W DASIab

@ Harvard SEAS

Design Tradeoffs of Data Access Methods

Manos Athanassoulis and Stratos |dreos

HARVARD
* School of Engineering
and Applied Sciences

declarative interface
ask “what” you want

v

the system decides
“how” to best store
and access data

db system

HARVARD
% School of Engineering

CCCIGICIG o

api/sql

N algorithms/operators

memory hierarchy

an access method is a way to store and access data

layout

an access method is a way to store and access data

e.g., array

structure unordered

havigation

an access method is a way to store and access data

e.g., array e.g., array

structure unordered ordered

navigation binary search

TREES

HASH TABLES

SLOTTED PAGES
TRIES COLUMN-GROUPS

LOG-STRUCTURED TREES

MULTI-DIMENTIONAL

HARVARD
@ School of Engineering
and Applied Sciences

G
)

(Q
— = Isn’tthis a solved problem?

HARVARD
School of Engineering

o8
d ﬂ@

o(> isn’t this a solved problem?

access method design is now as important as ever

29-41
ITEMS
28ITEMS,]|

NO DAIRY
22.27| PRODUCTS
ITEMS 1

data systems are nearly
everywhere...

Google

Y:_j‘z‘sjﬂ

~—————~ ITEMS
28ITEMS;]
 — NO DAIRY
22.27| PRODUCTS
ITEMS |
LRz 18-21
= —~—ITEMS
LE:
0 mEms A v
a7 (
7)f;!
¥ = Z]
=Ll Tk
i
, g[\,"n 5 =
\ //7]5

T T "
R-HUwT/ € ALANER -

data systems are nearly
everywhere...

Google

tomorrow

N~——— 7 29-41 HARVARD
lTEMs School of Engineering
and Applied Sciences

|
\ S— 22 PRODUCTS /
N7 ITEMS 1

=
ST, 1821
= C 107 ITEMS /

/Q‘” TEMS
—] LESSTHAI /i
10 ITEMS| (

i,
o _ St g
S5
7 = e 7 ﬁ!
LA ANsE
7 A ¥ =Ll o) e
24 i\ it fes
A R s
to d ay = L % //7’5 |
B . -7 "/SR.HUW/E-I;ILAMEN =

(-

data systems are nearly
everywhere...

tomorrow

and Applied Science

disk memory

disk memory

option ABC et
Frow- re
N e

disk memory

optiory

ABCD =—p
avYavYaYe

option?2

' column-
store

engine

HARVARD
@ School of Engineering
and Applied Sciences

)
q)

c(> how many more new access methods to design?

@
@o
0|)

(Q
— = how many more new access methods to design?

it Is not about radical new designs only!

design, tuning and variations

say the workload (read/write ratio) shifts (e.g., due to app features):
should we use a different data layout for base data - diff updates?
should we use different indexing or no indexing?

say we buy new hardware X (flash/memory):
should we change the size of b-tree nodes?
should we change the merging strategy in our LSM-tree?

School of Engineering
and Applied Sciences

HARVARD

HARVARD
* School of Engineering
and Applied Sciences

conflicting goals moving target
(hardware and requirements change continuously and rapidly)

hardware

energy profile

move from design based on intuition & experience only

to a more formal and systematic way to design systems

goals and structure of the tutorial

structure design space & tradeofts
highlight open problems towards easy to design methods

goals and structure of the tutorial

structure design space & tradeofts
highlight open problems towards easy to design methods

basic tradeoffs
goals & vision

slides available at daslab.seas.harvard.edu

design
space

a

‘-v.aa»-ta
000060 o .
.—CQOOQ.

[]
3»%0.00@

3 Qﬁo)
z KSR S D+
3t .. .
™ . y * 3
) \p “i ;‘Q:_é_’
¥, . "’ ”
¥V od. . S~

target audience = beginner to expert

no new designs but new
connections & structure

chool of Engineering
and Applied Sciences

HARVARD
* School of Engineering
and Applied Sciences

NOT JUST SQL
+
operating systems, no sqgl, sciences

School of
and Appli

HARVARD

hardware is a big drive of access method (re)design
(and it continuously evolves)

faster

~1ns

~10ns

it is not just memory and disk
we want to move as few data items as possible
all the way up to the CPU

memory wall

cheaper

HARVARD
* School of Engineering
and Applied Sciences

random access &
page-based access

need to only read x...
but have to read all of page 1

data value x

N\
‘e X I 3

page page?2 page3

HARVARD
* School of Engineering
and Applied Sciences

what is the perfect access method?

HARVARD
* School of Engineering
and Applied Sciences

what is the perfect access method?

what is the perfect access method?

no single answer; it depends

what is the application
read patterns
write patterns

reads/writes ratios
hardware (CPU, memory, etc)
SLAS

HARVARD
* School of Engineering
and Applied Sciences

a perfect access method for reads (point queries)

f fiﬂd(X)

a perfect access method for reads (point queries)

f fiﬂd(X)

a perfect access method for reads (point queries)

f fiﬂd(X)

a perfect access method for reads (point queries)

f fiﬂd(X)

HARVARD
* School of Engineering
and Applied Sciences

a perfect access method for reads (point queries)

f fiﬂd(X)

HARVARD
* School of Engineering
and Applied Sciences

a perfect access method for reads (point queries)
but with no memory overhead

binary search to find(x)

f
(sorted)

a perfect access method for reads (point queries)
but with no memory overhead

binary search to find(x)

,f
(sorted)

a perfect access method for reads (point queries)
but with no memory overhead

binary search to find(x)

,f
(sorted)

a perfect access method for reads (point queries)

but with no memory overhead

binaryﬁarch to find(x)

(sorted)

a perfect access method for reads (point queries)

but with no memory overhead

binaryﬁarch to find(x)

(sorted)

HARVARD
* School of Engineering
and Applied Sciences

a perfect access method for writes (point writes)

upolate(x)_-j

()800

update log

a perfect access method for writes (point writes)

upolate(x)_\v

()800

update log

a perfect access method for writes (point writes)

upolate(x)_\v

()800

update log

a perfect access method for writes (point writes)

upolate(x)—\v

()800

update log

HARVARD
* School of Engineering
and Applied Sciences

a perfect access method for writes (point writes)

upolate(x)_-j

()800

update log

HARVARD
* School of Engineering
and Applied Sciences

design space

it all starts with how we store data
every bit matters

HARVARD
@ School of Engineering
and Applied Sciences

nasIc trageorlrs

€

Updates ’

RUM conjecture, EDBT 2016

Read

min

max
&4

N
2 ;\\)'

Updates

min min

Update Memory

Read

min

Updates

min min

Update Memory

Fractional
Cascading

Partitioning

Fractional Log-structured
Cascading Updates

Differential Sparse
Updates Indexing

Logarithmic

Design

study basic access methods design components
how they affect the RUM tradeoffs

how are they combined in existing access methods
Read

min

maXx

min min

Update Memory

Fractional
Cascading

Partitioning

Fractional Log-structured
Cascading Updates

Differential Sparse
Updates Indexing

Logarithmic

Design

study basic access methods design components
how they affect the RUM tradeoffs

how are they combined in existing access methods
Read

min

Part 2

maXx

min min

Update Memory

HARVARD
* School of Engineering
and Applied Sciences

can we make it easy to design/tune access methods”?

HARVARD
* School of Engineering
and Applied Sciences

disk memory

easlly utilize past concepts

HARVARD
* School of Engineering
and Applied Sciences

35
28
n
S 21
s
(S
© 14
H
7 P. O'Neil, E. Cheng, D. Gawlick, E, O'Neil
The log-structured merge-tree (LSM-tree)
0 Acta Informatica 33 (4): 351-385, 1996

1996 1999 2002 2005 2008 2011 2014

do not miss out on cool ideas and concepts

HARVARD
* School of Engineering
and Applied Sciences

W
@)

N
oo

N
—

Google publishes
BigTable

—
AN

of citations

P. O'Neil, E. Cheng, D. Gawlick, E, O'Neil
The log-structured merge-tree (LSM-tree)
Acta Informatica 33 (4): 351-385, 1996

0
1996 1999 2002 2005 2008 2011 2014

do not miss out on cool ideas and concepts

move from design based on intuition & experience only

to a more formal and systematic way to design systems

I‘ HARVARD
l * School of Engineering
and Applied Sciences

construct access methods
out of basic components
(and their tradeoffs)
e.g., scan®, tree*, bloom filters,
bitmaps, hash tables, etc.

po ink
indexes

RUM o.darktve

and arrroxima&e

Update Memory

© Re\at‘\ona\

-

data
system
designer

=
L

&
- N
é

INTERACTIVE DATA SYSTEM DESIGN/TUNING/TESTING

easy to change/adapt

easy to design

easy to change/adapt

easy to design

universal
development
platform

testing

easy to change/adapt

easy to design

universal
development
platform

testing

HARVARD
* School of Engineering
and Applied Sciences

Part 2: observe how papers fill in gaps
In the structure and existing open gaps

