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What if data already has some 

structure?
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Irrespective of Sortedness, Same Ingestion Performance

Standard ingestion
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Are There Faster Alternatives?
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Bulk loading requires all data a priori!



Ideally, Higher Sortedness Should Lead to Faster Ingestion
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Near-Sorted Data is Frequently Found 

Time Series

Stock market
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efficient reads fast writes

classical indexes carry  redundant

effort!Join/query⋈



Prior Work Focuses on 
Classical Indexes

...

B+-tree

In-memory buffering✓

Opportunistic bulk loading✓

Sortedness-adaptiveness✓

Better memory utilization✓
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Prior Work Focuses on 
Classical Indexes

...

B+-tree

Other Index Designs?
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ALEX: An Updatable Learned Index
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Exponential search
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Exponential search
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Exponential search
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exponential search scales 

with error size
✓

model based insertions✓

Inserting pre-structured data…

gaps are infrequent

faster exp. Search!

like a “normal” array
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LIPP: An Updatable Learned Index 
with Precise Positions
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Lookups in LIPP
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Insertions in LIPP
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Insertions in LIPP
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model based insertions✓
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Log Structured Merge Trees (LSM-trees)
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Log Structured Merge Trees (LSM-trees)
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Log Structured Merge Trees (LSM-trees)
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Log Structured Merge Trees (LSM-trees)
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Partial Compactions in RocksDB
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Partial Compactions in RocksDB
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Trivial Moves
suppose file_2 is chosen for compaction

compaction would re-write file_2 in level_2

BUT, file_2 has no overlapping keys in level_2
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Trivial Moves
suppose file_2 is chosen for compaction

compaction would re-write file_2 in level_2

Trivial Moves saves wasteful effort!
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file_2 is actually moved without compaction!
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Quantifying Data Sortedness

34

Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish total order



Quantifying Data Sortedness
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Quantifying Data Sortedness
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Quantifying Data Sortedness
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Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish total order



Quantifying Data Sortedness

2 1 4 3 6 5 8 7 10 9

local disorder
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Metric Description

Inversions # pairs in incorrect order

Runs # increasing contiguous subsequences

Exchanges least # swaps needed to establish total order
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(K, L)-Sortedness Metric
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inspired by Ben-Moshe, et.al [ICDT 2011] 39



Framework

Data 

generation

Index 

initialization

Workload 

execution

Results

40



Framework

Data 

generation

Index 

initialization

Workload 

execution

Results

BoDS

data generator

41



Framework

Data 

generation

Index 

initialization

Workload 

execution

Results

BoDS

data generator

Internal Node
Data

Node

Key Gap

Key Model

Node

Data

Null

Key

ALEX LIPP LSM-tree

42



Framework

Data 

generation

Index 

initialization

Workload 

execution

Results

BoDS

data generator

Internal Node
Data

Node

Key Gap

Key Model

Node

Data

Null

Key

ALEX LIPP LSM-tree

read, write or read+write

43



Framework

Data 

generation

Index 

initialization

Workload 

execution

Results

BoDS

data generator

Internal Node
Data

Node

Key Gap

Key Model

Node

Data

Null

Key

ALEX LIPP LSM-tree

read, write or read+write

44



Experimental Setup

Server Setup

2 Intel Xeon Gold 6230 processors

384GB main memory

1TB Dell P4510 NVMe drive

CentOS 7.9.2009

Default page size = 4KB

Index Setup

ALEX: Node size = 16MB (default setting)

LIPP: Bitmap width = 1 Byte (default setting)

RocksDB: 

kCompactionStyleLevel & kMinOverlappingRatio

Buffer size = 40MB; Size ratio = 4
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Reading the Results

Workload 
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Reading the Results

Workload 

execution

read, write or read+write

E
v
a
lu

a
ti

o
n

 m
e
tr

ic

increasing % out-of-order entries
in

cr
e
a
si

n
g

 %
 m

a
x.

 d
is

p
la

c
e
m

e
n

t

47



Let’s talk about the B+-tree

B+-tree always performs index traversals

Why higher throughput with high sortedness?

improved performance due to caching effects✓

However, this is not the ideal performance…
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Let’s talk about the B+-tree
Preloading performance

Bulk loading is at least 8x faster! 

Indexing for Near-Sorted Data [ICDE ‘23] 49



Getting back to Learned Indexes and LSM-trees…

sortedness-responsiveness ≠ sortedness-adaptivity

Performance can change with differently sorted data, but is it optimal? 
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ALEX Performs Best With High Data Sortedness!

L
 (

%
)

K (%)

Best throughput
higher throughput when K 

and L are low

High sortedness ⇒dense runs 

+ terminal gaps✓

higher throughput L 

low or moderate

Less shifting required✓

Faster exponential search!✓

Bulk loading is at least 2x 

faster!
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LIPP Performs Better for High L

Fails to ingest fully-sorted data

Higher throughput for high 

L

Too many conflicts creates a deep 

subtree (like a linked list)

Fails rebalancing!
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Performance Can Be Unpredictable!

ALEX v/s LIPP: 

LIPP can be anywhere 

between 4.4x faster to 

1.9x slower
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LSM Benefits from Trivial Moves

Trivial moves maximized for fully-sorted data

Trivial moves significantly drop with minor unorderness

✓

# trivial moves

Is this the best we can do?
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LSM Benefits from Trivial Moves
# trivial moves

Can a more fine-grained compaction 

granularity work? 

Can we further improve trivial moves for fully-

sorted data? 
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Summary

Indexes should perform less effort for pre-structured data

Analyzing performance by varying sortedness should be standardized

LSM benefit from trivial moves BUT → potential room for improvement

Learned Indexes are unpredictable when varying sortedness

Scan for link to paper
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