treat a read and a write equally for a device with asymmetry

Asymmetry Controls Performance

Guidelines for Algorithm Design

Conclusion

Read/Write
Asymmetry Concurrency

Need for a new
parametric I/O model

PIO (M, k, a)

Modern Storage Devices

Benefits of PIO (M, k, a)
• algorithms tailored to new devices

• Can capture any new device

Prerequisite: quantify k and α

Make asymmetry and concurrency part of algorithm design

… not simply an engineering optimization

Build algorithms/data structures for storage devices
with asymmetry ! and concurrency "

index structures graph traversal algorithms bufferpool management

Thank You!
disc.bu.edu/pio

Backup Slides

Expected Parallelism

SSD
Controller

How many of the channels will be occupied for uniform distribution?

I/O
Requests

ch-1
ch-nch-2

ch-3

SSD

Expected Parallelism

!" = expected number of empty channels after n I/Os are uniformly distributed
We use !"#$ and consider where the %&' I/O will be routed

!" =
!"#$
% !"#$ − 1 + 1 − !"#$% !"#$ = % − 1

% !"#$

Since !, = %; !"= "#$
"

"
%

Fraction of empty channels = ⁄/0 " = 1 − $
"
"
≈ $

2

So, on average 1 − $
2 = 63.2% channels will be accessed in parallel

with probability

it will be on a non-empty channelwith probability

it will be on an empty channel
reducing them

Unbatchable Reads, Batchable Writes

	1
	2

	3
	4

	5
	6

	7

	8

	1 	2 	3 	4 	5 	6 	7 	8

Conc.	Write	I/Os

S
p
ee
d
u
p

α	=	1
α	=	2

α	=	4
α	=	8

	1
	2

	3
	4

	5
	6

	7

	8

	1 	2 	3 	4 	5 	6 	7 	8

Conc.	Write	I/Os

S
p
ee
d
u
p

α	=	1
α	=	2

α	=	4
α	=	8

	1
	2

	3
	4

	5
	6

	7

	8

	1 	2 	3 	4 	5 	6 	7 	8

Conc.	Write	I/Os

S
p
ee
d
u
p

α	=	1
α	=	2

α	=	4
α	=	8

	1

	1.2

	1.4

	1.6

	1.8

	2

	1 	2 	3 	4 	5 	6 	7 	8

Conc.	Write	I/Os

S
p
ee
d
u
p

α	=	1
α	=	2

α	=	4
α	=	8

	1

	1.2

	1.4

	1.6

	1.8

	2

	1 	2 	3 	4 	5 	6 	7 	8

Conc.	Write	I/Os

S
p
ee
d
u
p

α	=	1
α	=	2

α	=	4
α	=	8

1% reads 10% reads 50% reads

90% reads 99% reads

