
QuIT your B+-tree for the 
Quick Insertion Tree

EDBT 2025

Aneesh Raman*, Konstantinos Karatsenidis*, Shaolin Xie, 

Matthaios Olma, Subhadeep Sarkar, Manos Athanassoulis



Indexes Are Everywhere!

query processing
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Indexes Are Everywhere!

query processing

organize data accelerates lookups
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Indexing Adds Structure
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fully sorted?

easy! => bulk load the data

how about near-sorted data?



Indexing Adds Structure
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Irrespective of Sortedness, Same Performance

Standard ingestion (e.g., top-insert in B+-tree)
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Irrespective of Sortedness, Same Performance

Standard ingestion (e.g., top-insert in B+-tree)
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by design, cannot exploit 
inherent order
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Are There Faster Alternatives?

Standard ingestion (e.g., top-insert in B+-tree)
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by design, cannot exploit 
inherent order

Bulk loading

builds the index bottom-up

requires all data a priori
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Ideally, Higher Sortedness => Faster Ingestion

Standard ingestion (e.g., top-insert in B+-tree)
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Bulk loading

pay less indexing cost as 
data becomes more sorted
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Agenda
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Introduction and 
Vision

Optimization in 
Production Systems

Lightweight change

Quick Insertion Tree



Inserting To the Tail Leaf
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Inserting To the Tail Leaf
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5 10 15 20 25 30 35 40 45 50 55 60

tail-leaf-ptrinsert 65
maintain metadata

min_val (55)

top-inserts 
traverse the tree

is 65 >= min_val ?

add key directly to tail-leaf

helps in-order insertions 

does this work for near-sorted data? 

65



Does This Always Work?
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Tail-leaf’s buffer is limited to 
leaf node!
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Insertions are more likely to occur at the 
same leaf when inserting near-sorted data



Following the Last Insertion Leaf (lil)…
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add key to lil
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lil-ptrinsert 65 lil-range (55-INT_MAX)

is 65 >= 55?



Following the Last Insertion Leaf (lil)…
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no
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Following the Last Insertion Leaf (lil)…
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5 10 15 20 23 25 30 35 40 45 50 55 60 65

lil-ptrinsert 23

top-inserts 
traverse the tree

however, lil is also updated!

lil-range (15-23)



lil in Action
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Is lil Ideal?
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out-of-order insert in lil causes 2 top-inserts:

one moves lil to a different node  

one moves lil back to the in-order node  

lil pays a penalty for with every missed fast-insert!



23

Ideally, we should incur at most one 
top-insert for every out-of-order entry



Predicting the Ordered Leaf (pole)
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lil naively switches fast-path

tail-leaf quickly fills up with outliers

decision: when do we update the 
fast-path ?

pole_prev pole

… … …

Index



Predicting the Ordered Leaf (pole)
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lil naively switches fast-path

tail-leaf quickly fills up with outliers

decision: when do we update the 
fast-path ?

pole_prev pole

p q

necessarily in-order keys



Predicting the Ordered Leaf (pole)
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pole_prev pole pole_next

p q r

lil naively switches fast-path

tail-leaf quickly fills up with outliers

decision: when do we update the 
fast-path ?

Should we move pole?



Predicting the Ordered Leaf (pole)
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pole_prev pole pole_next

p q r

predict using In-order Key estimatoR (IKR)

𝑞 +
𝑞 − 𝑝

𝑝𝑜𝑙𝑒_𝑝𝑟𝑒𝑣𝑠𝑖𝑧𝑒
⋅ 𝑝𝑜𝑙𝑒𝑠𝑖𝑧𝑒 ⋅ (𝑠𝑐𝑎𝑙𝑒)

density between two 
non-outliers

lil naively switches fast-path

tail-leaf quickly fills up with outliers

decision: when do we update the 
fast-path ?

Compare the density



Predicting the Ordered Leaf (pole)
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pole_prev pole pole_next

p q r

predict using In-order Key estimatoR (IKR)

𝑟 > 𝑞 +
𝑞 − 𝑝

𝑝𝑜𝑙𝑒_𝑝𝑟𝑒𝑣𝑠𝑖𝑧𝑒
⋅ 𝑝𝑜𝑙𝑒𝑠𝑖𝑧𝑒 ⋅ (𝑠𝑐𝑎𝑙𝑒)

density between two 
non-outliers

capture small 
deviations

r is an outlier 

lil naively switches fast-path

tail-leaf quickly fills up with outliers

decision: when do we update the 
fast-path ?



Can We Better Utilize Space?
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pole_prev pole

p q r

pole_next
high sortedness => poor space utilization

can we find better split points?

IKR can also return the split point



Can We Better Utilize Space?
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pole_prev pole

p q
high sortedness => poor space utilization

let’s call this key l and its position l_posl_pos = IKR(q, p, pole_prev.size);

if(l_pos <= 50%){
 pole_next = pole.split(l_pos);
}
else{
 pole.next = pole.split(l_pos - 1);
 pole_prev = pole; 
 pole = pole.next;
}

50 80



Can We Better Utilize Space?
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pole_prev pole

p q

l, l_pos = IKR(q, p, pole_prev.size);

if(l_pos <= 50%){
 pole_next = pole.split(l_pos);
}
else{
 pole.next = pole.split(l_pos - 1);
 pole_prev = pole; 
 pole = pole.next;
}

if l_pos ≤ 50%

pole_prev pole

p q

pole_next

l

split at l

moves all outliers to pole_next

outliers dominate pole

high sortedness => poor space utilization

50 80 90
l

50 80 90



Can We Better Utilize Space?
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l_pos = IKR(q, p, pole_prev.size);

if(l_pos <= 50%){
 pole_next = pole.split(l_pos);
}
else{
 pole.next = pole.split(l_pos - 1);
 pole_prev = pole; 
 pole = pole.next;
}

if l_pos > 50%

pole_prev pole pole_next

p q

moves at least one non-outlier to pole_next

split at l_pos - 1

l

pole_prev pole

p q

pole has few outliers

high sortedness => poor space utilization

50 80 120

50 80 120

l



Can We Better Utilize Space?
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l_pos = IKR(q, p, pole_prev.size);

if(l_pos <= 50%){
 pole_next = pole.split(l_pos);
}
else{
 pole.next = pole.split(l_pos - 1);
 pole_prev = pole; 
 pole = pole.next;
}

if l_pos > 50%

pole_prev

p q

updated polesplit at l_pos - 1

l

pole_prev pole

p q

pole has few outliers

leaves more space in pole 

high sortedness => poor space utilization

50 80 120

50 80 120



similar to B+-tree in design

offers fast-path ingestion

sortedness-aware

minimal metadata + tuning

Quick Insertion Tree
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QuIT

Insert (x, v)

pole

if x is in 
pole range

or top-insert 

…

+

+

+



Evaluating QuIT
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System:

- Intel Xeon Gold 5230 

- 2.1GHZ processor w. 20 cores

- 384GB RAM, 28MB L3 cache

Index Setup:

- Node size = 4KB

- Entire index in memory

- fuzzy scale in IKR = 1.5

- 500M entries (4B + 4B)



(k-l) Sortedness Metric

1 8 3 4 5 6 7 2 9 10

# unordered entries

3 2

max. displacement among unordered entries 

(k)

(l)
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QuIT Performs Best With Near-Sorted Data
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QuIT Performs Best With Near-Sorted Data
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ART has higher throughput for less-sorted data



QuIT is Space Efficient
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QuIT is Space Efficient
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2x more than B+-tree

1.47x 1.4x
1.28x 1.13x

higher leaf occupancy reduces memory footprint✓
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QuIT v/s SWARE
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up to 2.06x faster

minimal metadata ✓
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avoids buffer management ✓

2.06x

2x
1.85x

1.55x

1.17x
integrate SWARE with same B+-tree as QuIT



QuIT v/s SWARE
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Summary
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sortedness-awareness

tuning complexity

memory utilizationdesign complexity

read cost

tail-Btree SWARE QuIT

QuIT offers: higher sortedness-awareness + no read 
penalty + minimal design & tuning complexity
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sortedness-
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read cost

tail-Btree SWARE QuIT

QuIT offers: higher sortedness-awareness + no read 
penalty + minimal design & tuning complexity
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Our Team
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Aneesh Raman Kostas Karatsenidis

Subhadeep  Sarkar

Shaolin Xie

Matthaios Olma Manos Athanassoulis

find us if you have questions!
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