

ACEing the Bufferpool Management Paradigm for Modern Storage Devices

Tarikul Islam Papon

Manos Athanassoulis

Solid State Drives

Bada Sid Sid

electronic device

fast random access

concurrent I/Os

write latency > read latency

lab OSC

Parallelism at different levels (channel, chip, die, plane block, page)

Read/Write Asymmetry

Out-of-place updates cause invalidation

"Erase before write" approach

Garbage Collection

Baba Iab OSIC

Larger erase granularity

Page 0Page 0Page 1Page 1Page 2Page 2Block 0Block 1

Plane

All these results in higher amortized write cost

lab **Sid**D

"A Parametric I/O Model for Modern Storage Devices"

₿ <u>B</u> DiSC

DaMoN 2021

Bufferpool is Tightly Connected to Storage

Disk

ि <u>पि</u>

Main Memory

Disk

ि <u>पि</u>

Main Memory

Bb da Iab **OSiO**

10

If BP is full, one page is selected for eviction based on **page replacement policy**

If the page is dirty, it is written back to disk

Requested page is fetched in its place (exchanging one write for a read)

Bb da Iab **OSiO**

Is this Optimal?

 With write asymmetry, it is **NOT** fair to exchange

one write for one read.

Do not address Asymmetry (α)

Asymmetry (α) write-avoidance

The Challenge

 With write asymmetry, it is NOT fair to exchange one write for one read.

ि DiSC

> Do not expressly utilize the device concurrency.

The Challenge

With write asymmetry, it is **NOT** fair to exchange one write for one read.

ि DiSC

Do not expressly utilize the device concurrency.

The Challenge

device under-utilization

poor end-to-end performance

high deployment cost

ि DiSC

ि Disc

Asymmetry/Concurrency-Aware (ACE) Bufferpool Manager

ACE Bufferpool Manager

Use device's properties

lab SidD Sid

ACE Bufferpool Manager

BS C

 $1 \le n_e \le \text{read concurrency } (k_r) \qquad \qquad n_w = \text{device's write concurrency } (k_w)$

write n_w dirty pages concurrently

evict n_e pages

prefetch *n_e* - 1 **pages** concurrently

An Example

명 역 DiSC

Let's assume: $k_w = 3$, LRU is the baseline replacement policy & red indicates dirty page

Write request of page 8 comes

An Example ($k_w = 3$)

Candidate for eviction

write page 8

명 역 DiSC

Since candidate page is clean, we simply evict 9

After eviction:

Write request of page 1 comes

write page 1 LRU Candidate В 5 7 6 2 3 8 4 • SSD After eviction:

Bb da Iab **OSiO**

В 1 ഀ൬൬ഀ

An Example (
$$k_w = 3$$
)

write page 1 LRU

After eviction:

After eviction:

An Example
$$(k_w = 3, n_e = 2)$$

write page 1
LRU
B 8 6 2 3 5 7 4
B 8 6 2 3 5 7 4
B 8 6 2 3 5 7 4
B 8 6 2 3 5 7 4
B 8 6 2 3 5 7 4
B 8 6 2 3 5 7 4

After eviction:

After eviction:

7

4

An Example
$$(k_w = 3, n_e = 2)$$

write page 1
LRU LRU+ACE (w/o PF) LRU+ACE (w/PF)
 $8 6 2 3 5 7 4$
After eviction:
After eviction:
After eviction:

B 1 8 6 2 3 5 7

4,5,2 concurrently written4,7 evicted

An Example
$$(k_w = 3, n_e = 2)$$

write page 1
LRU LRU+ACE (w/o PF) LRU+ACE (w/PF)

After eviction:

After eviction:

After eviction:

Experimental Evaluation

lab OSIC

> Clock Sweep LRU CFLRU LRU-WSR

vs their ACE counterparts

Device	α	k _r	k _w
Optane SSD	1.1	6	5
PCIe SSD	2.8	80	8
SATA SSD	1.5	25	9
Virtual SSD	2.0	11	19

Workload:

synthesized traces

TPC-C benchmark

ACE Improves Runtime

Device: PCIe SSD

ि DiSC

α = 2.8, k_w = 8

ACE improves runtime by 22-26%

Negligible increase in buffer miss (<0.009%)

Benefit comes at no cost

Higher Gain for Write-Heavy Workload

Device: PCIe SSD

α = 2.8, k_w = 8

Write-intensive workloads have higher benefit (up to 32%)

Impact of R/W Ratio & Asymmetry

more writes, more speedup higher asymmetry, higher speedup good benefit even for low asymmetry

Impact of #Concurrent I/Os

Bb Bab OSiO

Device: PCIe SSD

$$\alpha$$
 = 2.8, k_w = 8

Highest speedup when optimal concurrency is used

39

Experimental Evaluation (TPC-C)

ि <u>पि</u>

ACE Achieves 1.3x for mixed TPC-C

Summary

lab Sidd OSIC

decoupled eviction and write-back mechanism

can be integrated with **any** replacement policy

benefit comes with no penalty

ACE Bufferpool

Thank You!

lab **SS** da DSIC

papon@bu.edu

Read/Write Asymmetry - Example

lab Sada DSiO

Device	Advertised Rand Read IOPS	Advertised Rand Write IOPS	Advertised Asymmetry
PCIe D5-P4320	427k	36k	11.9
PCIe DC-P4500	626k	51k	12.3
PCIe P4510	465k	145k	3.2
SATA D3-S4610	92k	28k	3.3
Optane P4800X	550k	500k	1.1

Measuring Asymmetry & Concurrency

Device PCle SSD - P4510 (1TB)

ि DiSC

For 4K random read,

Asymmetry: 2.8

Concurrency: 80

p5 🖌 p6

p4 p5

D

0

С

D

1

С

Algorithm 1: ACE

	B
In	put: $P, n_w, n_e is_pf_enabled$
1 //	' P is the accessed page
2 //	n_w is the maximum effective write concurrency ($n_w=k_w$)
	n_e is the number of concurrent reads when prefetching is enabled
	<i>is_pf_enabled</i> determines if prefetching is enabled or not
	<i>P</i> in buferpool then
6	return P
7 el	
8	// miss! need to bring P from disk
9	if buferpool not full then
10	if is_pf_enabled == true then
11	// reads P and prefetches up to $n_e - 1$ pages from disk
	(depending on available slots)
12	- prefetch_pages $(P, n_e - 1)$
13	else
14	- read P from disk
15	end if
6	else
17	<i>top_page</i> = replacement_policy.get_one_page_to_evict()
18	if top_page is clean then
19	<pre>// follow classical approach if page is clean</pre>
20	- drop <i>top_page</i> from bufferpool
21	- read P from disk
22	else
23	// top_page is dirty. concurrently write n_w dirty pages
24	// P_{wb} is a vector containing the candidate dirty pages
25	$-P_{wb} = \text{populate_pages_to_writeback}()$
26	- issue $\ \text{length}(P_{wb})\ $ concurrent writes, $\forall p \in P_{wb}$
27	- mark $\ \text{length}(P_{wb})\ $ pages as <i>clean</i> , $\forall p \in P_{wb}$
28	if $is_pf_enabled == true$ then
29	// evict n_e pages
30	<pre>// pages written and to be evicted can be different</pre>
31	// P_{ev} is a vector containing the pages to evict
32	P_{ev} = replacement_policy.get_n_pages_to_evict()
33	- drop $\ \text{length}(P_{ev})\ $ pages from bufferpool, $\forall p \in P_{ev}$
34	// Now, prefetch
35	- prefetch_pages ($P, n_e - 1$)
36	- empty P_{ev}
37	else
38	// evict 1 page
39	- drop <i>t op_page</i> from bufferpool
40	- read P from disk
41	end if
42	- empty P_{wb}
13	end if
14	end if
	nd if
.5 01	

1 2 3 4	Procedure populate_pages_to_writeback() // follow the underlying page replacement policy to generate P_{wb} - select next n_w dirty pages based on the underlying page replacement policy - return this vector			
1 Procedure prefetch_pages(page P, int x)				
2	if P in Sequential_Table then			
3	<pre>// start of a sequential stream!</pre>			
4	// read P and the next x pages concurrently			
5	- prefetch_sequential (P)			
6	else			
7	<pre>// use the history based prefetcher</pre>			
8	// read P and x pages (selected by prefetcher) concurrently			
9	- prefetch_history (P)			
10	end if			
11	/* note that P should be placed in the most recently used position			
	in the bufferpool whereas other pages should be placed in the			
	least recently used positions */			
12	- place these $x + 1$ pages into bufferpool			

Initial State (Before `write p7')

lab DisC

Initial State (Before `write p7')

Intermediate State

Final State (After `write p7')

Experimental Evaluation

ACE performs well under

memory pressure

Impact on #writes

lab **Sid**D

