Benchmarking Learned and LSM
Indexes for Data Sortedness

BOSTON

UNIVERSITY

Aneesh Raman

Jingi Lu

Andy Huynh

Manos Athanassoulis

D|SC

Indexes in Databases

value

SO, ¢ v . e
". .l..n ..' . . : .-‘0.-. '. ®e o
«ts o O e o o6 o
. ® g0] e 9 LI .
W e Ve S P * .
o® :. . [. e . :. i -\'. . 5, e,
* -~ 0'-‘ t: « ° :- - -.. o’ ."-
. l.u"... . R L3 ¢ .
. ° . S % ° .

e %o ° e ®' I] o
o '.l -.. .® H .e . '..ﬁo. . ."..
LRI T .« % os . o o
- '.‘I ;.l ° ® e, e ..'c *
°, 0 e °. ° . A e

3 . ‘.. IS ~ o '. CYC I .
. l.' . b .-‘. . : ° . '. g " '.
o Py M LI ‘e . s o ®y
. . s
o 0 * :'. .': “ "::o * "'.. o o® a.
. :I ® e .- ':. '.-. e -. Lo % ‘o o
L]

'ﬁ.o N % o

* ﬁc')si’zic')n‘ position
organize efficient unstructured structured
data queries data data

The process of inducing sortedness to an otherwise

unsorted data collection

BOSTON)
UNIVERSITY

Q

©
DISC

>

What if data already has some
structure?

BOSTON 3 . B
UNIVERSITY DISC

>

What if data already has some
structure?

Value
Value

Position (time) Position (time)

\—'—l

Near-sorted data

BOSTON , |88
UNIVERSITY DiSC

>

What if data already has some
structure?

treated same as
unstructured data!

W

Value
Value

Position (time) Position (time)

\—'—l

Near-sorted data

BOSTON : ®
UNIVERSITY DiSC

Irrespective of Sortedness, Same Ingestion Performance

Standard ingestion

Ingestion cost

Scrambled Sorted

Increasing data sortedness

BOSTON . | 888
UNIVERSITY DISC

Are There Faster Alternatives?

Standard ingestion
S
O
S
= Bulk loading requires all data a priori!
o
<
......... .B..a.l.iz..l.a.éud...i.ﬁ..g..........................----.-.-..--.-.-............................
Scrambled Sorted

Increasing data sortedness

BOSTON : B
UNIVERSITY DISC

Ideally, Higher Sortedness Should Lead to Faster Ingestion

Standard ingestion

Ingestion cost

Bulk loading

Scrambled Sorted

Increasing data sortedness

BOSTON . | 88%
UNIVERSITY DiSC

Near-Sorted Data i1s Frequently Found

“ Time Series = ii Tpm—
|/\/ Stock market

efficient reads fast writes

| classical indexes carry redundant
M Join/query offort!

BOSTON . <
UNIVERSITY DISC

Prior Work Focuses on
Classical Indexes

v/ In-memory buffering

Opportunistic bulk loading

- .

v

. A
v/ Sortedness-adaptiveness HEBERER
v

Better memory utilization

BOSTON o |88
UNIVERSITY DISC

Prior Work Focuses on
Classical Indexes

Other Index Designs?
{OF buffer | |

odel 2.1 . A4
oooooooo B
I O =] level 3 _
T
Error bound for min Error bound for max

g — -
BOSTON
UNIVERSITY

©
" Ibisc

Agenda

Background on Index Designs

Sortedness Metrics & Evaluation Framework

Benchmarking Results

BOSTON . <
UNIVERSITY DISC

ALEX: An Updatable Learned Index

=~
T T T Root node
model
M
HE
— Adaptive

_MkA Recursive Model Index (RMI)

Data node

Ding, et.al [SIGMOD 2020] s |82

ALEX: An Updatable Learned Index

HEEN

M M
HE
°ee — Adaptive
-- _|\/|kA Recursive Model Index (RMI)

Root node I

Gapped array

|
t d
BOSTON pata node EE
UNIVERSITY DISC

Lookups in ALEX

BOSTON
UNIVERSITY

T Root node —
model

HRE

Exponential searc

Datal node

p—

Adaptive
Recursive Model Index (RMI)

15

Q

©
DISC

Insertions in ALEX

BOSTON
UNIVERSITY

T Root node —
model

HRE

Exponential searc

Datal node

— Adaptive

-- _|\/|kA Recursive Model Index (RMI)

\/ model based insertions

\/ gapped array uses fewer shifts

\/ exponential search scales

with error size
16

Q

©
DISC

Insertions in ALEX

=)
1T Root node
M M
L1 |
Inserting pre-structured data... coe
eee — Adaptive
M

| _J
LI

like a “"normal” array

& gaps are infrequent

& faster exp. Search!

BOSTON
UNIVERSITY

Exponential searc

Datal node

Recursive Model Index (RMI)

\/ model based insertions

\/ gapped array uses fewer shifts

\/ exponential search scales

with error size
17

Q

©
DISC

LIPP: An Updatable Learned Index
W|th PreC|Se POSItIOI’\S @& Kernalized linear model m

f t . E
P P
b - o)
E: B
[
eg e n i

1 null/empty

P
iy
b
S

e

& Bit vector of entry types

node

e
it

P P
ety ety
e e
it pococicadicieieic]

Q

AT Wu, et.al [VLDB 2021] | S

UNIVERSITY

Lookups in LIPP eyt

Kernalized linear model m

Array of entries €

e
SRR

EEEEE
osassicai
e g e n ittt [o2 s

] null/empty
data

Bit vector of entry types

node

T
s U
e i
R i
A o rC L AC

BN

Q

BOSTON 19 ©
UNIVERSITY DISC

Insertions in LIPP

insert (k, i i
insert (k,u) & Kernalized linear model m

@ Array of entries €
Legend L

1 null/empty

P
iy
b
S

e

& Bit vector of entry types

node

o]
i
R

\/ model based insertions

Q

BOSTON - ©
UNIVERSITY DISC

Insertions in LIPP

insert (k, i i
insert (k,u) Kernalized linear model m

pioiiciisiad]
E - EEE
Ty o]

] null/emp

P
iy
b
S

e

Bit vector of entry types

~—

node

o]
i
R

\/ model based insertions

TR

i s g
PR B
PRt

create smaller nodes
for conflicts

o]

no shifting necessary

Q

BOSTON - ©
UNIVERSITY DISC

Log Structured Merge Trees (LSM-trees)

e (D
LA
j level 1
BOSTON =
UNIVERSITY . DISC

Log Structured Merge Trees (LSM-trees)

j level 1

BOSTON

UNIVERSITY

-7 sort + flush

23

Q

©
DISC

Log Structured Merge Trees (LSM-trees)

L1l sort + flush

!IIIE level 1

sorted run

BOSTON

UNIVERSITY

sizeratioT

24

Q

©
DISC

Log Structured Merge Trees (LSM-trees)

1111l
3 JE level 0/
TTT1 buffer

sizeratioT

- .

Sort-merging is called compaction

BOSTON o |88
UNIVERSITY DISC

Partial Compactions in RocksDB

BOSTON
UNIVERSITY

1111l
3 JE level 0/
TTT1 buffer

Compaction performed at the granularity of files

(S
LW

sizeratioT

26

G
DISC

Partial Compactions in RocksDB

BOSTON
UNIVERSITY

1111l
(o] w0 (N
TTT1 buffer

Compaction performed at the granularity of files

(S
LW

sizeratioT

27

G
DISC

Partial Compactions in RocksDB

BOSTON
UNIVERSITY

L1l
3 JE level 0/
TTT1 buffer

j level 1
S
-« (R

Compaction performed at the granularity of files

(S
LW

sizeratioT

28

G
DISC

Partial Compactions in RocksDB

BOSTON
UNIVERSITY

L1l
3 JE level 0/
TTT1 buffer

_____________________________ I GRGEEEEEEETE

j level 1 i pick subset of files

(S

(S
=<3 (N

Compaction performed at the granularity of files

sizeratioT

29

G
DISC

Partial Compactions in RocksDB

BOSTON
UNIVERSITY

1111l
3 JE level 0/
TTT1 buffer

j level 1 -_ pick subset of files
(DS
O
(S
=< (I

Compaction performed at the granularity of files

sizeratioT

30

G
DISC

Trivial Moves

suppose file_2 is chosen for compaction

AN

1 2

level 1 [5

20] [30 40

10] [11 26] [50 60]

BOSTON

UNIVERSITY

compaction would re-write file_2 in level_2

BUT, file_2 has no overlapping keys in level_2

31

Q

©
DISC

Trivial Moves

suppose file_2 is chosen for compaction

level 1 [5 20] [3

level 2 [1 10] [11 26] [30 40 | [50 60]

compaction would re-write file_2 in level_2

file_2 is actually moved without compaction!

Trivial Moves saves wasteful effort!
BOSTON 32

UNIVERSITY

Q

©
DISC

Agenda

Sortedness Metrics & Evaluation Framework

Benchmarking Results

BOSTON

UNIVERSITY

33

Q

©
DISC

Quantifying Data Sortedness

Inversions # pairs in incorrect order

increasing contiguous subsequences
least # swaps needed to establish total order

BOSTON L, | 888
UNIVERSITY DiSC

Quantifying Data Sortedness

BOSTON
UNIVERSITY

Inversions

Description

pairs in incorrect order

Runs

increasing contiguous subsequences

least # swaps needed to establish total order

|
[
6 7 8

9

10 1 2 3 4 5

35

Q

©
DISC

Quantifying Data Sortedness

Inversions # pairs in incorrect order

|
[
6 7 8

increasing contiguous subsequences

least # swaps needed to establish total order

1
9 10 1 2 3 4 5

|
global disorder f

BOSTON . ©
UNIVERSITY DiSC

Quantifying Data Sortedness

BOSTON
UNIVERSITY

Inversions

Description

pairs in incorrect order

Runs

increasing contiguous subsequences

least # swaps needed to establish total order

N\
2 1
"

"
4 3
"

"
6 5
"

7~ N\
8 7
"

"
10 | 9
"

37

Q

©
DISC

Quantifying Data Sortedness

BOSTON
UNIVERSITY

Inversions

Runs —

least # swaps needed to establish total order

v # pairs in incorrect order

Description

increasing contiguous subsequences

N\
2 1
"

" "
4 3 6 5
" "

local disorder

7~ N\
8 7
"

"
10 | 9
"

38

Q

©
DISC

(K, L)-Sortedness Metric

#. unordered entries =K
1 [\9 3 4 5 6 7 [2 9 | 10
max. displacement among unordered entries =L

inspired by Ben-Moshe, et.al [ICDT 2011] 39 Dis%

Framework

&

—»ooo—va —

Data Index Workload Results
generation initialization execution

L

BOSTON ®
UNIVERSITY DISC

Framework

Data
generation

BoDS
data generator

BOSTON ®
UNIVERSITY “pisc

Framework

L

Data Index
generation initialization

ntermal No e I/D{;:\; Key M il__‘l D Data Key
4 v

<] r"__"_‘\ .Node . Null -:l- iﬁ} _____ _-_ _____

manjanian O]
L mm —
= MU —
ALEX LIPP LSM-tree

BOSTON , | 88E
UNIVERSITY DISC

Framework

read, write or read+write

&

L

© O © a

Data Index Workload
generation initialization execution

BOSTON L | 888
UNIVERSITY DISC

Framework

L

Data
generation

BoDS
data generator

BOSTON
UNIVERSITY

© O ©

Index
initialization

L (%)

100

50

m 25

0 1 3

Results

44

Experimental Setup

Server Setup

2 Intel Xeon Gold 6230 processors
384GB main memory

1TB Dell P4510 NVMe drive
CentOS 7.9.2009

Default page size = 4KB

BOSTON
UNIVERSITY

Index Setup
ALEX: Node size = 16MB (default setting)
LIPP: Bitmap width = 1 Byte (default setting)
RocksDB:
kCompactionStyleLevel & kMinOverlappingRatio
Buffer size = 40MB; Size ratio = 4

45

Q

©
DISC

Reading the Results

S - 6
read, write or read+write
S - 7
a Q _ 7 é-
s
o S _ 7 Jé-
E—) N : :
<
m - 7 %
Workload =
execution - 7
o- 7
o 1

BOSTON o | 383
UNIVERSITY DISC

Reading the Results

= o
5 & | ¥
read, write or read+write c O
o _
8 res 7 6 _E
M " v QO
—_ 1 7 8_
a % 52 E
v o , =
© - 2 O
) < =
(4] n - 7 o ©
= £ 3
, ;8 ©
(@] m - =
Workload X = 3
. @)
execution - - - / 2
‘0
q0) o- 7
O
| - | | | | | | | | 1
O 0 1 3 5 10 25 50 100
k=

K
increasing % out-of-order entries

BOSTON | 888
UNIVERSITY DiSC

Let's talk about the B+-tree

100
|
(@)]

7 & B*-tree always performs index traversals

50

()}

Why higher throughput with high sortedness?

10
U

/ improved performance due to caching effects

I
Write Throughput (MOps)

However, this is not the ideal performance...

w

BOSTON o | 388
UNIVERSITY DiSC

Let's talk about the B+-tree

Preloading performance

o o
S— 6 2_

o 7 o _ 57 —~
N 57)]
) 5

n _ 3 LN
7 e o 57 \Z/
= 564_J
+ >
= - 7 H ,\33- 57 2

o

- S — 55 3
= c
2 =

m - 7 = m
= 54 O
-

53
o- 7 o
| I |
0 1 0 1 3 5 10 25 50 100

K (%)

Bulk loading is at least 8x faster!

Indexing for Near-Sorted Data [ICDE ‘23] a0 | Si6o

Getting back to Learned Indexes and LSM-trees...

sortedness-responsiveness # sortedness-adaptivity

Performance can change with differently sorted data, but is it optimal?

BOSTON " ®
UNIVERSITY DiISC

ALEX Performs Best With High Data Sortedness!

2.0 2.5

higher throughput L
low or moderate

\/High sortedness =dense runs
+ terminal gaps

\/ Less shifting required Bulk loading is at least 2x

faster!

\/Faster exponential search!

higher throughput when K
Best throughput and L are low

BOSTON o ®
UNIVERSITY DiSC

LIPP Performs Better for High L

2
Too many conflicts creates a deep 5 2 . .
x subtree (like a linked list) 3 IR . H|gher throughput for hlgh
1 2 2 2 2 L
x Fails rebalancing! 0
> S 8 8 8
Fails to ingest fully-sorted data
BOSTON 52 ®
UNIVERSITY

©
DISC

Performance Can Be Unpredictable!

(a) ALEX : Write Throughput (MOps) (b) LIPP : Write Throughput (MOps)
2.0 2.5 3.0 3.5 0 5 10 15

ALEX v/s LIPP:
LIPP can be anywhere
between 4.4x faster

|
(-]
(@)
—

=

(%)

BOSTON . ®
UNIVERSITY DISC

LSM Benefits from Trivial Moves

trivial moves

10 25 50 100

- ZUU

-175

150

125

100

100 -

Trivial moves maximized for fully-sorted data /

Trivial moves significantly drop with minor unorderness x

BOSTON
UNIVERSITY

Is this the best we can do?

% Trivial Moves

5%

8%

6%

7%

13%

15%

15%

6%

5%

8%

7%

11%

16%

15%

8%

6%

7%

10%

11%

18%

18%

100

- 60%

-50%

40%

30%

% Trivial Moves

20%

10%

54

Q

©
DISC

LSM Benefits from Trivial Moves

trivial moves % Trivial Moves
=- ;. S - 5% 6% 6% 8% 5% - 60%
9 - 150
S - 8% 7% 5% 6% 5%
=- 125 - 50%
: 100 1 _ 6% 5% 8% 7% 7%
75 n
a 40% 2
- 50 S - 7% 6% 7% 10% 12% 3
S - ® w3] g g - ©
0 - 13% 12% 11% 11% 14% 30% |§
Can a more fine-grained compaction X
: 5 o - 15% 17% 16% 18% 16%
granularity work? 50%
: . - 15% 18% 15% 18% 169
Can we further improve trivial moves for fully- - > SHAN 157 RReel 16%
(o)
sorted data? - 10%
! | | | | | | |
0 1 3 5 10 25 50 100
K

BOSTON
UNIVERSITY

Summary

Scan for link to paper

Indexes should perform less effort for pre-structured data
Analyzing performance by varying sortedness should be standardized

Learned Indexes are unpredictable when varying sortedness

LSM benefit from trivial moves BUT - potential room for improvement

BOSTON . | 88®
UNIVERSITY DiSC

Our Team

Aneesh Raman

BOSTON
UNIVERSITY

Matthaios Olma

Konstantinos Karatsenidis

L. AR
Subhadeep Sarkar

Manos Athanassoulis

57

O

©
DISC

	Default Section
	Slide 1: Benchmarking Learned and LSM Indexes for Data Sortedness

	Introduction
	Slide 2: Indexes in Databases
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Irrespective of Sortedness, Same Ingestion Performance
	Slide 7: Are There Faster Alternatives?
	Slide 8: Ideally, Higher Sortedness Should Lead to Faster Ingestion
	Slide 9: Near-Sorted Data is Frequently Found
	Slide 10: Prior Work Focuses on Classical Indexes
	Slide 11: Prior Work Focuses on Classical Indexes
	Slide 12: Agenda

	ALEX
	Slide 13: ALEX: An Updatable Learned Index
	Slide 14: ALEX: An Updatable Learned Index
	Slide 15: Lookups in ALEX
	Slide 16: Insertions in ALEX
	Slide 17: Insertions in ALEX

	LIPP
	Slide 18: LIPP: An Updatable Learned Index with Precise Positions
	Slide 19: Lookups in LIPP
	Slide 20: Insertions in LIPP
	Slide 21: Insertions in LIPP

	LSM-trees (RocksDB)
	Slide 22: Log Structured Merge Trees (LSM-trees)
	Slide 23: Log Structured Merge Trees (LSM-trees)
	Slide 24: Log Structured Merge Trees (LSM-trees)
	Slide 25: Log Structured Merge Trees (LSM-trees)
	Slide 26: Partial Compactions in RocksDB
	Slide 27: Partial Compactions in RocksDB
	Slide 28: Partial Compactions in RocksDB
	Slide 29: Partial Compactions in RocksDB
	Slide 30: Partial Compactions in RocksDB
	Slide 31: Trivial Moves
	Slide 32: Trivial Moves

	Quantifying Sortedness
	Slide 33: Agenda
	Slide 34: Quantifying Data Sortedness
	Slide 35: Quantifying Data Sortedness
	Slide 36: Quantifying Data Sortedness
	Slide 37: Quantifying Data Sortedness
	Slide 38: Quantifying Data Sortedness
	Slide 39: (K, L)-Sortedness Metric

	Framework
	Slide 40: Framework
	Slide 41: Framework
	Slide 42: Framework
	Slide 43: Framework
	Slide 44: Framework
	Slide 45: Experimental Setup
	Slide 46: Reading the Results
	Slide 47: Reading the Results
	Slide 48: Let’s talk about the B+-tree
	Slide 49: Let’s talk about the B+-tree
	Slide 50
	Slide 51: ALEX Performs Best With High Data Sortedness!
	Slide 52: LIPP Performs Better for High L
	Slide 53: Performance Can Be Unpredictable!
	Slide 54: LSM Benefits from Trivial Moves
	Slide 55: LSM Benefits from Trivial Moves
	Slide 56: Summary
	Slide 57: Our Team

