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Indexes in Databases
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organize efficient unstructured structured
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The process of inducing sortedness to an otherwise

unsorted data collection
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What if data already has some
structure?
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What if data already has some
structure?

Value
Value

Position (time) Position (time)
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Near-sorted data
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What if data already has some
structure?

treated same as
unstructured data!

W

Value
Value

Position (time) Position (time)

\—'—l

Near-sorted data
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Irrespective of Sortedness, Same Ingestion Performance

Standard ingestion

Ingestion cost

Scrambled Sorted

Increasing data sortedness
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Are There Faster Alternatives?

Standard ingestion
S
O
S
= Bulk loading requires all data a priori!
o
<
......... .B..a.l.iz..l.a.éud...i.ﬁ..g..........................----.-.-..........................................--.-.-............................
Scrambled Sorted

Increasing data sortedness
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Ideally, Higher Sortedness Should Lead to Faster Ingestion

Standard ingestion

Ingestion cost

Bulk loading

Scrambled Sorted

Increasing data sortedness
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Near-Sorted Data i1s Frequently Found

“ Time Series = ii Tpm—
|/\/ Stock market

efficient reads fast writes

| classical indexes carry redundant
M Join/query offort!
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Prior Work Focuses on
Classical Indexes

v/ In-memory buffering

Opportunistic bulk loading

- .

v

. A
v/ Sortedness-adaptiveness HEBERER
v

Better memory utilization

BOSTON o |88
UNIVERSITY DISC




Prior Work Focuses on
Classical Indexes

Other Index Designs?
{OF buffer | |

odel 2.1 . A4
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Agenda

Background on Index Designs

Sortedness Metrics & Evaluation Framework

Benchmarking Results
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ALEX: An Updatable Learned Index

=~
T T T Root node
model
M
HE
— Adaptive

_MkA Recursive Model Index (RMI)

Data node

Ding, et.al [SIGMOD 2020] s |82




ALEX: An Updatable Learned Index
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Gapped array
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Lookups in ALEX
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T Root node —
model

HRE

Exponential searc

Datal node

p—

Adaptive
Recursive Model Index (RMI)
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Insertions in ALEX
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T Root node —
model

HRE

Exponential searc

Datal node

— Adaptive

-- _|\/|kA Recursive Model Index (RMI)

\/ model based insertions

\/ gapped array uses fewer shifts

\/ exponential search scales

with error size
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Insertions in ALEX

=)
1T Root node
M M
L1 |
Inserting pre-structured data... coe
eee — Adaptive
M

| _J
LI

like a “"normal” array

& gaps are infrequent

& faster exp. Search!

BOSTON
UNIVERSITY

Exponential searc

Datal node

Recursive Model Index (RMI)

\/ model based insertions

\/ gapped array uses fewer shifts

\/ exponential search scales

with error size
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LIPP: An Updatable Learned Index
W|th PreC|Se POSItIOI’\S @& Kernalized linear model m
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Lookups in LIPP eyt

Kernalized linear model m

Array of entries €
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Insertions in LIPP

insert (k, i i
insert (k,u) & Kernalized linear model m

@ Array of entries €
Legend L

1 null/empty
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\/ model based insertions
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Insertions in LIPP

insert (k, i i
insert (k,u) Kernalized linear model m
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Bit vector of entry types
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node
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\/ model based insertions

TR
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create smaller nodes
for conflicts

o]

no shifting necessary
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Log Structured Merge Trees (LSM-trees)
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j level 1
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Log Structured Merge Trees (LSM-trees)

j level 1
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-7 sort + flush
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Log Structured Merge Trees (LSM-trees)

L1l sort + flush

!IIIE level 1

sorted run
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Log Structured Merge Trees (LSM-trees)

1111l
3 JE level 0/
TTT1 buffer

sizeratioT

- .

Sort-merging is called compaction
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Partial Compactions in RocksDB
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1111l
3 JE level 0/
TTT1 buffer

Compaction performed at the granularity of files

(S
LW

sizeratioT
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Partial Compactions in RocksDB
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TTT1 buffer

Compaction performed at the granularity of files

(S
LW

sizeratioT
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Partial Compactions in RocksDB
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L1l
3 JE level 0/
TTT1 buffer

j level 1
S
-« (R

Compaction performed at the granularity of files

(S
LW

sizeratioT
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Partial Compactions in RocksDB

BOSTON
UNIVERSITY

L1l
3 JE level 0/
TTT1 buffer

_____________________________ I GRGEEEEEEETE

j level 1 i pick subset of files

(S

(S
=<3 (N

Compaction performed at the granularity of files

sizeratioT
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Partial Compactions in RocksDB

BOSTON
UNIVERSITY

1111l
3 JE level 0/
TTT1 buffer

j level 1 -_ pick subset of files
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Compaction performed at the granularity of files

sizeratioT
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Trivial Moves

suppose file_2 is chosen for compaction

AN

1 2

level 1 [ 5

20 ] [ 30 40

10] [11 26] [50 60]
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compaction would re-write file_2 in level_2

BUT, file_2 has no overlapping keys in level_2
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Trivial Moves

suppose file_2 is chosen for compaction

level 1 [ 5 20 ] [3

level 2 [1 10] [11 26] [ 30 40 | [50 60]

compaction would re-write file_2 in level_2

file_2 is actually moved without compaction!

Trivial Moves saves wasteful effort!
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Agenda

Sortedness Metrics & Evaluation Framework

Benchmarking Results
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Quantifying Data Sortedness

Inversions # pairs in incorrect order

# increasing contiguous subsequences
least # swaps needed to establish total order

BOSTON L, | 888
UNIVERSITY DiSC




Quantifying Data Sortedness
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Inversions

Description

# pairs in incorrect order

Runs

# increasing contiguous subsequences

least # swaps needed to establish total order

|
[
6 7 8

9

10 1 2 3 4 5
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Quantifying Data Sortedness

Inversions # pairs in incorrect order

|
[
6 7 8

# increasing contiguous subsequences

least # swaps needed to establish total order

1
9 10 1 2 3 4 5

|
global disorder f
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Quantifying Data Sortedness
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Inversions

Description

# pairs in incorrect order

Runs

# increasing contiguous subsequences

least # swaps needed to establish total order

N\
2 1
"

"
4 3
"

"
6 5
"

7~ N\
8 7
"

"
10 | 9
"
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Quantifying Data Sortedness
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Inversions

Runs —

least # swaps needed to establish total order

v # pairs in incorrect order

Description

# increasing contiguous subsequences

N\
2 1
"

" "
4 3 6 5
" "

local disorder

7~ N\
8 7
"

"
10 | 9
"
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(K, L)-Sortedness Metric

#. unordered entries =K
1 [\9 3 4 5 6 7 [ 2 9 | 10
max. displacement among unordered entries =L

inspired by Ben-Moshe, et.al [ICDT 2011] 39 Dis%




Framework
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Data Index Workload Results
generation initialization execution
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Framework

Data
generation

BoDS
data generator
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Framework

L

Data Index
generation initialization

ntermal No e I/D{;:\; Key M il__‘l D Data Key
4 v

< ] r"__"_‘\ .Node . Null -:l- iﬁ} _____ _-_ _____

manjanian O ]
L mm —
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ALEX LIPP LSM-tree
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Framework

read, write or read+write

&

L

© O © a

Data Index Workload
generation initialization execution
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Framework

L

Data
generation

BoDS
data generator
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Index
initialization

L (%)

100

50

m 25

0 1 3

Results
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Experimental Setup

Server Setup

2 Intel Xeon Gold 6230 processors
384GB main memory

1TB Dell P4510 NVMe drive
CentOS 7.9.2009

Default page size = 4KB

BOSTON
UNIVERSITY

Index Setup
ALEX: Node size = 16MB (default setting)
LIPP: Bitmap width = 1 Byte (default setting)
RocksDB:
kCompactionStyleLevel & kMinOverlappingRatio
Buffer size = 40MB; Size ratio = 4
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Reading the Results

S - 6
read, write or read+write
S - 7
a Q _ 7 é-
s
o S _ 7 Jé-
E—) N : :
<
m - 7 %
Workload =
execution - 7
o- 7
o 1
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Reading the Results
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Let's talk about the B+-tree

100
|
(@)]

7 & B*-tree always performs index traversals

50

()}

Why higher throughput with high sortedness?

10
U

/  improved performance due to caching effects

I
Write Throughput (MOps)

However, this is not the ideal performance...

w
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Let's talk about the B+-tree

Preloading performance

o o
S— 6 2_

o 7 o _ 57 —~
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o- 7 o
| I |
0 1 0 1 3 5 10 25 50 100

K (%)

Bulk loading is at least 8x faster!

Indexing for Near-Sorted Data [ICDE ‘23] a0 | Si6o




Getting back to Learned Indexes and LSM-trees...

sortedness-responsiveness # sortedness-adaptivity

Performance can change with differently sorted data, but is it optimal?
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ALEX Performs Best With High Data Sortedness!

2.0 2.5

higher throughput L
low or moderate

\/High sortedness =dense runs
+ terminal gaps

\/ Less shifting required Bulk loading is at least 2x

faster!

\/Faster exponential search!

higher throughput when K
Best throughput and L are low
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LIPP Performs Better for High L

2
Too many conflicts creates a deep 5 2 . .
x subtree (like a linked list) 3 IR . H|gher throughput for hlgh
1 2 2 2 2 L
x Fails rebalancing! 0
> S 8 8 8
Fails to ingest fully-sorted data
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Performance Can Be Unpredictable!

(a) ALEX : Write Throughput (MOps) (b) LIPP : Write Throughput (MOps)
2.0 2.5 3.0 3.5 0 5 10 15

ALEX v/s LIPP:
LIPP can be anywhere
between 4.4x faster

|
(-]
(@)
—

=

(%)
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LSM Benefits from Trivial Moves

# trivial moves

10 25 50 100

- ZUU

-175

150

125

100

100 -

Trivial moves maximized for fully-sorted data  /

Trivial moves significantly drop with minor unorderness x
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Is this the best we can do?

% Trivial Moves

5%

8%

6%

7%

13%

15%

15%
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5%

8%

7%

11%

16%

15%

8%

6%

7%

10%

11%

18%

18%

100

- 60%

-50%

40%

30%

% Trivial Moves

20%

10%
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LSM Benefits from Trivial Moves

# trivial moves % Trivial Moves
=- ;. S - 5% 6% 6% 8% 5% - 60%
9 - 150
S - 8% 7% 5% 6% 5%
=- 125 - 50%
: 100 1 _ 6% 5% 8% 7% 7%
75 n
a 40% 2
- 50 S - 7% 6% 7% 10% 12% 3
S - ® w3 ] g g - ©
0 - 13% 12% 11% 11% 14% 30% |§
Can a more fine-grained compaction X
: 5 o - 15% 17% 16% 18% 16%
granularity work? 50%
: . - 15% 18% 15% 18% 169
Can we further improve trivial moves for fully- - > SHAN 157 RReel 16%
(o)
sorted data? - 10%
! | | | | | | |
0 1 3 5 10 25 50 100
K
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Summary

Scan for link to paper

Indexes should perform less effort for pre-structured data
Analyzing performance by varying sortedness should be standardized

Learned Indexes are unpredictable when varying sortedness

LSM benefit from trivial moves BUT - potential room for improvement
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