LSM-Trees & its Read Optimizations

Subhadeep Sarkar Niv Dayan Manos Athanassoulis

Log-Structured Merge-tree

The

LSM-tree

Log-Structured Merge-Tree (LSM-Tree)

1996

- Patrick O'Neil¹, Edward Cheng²
- Dieter Gawlick³, Elizabeth O'Neil¹
- To be published: Acta Informatica

good random writes

good reads

array of discs

1980s

SSD wear-friendly

competitive rand. reads

fast ingestion

2006

LSM-tree

relational

2023

NoSQL

LSM-tree

relational

time-series

Why LSM?

fast ingestion

fast ingestion

Why LSM ?

Why LSM?

Why LSM?

tiered LSM

Why LSM?

tiered LSM

Why LSM ?

tiered LSM

Why LSM ?

fast writes

good space utilization

No Textbook on LSMs !!

Database System Concepts

FUNDAMENTALS OF

No Textbook on LSMs !!

Part 1: LSN Basics

Part 2: Read Optimizations in LSMs

Part 3: Navigating the LSM Design Space

Part 1: LSM Basics

Part 2: Read Optimizations in LSMs

Part 3: Navigating the LSM Design Space

Outline

key-value pairs

key RID timestamp name

LSM **Basics**

value

department •••

location

LSM **Basics**

key-value pairs

value

size ratio: T

0

Buffering ingestion

Buffering ingestion

Buffering ingestion

flush

Immutable files on storage

— logically invalidated

How do we reduce this space amplification?

Out-of-place updates

fast ingestion space amplification slow reads

level 2

level 3

level 4

level 2

level 3

level 4

level 2

level 3

level 4

 M_{buf} : buffer memory T: size ratio

•

How about queries?

Can we do better?

How to manage memory?

Bloc

buffer

block cache

k Cache		
L1		
L2		
L3		
L4		

What about range queries?

se Queries	
L2	
L3	
L4	

More on LSM Reads in Part 2.

most data on storage

L: #levels T: size ratio

most data on storage if T = 10 & L = 4

99.9% on storage

space amplification

Performance **Tradeoff**

write performance

writing data on storage

read performance

Classical LSM design: leveling [eager merging]

Data Layout

Data Layout

Part 1: LSN Basics

Part 2: Read Optimizations in LSMs

Part 3: Navigating the LSM Design Space

Outline

Filters to the Rescue

What is a filter

Does X exist?

Answers set membership queries

What is a filter

Does X exist?

What is a filter

No false negatives

Does Q exist?

What is a filter

No false negatives

false positives with tunable probability

Filters One per run

Bloom Filters BloomCommunACM1970

k hash functions

00000000000 **bitmap**

insert: Set from 0 to 1 or keep 1

h₁

negative lookup: at least one bit is zero

 n_1

h₁

true or false positive lookup

Optimal number of hash functions

 $= \ln(2) \cdot M \leftarrow \text{bits / entry}$ $h_1 \dots h_k$
Optimal number of hash functions

Optimal number of hash functions = $\ln(2) \cdot M$

False positive rate = $2^{-M \cdot ln(2)}$

With M bits / entry

Holistic Tuning

5 fronts

Lowering Constants

Unification

Range

Holistic Tuning

LSM-Bush

DayanSIGMOD19

Monkey: Optimal Navigable Key-Value Store

bits/entry

Μ

М

Μ

bits/entry

Μ

М

Μ

false positive rate 2-M · In(2)

2-M · In(2)

2-M · In(2)

false positive rate 2-M 2-M

Bloom filters

2-M

2-M

$O(2^{-M} \cdot \log_T N)$

Bloom filters

$O(1+2^{-M} \cdot \log_T N)$

Bloom filters

false positive rate

2-M

2-M

2-M

bits / entry M **+ 2** M **+ 1** M - 1

false positive rates

2-(M **+ 1**) +

2-(M - 1)

 $2^{-M}/T^{2}$ $2^{-M}/T^{1}$ 2-M / TO

VectorStock*

$O(2^{-M}) < O(2^{-M} \cdot \log_T N)$

Faster worst case

Monkey opens up new ways of optimizing write performance without sacrificing get performance

Smaller false positive rates

Dostoevsky

gets O(**2**-*M*)

writes $O(T + \log_T N)$ O(1) +O(1) +O(T)

gets O(**2**-*M*)

writes $O(T + \log_T N) < O(T \cdot \log_T N)$ leveling =

O(1) +O(1) +O(T)

Dostoevsky $O(T + \log_T N)$

LSM-Bush O($\log_2 \log_T N$)

Cheaper range

Cheaper writes

Great point reads all across

Holistic Tuning

5 fronts

Lowering Constants

Unification

-∆=___N-

Range

CPU overhead?

Each key is inserted O(T) times per level into a filter

Each key is inserted O(T) times per level into a filter Each filter insertion uses $M \cdot ln(2)$ hash functions

Each key is inserted O(T) times per level into a filter Each filter insertion uses $M \cdot \ln(2)$ hash functions

 $= O(\log_{T}(N) \cdot T \cdot M)$

 $= O(\log_{T}(N) \cdot T \cdot (M + \log_{T} N))$

How about get cost?

Positive Query Cost \approx M \cdot In(2)

Avg. worst case = $O(M + \log_T N)$

Address Using Blocking and SIMD

Bloom filter

Hash to one cache line

X

Blocking

0000000000 00000 00000()

Insert as though cache line is X an independent Bloom filter

Blocking

Pro: one cache miss per insert/get

Con 1: uneven distribution of entries across cache lines slightly harms the false positive rate

Blocked Bloom filter

Blocking

Con 2: still need to compute many hash functions per entry

Blocked Bloom filter

PolychroniouDAMON14

SIMD

Map one hash per sub-line

SIMD

Blocking and SIMD

Blocking and SIMD

Bloom filters

Insert $O(T \cdot \log_T N)$

Holistic Tuning

5 fronts

Improving Constants

Unification Range

False positive rate

Improving Constants

Ideal

≈2^{-M}

 $\approx 2 - M \cdot 0.69$

False positive rate

Can we improve this?

≈2^{-M}

≈2 -M

GrafJEA20

XOR Filter Hash each entry to three buckets

Assign one bucket to own each entry

Each bucket stores XOR of fingerprint and other two buckets

2

During queries, recover fingerprints by xoring three buckets

2

free space ensures each bucket can own one entry

 $\approx 2 - M \cdot 0.69$

XOR

Idealized

≈ 2 -*M* · 0.81

 $\approx 2 - M$

XOR

 $\approx 2 - M \cdot 0.69$

 $\approx 2 - M \cdot 0.81$

Ribbon

Idealized

 $\approx 2 - M$

≈ 2 -*M* · 0.92

Denser XOR filter

DillingerSEA22

XOR

 $\approx 2 - M \cdot 0.69$

 $\approx 2 - M \cdot 0.81$

Ribbon

Idealized

≈ 2 -*M* · 0.92

 $\approx 2 - M$

Denser XOR filter In RocksDB since 2020

Lower CPU

Ribbon

Lower false positive rate

Holistic Tuning

5 fronts

Improving Constants

Unification

Range

Unification

Chucky

DayanSIGMOD21

SlimDB

 $= O(\log_T N)$

Unification

$= O(T \cdot \log_T N)$

cuckoo filter

Monkey w. Bloom

$O(1+2^{-M \cdot ln(2)})$

Get CPU

O(log T N)

Chucky w. Cuckoo

O(1)

Monkey w. Bloom

$O(1+2^{-M \cdot ln(2)})$

Get I/O

Get CPU $O(\log_T N)$

Insert CPU

 $O(\mathbf{T} \cdot \log_T N)$

Chucky w. Cuckoo

O(1)

Chucky

Get I/O

 $O(1+2^{-M+3})$

Memory

M

$M + 2^{-M} \cdot \log_2(N)$

0(1)

Holistic Tuning

Improving Constants

5 fronts

Unification

Range

Traditional filters do not support ranges

Range Filtering

Traditional filters do not support ranges

Range Filtering

cost: O(log₇ N)

Prefix Filter RocksDB20

Range Filters

Country code USA1234 **CAN**9876

Prefix Filter

Insert prefixes

USA CAN

Prefix Filter

USA CAN

Non-generic and requires API extension

Users define prefix extraction method

get(USA0, USA9)?

A trie of all keys

A trie of all keys
 Truncated to reduce space

A trie of all keys Truncated to reduce space

Add fingerprint for point reads

Surf

A trie of all keys Truncated to reduce space

Surf

Encoded as succinct trie with rank & select

Add fingerprint for point reads

Insert(ICDE)

Add all prefixes of all keys to a Bloom filter

Rosetta

Check largest common prefixes

get(ICDE, ICDF) → ICD

Rosetta

Rosetta

get(ICDE, ICDF)

Check largest common prefixes

Add more fine-grained checks to reduce false positive rate

Surf

Better long range

Rosetta

Better short range

Prefix Filters RocksDB20

Part 1: LSN Basics

Part 2B: Read Optimizations in LSMs

Part 3: Navigating the

Outline

SN Design Space

Reducing CPU Overheads in LSMs

For every query ...

Reducing CPU Overheads in LSMs

The same hash function is calculated **O(L)** times

Reducing CPU Overheads in LSMs

For every query ...

The same hash function is calculated O(L) times

Each key is hashed **O(1)** times

boot the second state of t

for 1TB data, 1.3GB filter &17.2GB index 1KB entry, 64B key, BPK=10 price drop from **2010** to **today** SSD: 60x DRAM: 10x

Even in a **perfectly uniform** workload, 80% of the queries access 45% of the files

For a **skewed** workload, **80% of the queries** access less than **5% of the files**

Modular Bloom filter is a collection of smaller Bloom filters Elastic Bloom filter also works based on the same principle

buffer

buffer

buffer

MunADMS22

Overall, better performance with smaller memory budget

buffer

Leaper : A learned pre-fetcher that improves reads

Part 1: LSN Basics

Part 2: Read Optimizations in LSMs

Part 3: Navigating the LSM Design Space

Outline

LSM Design Space

LSM Design Space

Read cost

Update cost

Memory/space footprint

Read cost

Memory/space footprint

fixed Memory

Update cost

Read cost

Memory/space footprint

Update cost

Read cost

Memory/space footprint

Update cost

How to optimally allocate the available memory?

workload

memory budget

How to allocate memory between LSM components

How to allocate memory among BFs in LSM

M: total memory M_{idx} : index memory M_{ftr} : filter memory M_{buf} : buffer memory

The **Optimal** Memory Allocation

available memory

index

 M_{idx}

filter

 M_{ftr}

workload reads(R)VS.

writes(W)

hijfer

 M_{buf}

 $M = M_{idx} + M_{ftr} + M_{buf}$

$read_cost(M_{idx}, M_{ftr}, M_{buf})$ $write_cost(M_{buf})$

 $cost = R \cdot read_cost + W \cdot write_cost$

M: total memory M_{idx} : index memory M_{ftr} : filter memory M_{buf} : buffer memory M_{cache} : block cache memory

The **Optimal** Memory Allocation

available memory

workload reads(R)

VS. writes(W)

plock cache

 M_{cache}

 M_{buf}

hijfer

 $M = M_{cache} + M_{buf}$

$read_cost(M_{cache})$

 $write_cost(M_{buf})$

 $cost = R \cdot read_cost + W \cdot write_cost$

Navigating read vs. writes: data layouts

[Open Problem]

The **Optimal** Memory Allocation

Update cost

Memory/space footprint

tiering L-leveling WPl optimized

Any design can be defined by the tuple-set: (T, i)

Any design can be defined by the tuple-set: (T, i)

Storage Layer **Design Continuum**

Storage Layer Design Continuum

DayanSIGMOD18

DayanSIGMOD18

DayanSIGMOD19

The LSM storage layer design continuum

target

modeling

LSM designs

worst-case performance modeling

worst-case performance modeling

worst-case read cost: $1 + \sum \phi_i$

worst-case performance modeling

worst-case read cost: 1 +

average-case performance modeling Li-1 $\sum (\mathbb{P}[\text{query in } L_i] \cdot (1 + \sum \phi_i))$ j=1i=1

ChatterjeeVLDB22

What if the workload comes with **unpredictability**?

optimal configuration for w_0

Workload-based Tuning

 $\pi_{w_0} = argmin_{\pi}(cost(w_0, \pi)) \quad cost(w_0, \pi_{w_0})$

Nominal Tuning

 $\pi_{w_0} = argmin_{\pi}(cost(w_0, \pi)) \quad cost(w_0, \pi_{w_0})$

same configuration

$cost(w_1, \pi_{w_0})$... but not optimal!

Robust Tuning

$\pi_{w_0}^{robust}$ $= argmin_{\pi}max_{w'\in R(w_0)}(cost(w_0, \pi_{w_0}^{robust}))$ $cost(w_1, \pi_{w_0}^{robust})$

... close-to-optimal!

Robust Tuning

The LSM design space is vast and complex.

Read optimizations are crucial to make LSMs better.

A tuned LSM engine can offer superior performance.

Open Research **Challenges**

Reduce write amplification

Performance Stability & Holistic Tuning

Automatic Tuning & Adaptive Behavior

Privacy-aware LSM designs

- Workload-aware compactions & layout transformation

Please see our manuscript for all references!

References

[1] H. Abu-Libdeh, D. Altınbüken, A. Beutel, E. H. Chi, L. Doshi, T. Kraska, Xiaozhou, Li, A. Ly, and C. Olston. Learned Indexes for a Google-scale Disk-based Database. In Proceedings of the Workshop on ML for Systems at NeurIPS, 2020.

S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. R. Borkar, Y. Bu, [2] M. J. Carey, I. Cetindil, M. Cheelangi, K. Faraaz, E. Gabrielova, R. Grover, Z. Heilbron, Y.-S. Kim, C. Li, G. Li, J. M. Ok, N. Onose,

P. Pirzadeh, V AsterixDB: A S Endowment, 7(

- Apache. Accun [3]
- Apache. HBase [4]
- [5] Apache. Cassar
- [6] M. Athanassou Methods. In Pro on Managemen
- M. Athanassou [7] A. Ailamaki, a RUM Conjectu Extending Data
- [8] O. Balmau, F. and D. Didona Merge Key-Val Trans. Comput.
- O. Balmau, R. [9] Unlocking Men the ACM Europ 80-94, 2017.
- [10] M. A. Bender, maul, D. Medje Don't Thrash: 1 VLDB Endowm
- A Draslow o [11]

- [44] J. Kim, S. Lee, and J. S. Vetter. PapyrusKV: a high-performance parallel key-value store for distributed NVM architectures. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC), pages 57:1-57:14, 2017.
- [45] Y.-S. Kim, T. Kim, M. J. Carey, and C. Li. A Comparative Study of Log-Structured Merge-Tree-Based Spatial Indexes for Big Data. In Proceedings of the IEEE International Conference on Data Engineering (ICDE), pages 147-150, 2017.
- [46] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska, and T. Neumann. RadixSpline: a single-pass learned index. In Proceedings of the International Workshop on Exploiting Artificial Intelligence Techniques for Data Management (aiDM@SIGMOD), pages 5:1-5:5, 2020.
- [47] H. Kondylakis, N. Dayan, K. Zoumpatianos, and T. Palpanas. Coconut Palm: Static and Streaming Data Series Exploration Now in your Palm. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD), 2019.
- [48] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The Case for Learned Index Structures. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 489–504, 2018.
- [49] Y. Li, Z. Liu, P. P. C. Lee, J. Wu, Y. Xu, Y. Wu, L. Tang, Q. Liu, and Q. Cui. Differentiated Key-Value Storage Management for Balanced I/O Performance. In Proceedings of the USENIX Annual Technical Conference (ATC), pages 673-687, 2021.

[22] N. Dayan, Y. Rochman, I. Naiss, S. Dashevsky, N. Rabinovich, E. Bortnikov, I. Maly, O. Frishman, I. B. Zion, Avraham, M. Twitto, U. Beitler, E. Ginzburg, and M. Mokryn. The End of Moore's Law and the Rise of The Data Processor. Proceedings of the VLDB Endowment, 14(12):2932-2944, 2021.

[23] N. Dayan and M. Twitto. Chucky: A Succinct Cuckoo Filter for LSM-Tree. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 365-378, 2021.

[24] N. Davan, T. Weiss, S. Dashevsky, M. Pan, E. Bortnikov, and M. Twitto.

- [67] P. Raju, R. Kadekodi, V. Chidambaram, and I. Abraham. PebblesDB: Building Key-Value Stores using Fragmented Log-Structured Merge Trees. In Proceedings of the ACM Symposium on Operating Systems Principles (SOSP), pages 497–514, 2017.
- [68] K. Ren, Q. Zheng, J. Arulraj, and G. Gibson. SlimDB: A Space-Efficient Key-Value Storage Engine For Semi-Sorted Data. Proceedings of the VLDB Endowment, 10(13):2037–2048, 2017.
- [69] RocksDB. Leveled Compaction. https://github.com/facebook/rocksdb/wiki/Leveled-Compaction, 2020.
- [70] RocksDB. Prefix Bloom Filter. https://github.com/facebook/rocksdb/wiki/Prefix-Seek#configure-prefix-bloom-filter, 2020.
- [71] RocksDB. Block Cache. https://github.com/facebook/rocksdb/wiki/Block-Cache, 2021.
- [72] S. Sarkar and M. Athanassoulis. Dissecting, Designing, and Optimizing LSM-based Data Stores. In Proceedings of the ACM SIGMOD International Conference on Management of Data, 2022.
- [73] S. Sarkar, J.-P. Banâtre, L. Rilling, and C. Morin. Towards Enforcement of the EU GDPR: Enabling Data Erasure. In Proceedings of the IEEE International Conference of Internet of Things (iThings), pages 1-8, 2018.
- [74] S. Sarkar, K. Chen, Z. Zhu, and M. Athanassoulis. Compactionary: A Dictionary for LSM Compactions. In *Proceedings of the ACM SIGMOD* International Conference on Management of Data, 2022.
- [75] S. Sarkar, T. I. Papon, D. Staratzis, and M. Athanassoulis. Lethe:

LSM-Trees & its Read Optimizations

Subhadeep Sarkar Niv Dayan Manos Athanassoulis

UNIVERSITY OF