
Benchmarking Learned and LSM
Indexes for Data Sortedness

Andy Huynh

Jinqi Lu

Aneesh Raman

Manos Athanassoulis

Indexes in Databases

organize

data

efficient

queries

2

The process of inducing sortedness to an otherwise
unsorted data collection

unstructured

data

structured

data

What if data already has some

structure?

3

What if data already has some

structure?

Position (time)

V
a
lu

e

Position (time)

V
a
lu

e

Near-sorted data
4

What if data already has some

structure?

Position (time)

V
a
lu

e

Position (time)
V

a
lu

e

Near-sorted data

⩬ treated same as

unstructured data!

5

Irrespective of Sortedness, Same Ingestion Performance

Standard ingestion

SortedScrambled
Increasing data sortedness

In
g

e
st

io
n
 c

o
st

6

Are There Faster Alternatives?

Standard ingestion

Bulk loading

SortedScrambled
Increasing data sortedness

In
g

e
st

io
n
 c

o
st

7

Bulk loading requires all data a priori!

Ideally, Higher Sortedness Should Lead to Faster Ingestion

Standard ingestion

Bulk loading

SortedScrambled
Increasing data sortedness

In
g

e
st

io
n
 c

o
st

8

Near-Sorted Data is Frequently Found

Time Series

Stock market

9

efficient reads fast writes

classical indexes carry redundant

effort!Join/query⋈

Prior Work Focuses on
Classical Indexes

...

B+-tree

In-memory buffering✓

Opportunistic bulk loading✓

Sortedness-adaptiveness✓

Better memory utilization✓

10

Prior Work Focuses on
Classical Indexes

...

B+-tree

Other Index Designs?

11

Agenda

Introduction

Vision

Background on Index Designs

Sortedness Metrics & Evaluation Framework

Benchmarking Results

12

… …

… …

ALEX: An Updatable Learned Index

M M M M

M

M M

M M

M M

M

Root node

Adaptive

Recursive Model Index (RMI)

Data node

model

M

13Ding, et.al [SIGMOD 2020]

… …

… …

ALEX: An Updatable Learned Index

M M M M

M

M M

M M

M M

M

Root node

Adaptive

Recursive Model Index (RMI)

Data node

model

M

Gapped array

key

gap

14

Exponential search

… …

… …

Lookups in ALEX

M M M M

M

M M

M M

M M

M

Root node

Adaptive

Recursive Model Index (RMI)

Data node

model

M

15

Exponential search

… …

… …

Insertions in ALEX

M M M M

M

M M

M M

M M

M

Root node

Adaptive

Recursive Model Index (RMI)

Data node

model

M

gapped array uses fewer shifts✓

exponential search scales

with error size
✓

model based insertions✓

16

Exponential search

… …

… …

Insertions in ALEX

M M M M

M

M M

M M

M M

M

Root node

Adaptive

Recursive Model Index (RMI)

Data node

model

M

gapped array uses fewer shifts✓

exponential search scales

with error size
✓

model based insertions✓

Inserting pre-structured data…

gaps are infrequent

faster exp. Search!

like a “normal” array

17

LIPP: An Updatable Learned Index
with Precise Positions

M

Kernalized linear model M

Array of entries ε

Bit vector of entry typesnull/empty

data

node

Legend

M …

M M

M

M

…

18Wu, et.al [VLDB 2021]

Lookups in LIPP

M

Kernalized linear model M

Array of entries ε

Bit vector of entry typesnull/empty

data

node

Legend

M …

M M

M

M

…

key k

19

Insertions in LIPP

M

Kernalized linear model M

Array of entries ε

Bit vector of entry typesnull/empty

data

node

Legend

M …

M M

M

M

…

insert (k,v)

model based insertions✓

20

Insertions in LIPP

M

Kernalized linear model M

Array of entries ε

Bit vector of entry typesnull/empty

data

node

Legend

M …

M M

M

M

…

insert (k,v)

model based insertions✓

create smaller nodes

for conflicts
✓

M

no shifting necessary✓

21

Log Structured Merge Trees (LSM-trees)

buffer

level 1

22

Log Structured Merge Trees (LSM-trees)

buffer

level 1

sort + flush

23

Log Structured Merge Trees (LSM-trees)

buffer

level 1

sort + flush

sorted run size ratio T

24

Log Structured Merge Trees (LSM-trees)

level 0/

buffer

level 1

level 2

level 3

Sort-merging is called compaction

size ratio T

25

Partial Compactions in RocksDB

level 0/

buffer

level 1

level 2

level 3

Compaction performed at the granularity of files

capacity

size ratio T

26

Partial Compactions in RocksDB

level 0/

buffer

level 1

level 2

level 3

Compaction performed at the granularity of files

size ratio T

27

Partial Compactions in RocksDB

level 0/

buffer

level 1

level 2

level 3

Compaction performed at the granularity of files

size ratio T

28

Partial Compactions in RocksDB

level 0/

buffer

level 1

level 2

level 3

Compaction performed at the granularity of files

pick subset of files

size ratio T

29

Partial Compactions in RocksDB

size ratio T

level 0/

buffer

level 1

level 2

level 3

Compaction performed at the granularity of files

pick subset of files

30

Trivial Moves
suppose file_2 is chosen for compaction

compaction would re-write file_2 in level_2

BUT, file_2 has no overlapping keys in level_2

level 1

level 2

5 20

1

30 40

2

1 10

3

11 26

4

50 60

5

30 40

2

31

Trivial Moves
suppose file_2 is chosen for compaction

compaction would re-write file_2 in level_2

Trivial Moves saves wasteful effort!

level 1

level 2

5 20

1

30 40

2

1 10

3

11 26

4

50 60

5

30 40

2

file_2 is actually moved without compaction!

32

Agenda

Introduction

Vision

Background on Index Designs

Sortedness Metrics & Evaluation Framework

Benchmarking Results

33

Quantifying Data Sortedness

34

Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish total order

Quantifying Data Sortedness

6 7 8 9 10 1 2 3 4 5

35

Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish total order

Quantifying Data Sortedness

6 7 8 9 10 1 2 3 4 5

global disorder

36

Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish total order

Quantifying Data Sortedness

2 1 4 3 6 5 8 7 10 9

37

Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish total order

Quantifying Data Sortedness

2 1 4 3 6 5 8 7 10 9

local disorder
38

Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish total order

Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish total order

(K, L)-Sortedness Metric

1 8 3 4 5 6 7 2 9 10

#. unordered entries

max. displacement among unordered entries

= K

= L

inspired by Ben-Moshe, et.al [ICDT 2011] 39

Framework

Data

generation

Index

initialization

Workload

execution

Results

40

Framework

Data

generation

Index

initialization

Workload

execution

Results

BoDS

data generator

41

Framework

Data

generation

Index

initialization

Workload

execution

Results

BoDS

data generator

Internal Node
Data

Node

Key Gap

Key Model

Node

Data

Null

Key

ALEX LIPP LSM-tree

42

Framework

Data

generation

Index

initialization

Workload

execution

Results

BoDS

data generator

Internal Node
Data

Node

Key Gap

Key Model

Node

Data

Null

Key

ALEX LIPP LSM-tree

read, write or read+write

43

Framework

Data

generation

Index

initialization

Workload

execution

Results

BoDS

data generator

Internal Node
Data

Node

Key Gap

Key Model

Node

Data

Null

Key

ALEX LIPP LSM-tree

read, write or read+write

44

Experimental Setup

Server Setup

2 Intel Xeon Gold 6230 processors

384GB main memory

1TB Dell P4510 NVMe drive

CentOS 7.9.2009

Default page size = 4KB

Index Setup

ALEX: Node size = 16MB (default setting)

LIPP: Bitmap width = 1 Byte (default setting)

RocksDB:

kCompactionStyleLevel & kMinOverlappingRatio

Buffer size = 40MB; Size ratio = 4

45

Reading the Results

Workload

execution

read, write or read+write

46

Reading the Results

Workload

execution

read, write or read+write

E
v
a
lu

a
ti

o
n

 m
e
tr

ic

increasing % out-of-order entries
in

cr
e
a
si

n
g

 %
 m

a
x.

 d
is

p
la

c
e
m

e
n

t

47

Let’s talk about the B+-tree

B+-tree always performs index traversals

Why higher throughput with high sortedness?

improved performance due to caching effects✓

However, this is not the ideal performance…

48

Let’s talk about the B+-tree
Preloading performance

Bulk loading is at least 8x faster!

Indexing for Near-Sorted Data [ICDE ‘23] 49

Getting back to Learned Indexes and LSM-trees…

sortedness-responsiveness ≠ sortedness-adaptivity

Performance can change with differently sorted data, but is it optimal?

50

ALEX Performs Best With High Data Sortedness!

L
 (

%
)

K (%)

Best throughput
higher throughput when K

and L are low

High sortedness ⇒dense runs

+ terminal gaps✓

higher throughput L

low or moderate

Less shifting required✓

Faster exponential search!✓

Bulk loading is at least 2x

faster!

51

LIPP Performs Better for High L

Fails to ingest fully-sorted data

Higher throughput for high

L

Too many conflicts creates a deep

subtree (like a linked list)

Fails rebalancing!

52

Performance Can Be Unpredictable!

ALEX v/s LIPP:

LIPP can be anywhere

between 4.4x faster to

1.9x slower

53

LSM Benefits from Trivial Moves

Trivial moves maximized for fully-sorted data

Trivial moves significantly drop with minor unorderness

✓

trivial moves

Is this the best we can do?
54

LSM Benefits from Trivial Moves
trivial moves

Can a more fine-grained compaction

granularity work?

Can we further improve trivial moves for fully-

sorted data?

55

Summary

Indexes should perform less effort for pre-structured data

Analyzing performance by varying sortedness should be standardized

LSM benefit from trivial moves BUT → potential room for improvement

Learned Indexes are unpredictable when varying sortedness

Scan for link to paper

56

Our Team

Aneesh Raman Konstantinos KaratsenidisAndy Huynh

Subhadeep SarkarShaolin Xie Matthaios Olma Manos Athanassoulis

Jinqi Lu

57

	Default Section
	Slide 1: Benchmarking Learned and LSM Indexes for Data Sortedness

	Introduction
	Slide 2: Indexes in Databases
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Irrespective of Sortedness, Same Ingestion Performance
	Slide 7: Are There Faster Alternatives?
	Slide 8: Ideally, Higher Sortedness Should Lead to Faster Ingestion
	Slide 9: Near-Sorted Data is Frequently Found
	Slide 10: Prior Work Focuses on Classical Indexes
	Slide 11: Prior Work Focuses on Classical Indexes
	Slide 12: Agenda

	ALEX
	Slide 13: ALEX: An Updatable Learned Index
	Slide 14: ALEX: An Updatable Learned Index
	Slide 15: Lookups in ALEX
	Slide 16: Insertions in ALEX
	Slide 17: Insertions in ALEX

	LIPP
	Slide 18: LIPP: An Updatable Learned Index with Precise Positions
	Slide 19: Lookups in LIPP
	Slide 20: Insertions in LIPP
	Slide 21: Insertions in LIPP

	LSM-trees (RocksDB)
	Slide 22: Log Structured Merge Trees (LSM-trees)
	Slide 23: Log Structured Merge Trees (LSM-trees)
	Slide 24: Log Structured Merge Trees (LSM-trees)
	Slide 25: Log Structured Merge Trees (LSM-trees)
	Slide 26: Partial Compactions in RocksDB
	Slide 27: Partial Compactions in RocksDB
	Slide 28: Partial Compactions in RocksDB
	Slide 29: Partial Compactions in RocksDB
	Slide 30: Partial Compactions in RocksDB
	Slide 31: Trivial Moves
	Slide 32: Trivial Moves

	Quantifying Sortedness
	Slide 33: Agenda
	Slide 34: Quantifying Data Sortedness
	Slide 35: Quantifying Data Sortedness
	Slide 36: Quantifying Data Sortedness
	Slide 37: Quantifying Data Sortedness
	Slide 38: Quantifying Data Sortedness
	Slide 39: (K, L)-Sortedness Metric

	Framework
	Slide 40: Framework
	Slide 41: Framework
	Slide 42: Framework
	Slide 43: Framework
	Slide 44: Framework
	Slide 45: Experimental Setup
	Slide 46: Reading the Results
	Slide 47: Reading the Results
	Slide 48: Let’s talk about the B+-tree
	Slide 49: Let’s talk about the B+-tree
	Slide 50
	Slide 51: ALEX Performs Best With High Data Sortedness!
	Slide 52: LIPP Performs Better for High L
	Slide 53: Performance Can Be Unpredictable!
	Slide 54: LSM Benefits from Trivial Moves
	Slide 55: LSM Benefits from Trivial Moves
	Slide 56: Summary
	Slide 57: Our Team

