
QuIT your B+-tree for the
Quick Insertion Tree

EDBT 2025

Aneesh Raman*, Konstantinos Karatsenidis*, Shaolin Xie,

Matthaios Olma, Subhadeep Sarkar, Manos Athanassoulis

Indexes Are Everywhere!

query processing

1

Indexes Are Everywhere!

query processing

organize data accelerates lookups

2

Indexing Adds Structure

organize data

position

va
lu

e

scrambled

position

va
lu

e

sorted

The process of “inducing sortedness”
to otherwise, unsorted data

3

Indexing Adds Structure

organize data

position

va
lu

e

scrambled

position

va
lu

e

sorted

What if the incoming data is
already sorted?

4

Indexing Adds Structure

organize data

position

va
lu

e

scrambled

position

va
lu

e

sorted

What if the incoming data is
already sorted?

5

fully sorted?

easy! => bulk load the data

how about near-sorted data?

Indexing Adds Structure

organize data

position

va
lu

e

scrambled

position

va
lu

e

sorted

What if the incoming data is
already sorted?

Position (time)

V
a
lu

e

Position (time)

V
a
lu

e

6

near-sorted data

Irrespective of Sortedness, Same Performance

Standard ingestion (e.g., top-insert in B+-tree)

SortedScrambled Increasing data sortedness

In
ge

st
io

n
co

st

7

Irrespective of Sortedness, Same Performance

Standard ingestion (e.g., top-insert in B+-tree)

SortedScrambled Increasing data sortedness

In
ge

st
io

n
co

st

locality gives some benefits

by design, cannot exploit
inherent order

8

Are There Faster Alternatives?

Standard ingestion (e.g., top-insert in B+-tree)

SortedScrambled Increasing data sortedness

In
ge

st
io

n
co

st

by design, cannot exploit
inherent order

Bulk loading

builds the index bottom-up

requires all data a priori

9

Ideally, Higher Sortedness => Faster Ingestion

Standard ingestion (e.g., top-insert in B+-tree)

SortedScrambled Increasing data sortedness

In
ge

st
io

n
co

st

Bulk loading

pay less indexing cost as
data becomes more sorted

10

Agenda

11

Introduction and
Vision

Optimization in
Production Systems

Lightweight change

Quick Insertion Tree

Inserting To the Tail Leaf

12

35

45 5515 25

5 10 15 20 25 30 35 40 45 50 55 60

tail-leaf-ptr min_val (55)
maintain metadata

Inserting To the Tail Leaf

13

35

45 5515 25

5 10 15 20 25 30 35 40 45 50 55 60

tail-leaf-ptrinsert 65
maintain metadata

min_val (55)

top-inserts
traverse the tree

is 65 >= min_val ?

add key directly to tail-leaf

65

Inserting To the Tail Leaf

14

35

45 5515 25

5 10 15 20 25 30 35 40 45 50 55 60

tail-leaf-ptrinsert 65
maintain metadata

min_val (55)

top-inserts
traverse the tree

is 65 >= min_val ?

add key directly to tail-leaf

helps in-order insertions

does this work for near-sorted data?

65

Does This Always Work?

15

Tail-leaf’s buffer is limited to
leaf node!

5 6 7 20 21

outliers

0

20

40

60

80

100

120

0 0.01 0.05 0.1 0.5 1 3

%
 fa

st
 in

se
rt

s

% out of order entries

tail-B+ tree

Works for fully and very highly sorted data

Does This Always Work?

16

Tail-leaf’s buffer is limited to
leaf node!

5 6 7 20 21

outliers

0

20

40

60

80

100

120

0 0.01 0.05 0.1 0.5 1 3

%
 fa

st
 in

se
rt

s

% out of order entries

tail-B+ tree

Degrades very quickly

17

Insertions are more likely to occur at the
same leaf when inserting near-sorted data

Following the Last Insertion Leaf (lil)…

18

add key to lil

35

45 5515 25

5 10 15 20 25 30 35 40 45 50 55 60 65

lil-ptrinsert 65 lil-range (55-INT_MAX)

is 65 >= 55?

Following the Last Insertion Leaf (lil)…

19

35

45 5515 25

5 10 15 20 25 30 35 40 45 50 55 60 65

lil-ptrinsert 23

is 23 >= 55

top-inserts
traverse the tree

no

lil-range (55-INT_MAX)

Following the Last Insertion Leaf (lil)…

20

35

45 5515 25

5 10 15 20 23 25 30 35 40 45 50 55 60 65

lil-ptrinsert 23

top-inserts
traverse the tree

however, lil is also updated!

lil-range (15-23)

lil in Action

21

0

20

40

60

80

100

120

0 0.01 0.05 0.1 0.5 1 3

%
 fa

st
 in

se
rt

s

% out of order entries

tail-B+ tree lil-B+ tree

lil achieves higher fraction of fast-inserts

Is lil Ideal?

22

0

20

40

60

80

100

120

0 0.01 0.05 0.1 0.5 1 3

%
 fa

st
 in

se
rt

s

% out of order entries

tail-B+ tree lil-B+ tree

out-of-order insert in lil causes 2 top-inserts:

one moves lil to a different node

one moves lil back to the in-order node

lil pays a penalty for with every missed fast-insert!

23

Ideally, we should incur at most one
top-insert for every out-of-order entry

Predicting the Ordered Leaf (pole)

24

lil naively switches fast-path

tail-leaf quickly fills up with outliers

decision: when do we update the
fast-path ?

pole_prev pole

… … …

Index

Predicting the Ordered Leaf (pole)

25

lil naively switches fast-path

tail-leaf quickly fills up with outliers

decision: when do we update the
fast-path ?

pole_prev pole

p q

necessarily in-order keys

Predicting the Ordered Leaf (pole)

26

pole_prev pole pole_next

p q r

lil naively switches fast-path

tail-leaf quickly fills up with outliers

decision: when do we update the
fast-path ?

Should we move pole?

Predicting the Ordered Leaf (pole)

27

pole_prev pole pole_next

p q r

predict using In-order Key estimatoR (IKR)

𝑞 +
𝑞 − 𝑝

𝑝𝑜𝑙𝑒_𝑝𝑟𝑒𝑣𝑠𝑖𝑧𝑒
⋅ 𝑝𝑜𝑙𝑒𝑠𝑖𝑧𝑒 ⋅ (𝑠𝑐𝑎𝑙𝑒)

density between two
non-outliers

lil naively switches fast-path

tail-leaf quickly fills up with outliers

decision: when do we update the
fast-path ?

Compare the density

Predicting the Ordered Leaf (pole)

28

pole_prev pole pole_next

p q r

predict using In-order Key estimatoR (IKR)

𝑟 > 𝑞 +
𝑞 − 𝑝

𝑝𝑜𝑙𝑒_𝑝𝑟𝑒𝑣𝑠𝑖𝑧𝑒
⋅ 𝑝𝑜𝑙𝑒𝑠𝑖𝑧𝑒 ⋅ (𝑠𝑐𝑎𝑙𝑒)

density between two
non-outliers

capture small
deviations

r is an outlier

lil naively switches fast-path

tail-leaf quickly fills up with outliers

decision: when do we update the
fast-path ?

Can We Better Utilize Space?

29

pole_prev pole

p q r

pole_next
high sortedness => poor space utilization

can we find better split points?

IKR can also return the split point

Can We Better Utilize Space?

30

pole_prev pole

p q
high sortedness => poor space utilization

let’s call this key l and its position l_posl_pos = IKR(q, p, pole_prev.size);

if(l_pos <= 50%){
 pole_next = pole.split(l_pos);
}
else{
 pole.next = pole.split(l_pos - 1);
 pole_prev = pole;
 pole = pole.next;
}

50 80

Can We Better Utilize Space?

31

pole_prev pole

p q

l, l_pos = IKR(q, p, pole_prev.size);

if(l_pos <= 50%){
 pole_next = pole.split(l_pos);
}
else{
 pole.next = pole.split(l_pos - 1);
 pole_prev = pole;
 pole = pole.next;
}

if l_pos ≤ 50%

pole_prev pole

p q

pole_next

l

split at l

moves all outliers to pole_next

outliers dominate pole

high sortedness => poor space utilization

50 80 90
l

50 80 90

Can We Better Utilize Space?

32

l_pos = IKR(q, p, pole_prev.size);

if(l_pos <= 50%){
 pole_next = pole.split(l_pos);
}
else{
 pole.next = pole.split(l_pos - 1);
 pole_prev = pole;
 pole = pole.next;
}

if l_pos > 50%

pole_prev pole pole_next

p q

moves at least one non-outlier to pole_next

split at l_pos - 1

l

pole_prev pole

p q

pole has few outliers

high sortedness => poor space utilization

50 80 120

50 80 120

l

Can We Better Utilize Space?

33

l_pos = IKR(q, p, pole_prev.size);

if(l_pos <= 50%){
 pole_next = pole.split(l_pos);
}
else{
 pole.next = pole.split(l_pos - 1);
 pole_prev = pole;
 pole = pole.next;
}

if l_pos > 50%

pole_prev

p q

updated polesplit at l_pos - 1

l

pole_prev pole

p q

pole has few outliers

leaves more space in pole

high sortedness => poor space utilization

50 80 120

50 80 120

similar to B+-tree in design

offers fast-path ingestion

sortedness-aware

minimal metadata + tuning

Quick Insertion Tree

34

QuIT

Insert (x, v)

pole

if x is in
pole range

or top-insert

…

+

+

+

Evaluating QuIT

35

System:

- Intel Xeon Gold 5230

- 2.1GHZ processor w. 20 cores

- 384GB RAM, 28MB L3 cache

Index Setup:

- Node size = 4KB

- Entire index in memory

- fuzzy scale in IKR = 1.5

- 500M entries (4B + 4B)

(k-l) Sortedness Metric

1 8 3 4 5 6 7 2 9 10

unordered entries

3 2

max. displacement among unordered entries

(k)

(l)

36

QuIT Performs Best With Near-Sorted Data

38

0

10

20

30

40

0 1 3 5 10 25 50 100

th
ro

ug
hp

ut
 (M

O
ps

/s
ec

)

% out-of-order entries (K)

tail-B+tree lil-B+tree ART QuIT

2x speedup against tail-B+tree
1.2x speedup against lil

1.58x speedup against ART

hi
gh

er
 th

e
be

tt
er

QuIT Performs Best With Near-Sorted Data

39

0

10

20

30

40

0 1 3 5 10 25 50 100

th
ro

ug
hp

ut
 (M

O
ps

/s
ec

)

% out-of-order entries (K)

tail-B+tree lil-B+tree ART QuIT

2x speedup against tail-B+tree
1.2x speedup against lil

1.58x speedup against ART

hi
gh

er
 th

e
be

tt
er

ART has higher throughput for less-sorted data

QuIT is Space Efficient

40

0

25

50

75

100

0 1 3 5 10 25 50 100

av
er

ag
e

le
af

 o
cc

up
an

cy
 (%

)

% out-of-order entries (K)

B+tree QuIT

QuIT is Space Efficient

41

2x more than B+-tree

1.47x 1.4x
1.28x 1.13x

higher leaf occupancy reduces memory footprint✓

0

25

50

75

100

0 1 3 5 10 25 50 100

av
er

ag
e

le
af

 o
cc

up
an

cy
 (%

)

% out-of-order entries (K)

B+tree QuIT

QuIT v/s SWARE

42

up to 2.06x faster

minimal metadata ✓

0

10

20

30

40

0 1 3 4 10 25 50 100

th
ro

ug
hp

ut
 (M

O
ps

/s
ec

)

% out-of-order entries

ingestion performance
SWARE QuIT

avoids buffer management ✓

2.06x

2x
1.85x

1.55x

1.17x
integrate SWARE with same B+-tree as QuIT

QuIT v/s SWARE

43

0

10

20

30

40

0 1 3 4 10 25 50 100th
ro

ug
hp

ut
 (M

O
ps

/s
ec

)

% out-of-order entries

ingestion performance
SWARE QuIT

2.06x

2x 1.85x

1.55x

1.17x

0.0

0.5

1.0

1.5

0 1 3 4 10 25 50 100

th
ro

ug
hp

ut
 (M

O
ps

/s
ec

)

% out-of-order entries

point lookup performance
SWARE QuIT

No buffering ⇒ no read overhead!

28% 32%12%
15%

23% 28%
24%

26%

Summary

44

sortedness-awareness

tuning complexity

memory utilizationdesign complexity

read cost

tail-Btree SWARE QuIT

QuIT offers: higher sortedness-awareness + no read
penalty + minimal design & tuning complexity

Summary

45

sortedness-
awareness

tuning
complexity

memory
utilization

design
complexity

read cost

tail-Btree SWARE QuIT

QuIT offers: higher sortedness-awareness + no read
penalty + minimal design & tuning complexity

0

10

20

30

40

0 1 3 4 10 25 50 100th
ro

ug
hp

ut
 (M

O
ps

/s
ec

)

% out-of-order entries

ingestion performance
SWARE QuIT

Our Team

46

Aneesh Raman Kostas Karatsenidis

Subhadeep Sarkar

Shaolin Xie

Matthaios Olma Manos Athanassoulis

find us if you have questions!

	Slide 0: QuIT your B+-tree for the Quick Insertion Tree
	Slide 1: Indexes Are Everywhere!
	Slide 2: Indexes Are Everywhere!
	Slide 3: Indexing Adds Structure
	Slide 4: Indexing Adds Structure
	Slide 5: Indexing Adds Structure
	Slide 6: Indexing Adds Structure
	Slide 7: Irrespective of Sortedness, Same Performance
	Slide 8: Irrespective of Sortedness, Same Performance
	Slide 9: Are There Faster Alternatives?
	Slide 10: Ideally, Higher Sortedness => Faster Ingestion
	Slide 11: Agenda
	Slide 12: Inserting To the Tail Leaf
	Slide 13: Inserting To the Tail Leaf
	Slide 14: Inserting To the Tail Leaf
	Slide 15: Does This Always Work?
	Slide 16: Does This Always Work?
	Slide 17
	Slide 18: Following the Last Insertion Leaf (lil)…
	Slide 19: Following the Last Insertion Leaf (lil)…
	Slide 20: Following the Last Insertion Leaf (lil)…
	Slide 21: lil in Action
	Slide 22: Is lil Ideal?
	Slide 23
	Slide 24: Predicting the Ordered Leaf (pole)
	Slide 25: Predicting the Ordered Leaf (pole)
	Slide 26: Predicting the Ordered Leaf (pole)
	Slide 27: Predicting the Ordered Leaf (pole)
	Slide 28: Predicting the Ordered Leaf (pole)
	Slide 29: Can We Better Utilize Space?
	Slide 30: Can We Better Utilize Space?
	Slide 31: Can We Better Utilize Space?
	Slide 32: Can We Better Utilize Space?
	Slide 33: Can We Better Utilize Space?
	Slide 34: Quick Insertion Tree
	Slide 35: Evaluating QuIT
	Slide 36
	Slide 38: QuIT Performs Best With Near-Sorted Data
	Slide 39: QuIT Performs Best With Near-Sorted Data
	Slide 40: QuIT is Space Efficient
	Slide 41: QuIT is Space Efficient
	Slide 42: QuIT v/s SWARE
	Slide 43: QuIT v/s SWARE
	Slide 44: Summary
	Slide 45: Summary
	Slide 46: Our Team

