B3 BOSTON
DISC UNIVERSITY

A Parametric |/O Model

for Modern Storage Devices

Tarikul Islam Papon Manos Athanassoulis

papon@bu.edu mathan@bu.edu

presentation at DaMoN 2021



mailto:papon@bu.edu
mailto:mathan@bu.edu

Modeling Performance

“Algorithm/Data Structure X has O(f(N)) performance,
where N is the number of data pages on disk”

... is probably one of the most commonly read phrases in SIGMOD papers.
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Memory Hierarchy




Traditional I/O Model

Small, fast main memory
(size M)
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Traditional I/O Model

One I/O at a time

Small, fast main memory
(size M) Large, slow external memory
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Traditional I/O Model

O access cost
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Traditional I/O Model

Transfer cost
1 unit

O access cost

Small, fast main memory |
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Traditional I/O Model

total cost = total # reads/writes to disk

Transfer cost
1 unit

O access cost

Small, fast main memory | |
(size M) Large, slow external memory
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Traditional I/O Model

Two (outdated) assumptions
o Symmetric cost for Read & Write to disk

o One l/0O at a time

Small, fast main memory |
(size M) Large, slow external memory
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Hard Disk Drives




Hard Disk Drives

Two assumptions of Traditional I/O Model

ES =
ncalE [

Symmetric cost for Read
& Write to disk

v v

One I/0 at a time



HDD Stopped Evolving

o Generally, the slowest component

o Slowest increase in performance

Device Size Seq B/W | Time to read
HDD 1980 100 MB 1.2 MB/s ~ 1 min
HDD 2020 4 1B 125 MB/s ~ 9 hours

HDDs are moving deeper in the memory hierarchy, and new
algorithms are designed for new faster storage devices

How do these modern storage devices perform?



Solid State Drives & NVMs

SSDs NVMs

* SATA SSDs * PCM

* PCle SSDs (NVMe SSDs) * MRAM

* Zoned SSDs  STT-RAM

* Open SSDs 3D Xpoint (Intel’s Optane)



Modern Storage Devices

Symmetric cost for Read & Write Read/Write Asymmetry

x [T v @{

One I/0O at a time

Concurrency



Read/Write Asymmetry




Writes in SSD

Out-of-place updates cause invalidation

Invalidation causes garbage collection

Page 0 Page 0
Page 1 Page 1
Page 2 Page 2
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Writes in SSD

Free Free Free
Free Free Free

Free Free Free
Free Free Free Free Free Free

Block O Block 1

Writing in a free page isn’t costly!



BOSTON
UNIVERSITY

Writes in SSD
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Block O Block 1
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Writes in SSD

A B C D

Block O Block 1

Not all updates are costly!



Writes in SSD

What if there is no space?
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Writes in SSD

: . A B C M N 0
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Garbage Collection!
Block O Block N
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Writes in SSD
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Writes in SSD

- : E F G ‘ R’ F

What if there is no space? ) |G LR JLTree

' H A B’ Free Free Free
\ , \_ J \_ J \_ J \_ v \_ v \_ v

- - C’ D’ M’ Free Free Free

N’ o’ P’ Free Free Free

Garbage Collection!
Block O Block N

Higher average update cost (due to GC) = Read/Write asymmetry



Read/Write Asymmetry - Example

Intel Device Advertised Random | Advertised Random | Advertised
Read IOPS Write IOPS Asymmetry
D5-P4320 427k 36k 11.9
DC-P4500 626k 51k 12.3
DC-P4610 643k 199k 3.2
Optane 900P 550k 500k 1.1
Optane H10 330K 250K 1.3




Read/Write Asymmetry

Asymmetry-Aware Algorithms



Concurrency
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Internals of an SSD

Channel 1

Chipl —— Chip2 ese ChipN
=
ChannelN 01 —— Chip2z e+ ChipN
Die 1 Die N

Planelo.. e oo 000

Block 1 Page 1

Block N Page N

Parallelism at different levels (e.g. channel, chip, die, plane block, page)



Concurrency in SSD (simplified)

chips

/0
Requests

channels




Benchmarking



Benchmarking

Tools

Custom micro-benchmarking infrastructure
fio

Intel’s SPDK

Setup

With File System

Without File System
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Measuring Asymmetry/Concurrency (With FS)

Device: Dell P4510 (1TB | 3
( ) 600 1x10 <> 4K Random Read <> 8K Random Read
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Measuring Asymmetry/Concurrency (With FS)

Device: Dell P4510 (1TB)

For 4K random read,

Asymmetry: 2.8

Concurrency: 70
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Measuring Asymmetry/Concurrency (With FS)

Device: Dell P4510 (1TB) 600 - x103 <> 4K Random Read -<4K Random Write
<> 8K Random Read -<8K Random Write

200 1006 HOGOOCOOCOGOGO
For 8K random write, 400 - QM
N é>’<> 2.8X
Asymmetry: 1.8 % 300 - &
Concurrency: 10 200

100

# Threads
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Measuring Asymmetry/Concurrency (With FS)

Device: Dell P4510 (1TB)

Asymmetry and

access granularity

<

concurrency depends

on request type and

N
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Measuring Asymmetry/Concurrency (Without FS)

Device: Dell P4510 (1TB) 1000 4 x103 <> 4K Random Read -<4K Random Write
<> 8K Random Read -<8K Random Write
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Measuring Asymmetry/Concurrency (Without FS)
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Interrupt-based model

Can the File System be the Bottleneck?
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Can the File System be the Bottleneck?

Device: Dell P4510 (1TB) 1.7x.
400 < ~<-4K RR (w/o FS)
-< 4K RW (w/o FS)
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=
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Measuring Asymmetry/Concurrency

Table 2: Empirical Asymmetry and Concurrency.

4KB S8KB
Device a k, kw a k, kw
Optane SSD 1.1 6 S5 1.0 4 4
PCle SSD (with FS) 2.8 80 8 1.9 40 7
PCle SSD (w/o FS) 3.0 16 6 3.0 15 4
SATA SSD 1.5 25 9 1.3 21 5
Virtual SSD 2.0 11 19 1.9 6 10




Modern Storage Devices
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Modern Storage Devices
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How should the I/0 model be adapted in light of

read/write asymmetry and concurrency?



Parametric I/O Model

PIO (M, k, o)

N

Main Memory Concurrency  Asymmetry
Size

PIO(M, ky, k,, ) assumes a fast main memory with capacity
M, and storage of unbounded capacity that has read/write
asymmetry o, and read (write) concurrency k, (k).




Performance Analysis

We classify storage-intensive applications into four classes
e Unbatchable Reads, Unbatchable Writes

e Unbatchable Reads, Batchable Writes

 Batchable Reads, Unbatchable Writes

 Batchable Reads, Batchable Writes



Unbatchable Reads, Batchable Writes

* (Can exploit write concurrency (k,,) by batching writes

 Amortized cost per write following PIO is ki
w

e Example: DBMS bufferpool



Speedup
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Unbatchable Reads, Batchable Writes

10% reads

a=1—%— a=4
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Conc. Write I/0s
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50% reads
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Conc. Write 1/0s

Speedup increases with increasing concurrent 1/Os

7

90% reads

a=1—=— a=4
Q=2 —*%— a=8 8

Conc. Write I/Os

Speedup depends on asymmetry — gain is higher for a device with higher asymmetry



Batchable Reads, Unbatchable Writes

* (Can exploit read concurrency (k,) by batching read

 Amortized cost per read following PI1O is ki

r

 Example: Graph traversal
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Batchable Reads, Unbatchable Writes

10% reads 50% reads 90% reads
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Speedup increases with increasing concurrent 1/Os

Speedup depends on asymmetry — gain is higher for a device with lower asymmetry



Batchable Reads, Unbatchable Writes

Can exploit both read and write concurrency (%, , k)

Amortized cost per read following P1O is ki

r

Amortized cost per write following PIO is ki
w

Example: LSM compaction
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Batchable Reads, Batchable Writes

10% reads 50% reads 90% reads
a=1 a=3 a=1 a=328 a=1 a=38
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Speedup increases with increasing concurrent 1/Os, and depends on asymmetry

Impact of utilizing write concurrency is higher than utilizing read concurrency



Importance of using Proper k

A sample application with unbatchable 161 Batched Writes —&— ~
reads and batchable writes 1.5 | B
o 1.4 - | —
We use PCle SSD (k,, = 8) to run this = 13 | )
concurrency-aware application o |
Qy ! |
N 1 2 B :
Optimal speedup at the device L1~ i B
concurrency. 1 - ! -
| | | | | | | |
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Concurrent I/Os
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Guidelines for Algorithm Design

Know Thy Device

Exploit Device Concurrency

Use Concurrency with Care

It is suboptimal to treat a read and a write equally for a device with asymmetry

Asymmetry Controls Performance



Conclusion
/I\/Iodern Storage Devices \

&
T A—

Read/Write
Asymmetry

Need for a new
:1> parametric |/O model

4

PIO (M, k, o)

Benefits of PIO (M, k, o)

* algorithms tailored to new devices Prerequisite: quantify k and a

e Can capture any new device
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Make asymmetry and concurrency part of algorithm design

... hot simply an engineering optimization

Build algorithms/data structures for storage devices
with asymmetry @ and concurrency k

index structures graph traversal algorithms bufferpool management

@ V/ 7/
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Backup Slides



/0
Requests

'
\ ’

Q' How many of the channels will be occupied for uniform distribution?
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Expected Parallelism

E, = expected number of empty channels after n I/Os are uniformly distributed

We use E,_; and consider where the nt"* 1/0 will be routed
it will be on an empty channel

with probability reducmg them
n— 1
n 1

with probability it will be on a non-empty channel

Since Eg =n; E,=
n

: E 1\* 1
Fraction of empty channels = “*/p = (1 — ;) ~ -

So, on average (1 — i) = 63.2% channels will be accessed in parallel
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Unbatchable Reads, Batchable Writes

1% reads

10% reads

Speedup
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Conc. Write I/Os
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Conc. Write I/Os

90% reads 99% reads
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